T.C.
MİLLÎ EĞİTİM BAKANLIĞI

TEKSTİL TEKNOLOJİSİ

YÜN ELYAFİNİN
HAM MADDE KONTROLLERİ 1
542TGD1027

Ankara, 2011
Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencileri rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.

PARA İLE SATILMAZ.
İÇINDEKILER

AÇIKLAMALAR .. ii
GİRİŞ ... 1
ÖĞRENME FAALİYETİ-1 .. 3
1. LABORATUVAR KOŞU LLARINI SAĞLAMAK .. 3
 1.1. Kalite Kontrolünün Tanımı .. 3
 1.2. Tekstilde Kalite Kontrolun Önemi ve Amacı .. 3
 1.3. Kalite Kontrolü Etkileyen Faktörler .. 4
 1.4. Kalite Kontrol Yöntemleri .. 4
 1.5. Kalite Standartları .. 5
 1.5.1. Standardın Tanımı ve Amacı ... 5
 1.6. Kalite Kontrol İçin Gereklı Şartlar .. 6
 1.6.1. Numune Alma Teknikleri .. 6
 1.6.2. Cihazların Kalibrasyonu ve Personel .. 7
 1.6.3. Kalite Kontrol Laboratuvarının Özellikleri .. 8
 1.6.4. Laboratuvar Atmosfer Şartları .. 8
 1.6.5. Kondisyonlama İşlemini .. 9
 UYGULAMA FAALİYETİ .. 11
ÖLÇME VE DEĞERLENDİRME .. 13
ÖĞRENME FAALİYETİ-2 .. 14
2. Uzunluk Tespiti ... 14
 2.1. Yün Elyafında Uzunluk ... 14
 2.1.1. Tanımı .. 15
 2.1.2. Çeşitleri ... 16
 2.2. Yün Elyafında Uzunluk Ölçümü .. 16
 UYGULAMA FAALİYETİ .. 22
ÖLÇME VE DEĞERLENDİRME .. 27
ÖĞRENME FAALİYETİ-3 .. 29
3. İNCELİK TESPİTİ ... 29
 3.1. Yün Liflerinde İncelik .. 29
 3.1.1. Tanımı ... 31
 3.1.2. Önemi .. 31
 3.2. Yün Lifi İncelik Tespit Yöntemleri .. 31
 3.2.1. Tek Lifte İncelik Tespiti ... 31
 3.2.2. Küme Hâlinde Liflerde İncelik Tespiti ... 35
 UYGULAMA FAALİYETİ .. 36
ÖLÇME VE DEĞERLENDİRME .. 40
MODÜL DEĞERLENDİRME .. 42
CEVAP ANAHTARLARI ... 44
KAYNAKÇA .. 46
<table>
<thead>
<tr>
<th>KOD</th>
<th>542TGD1027</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAN</td>
<td>Tekstil Teknolojisi</td>
</tr>
<tr>
<td>DAL/MESLEK</td>
<td>Yun İşçiliği</td>
</tr>
<tr>
<td>MODÜLÜN ADI</td>
<td>Yun Elyafının Ham Madde Kontrolleri 1</td>
</tr>
<tr>
<td>MODÜLÜN TANIMI</td>
<td>Yun eļafında ham madde kontrollerini yapma yeterliğinin kazandırıldığı öğrenme materyalidir.</td>
</tr>
<tr>
<td>SÜRE</td>
<td>40/32</td>
</tr>
<tr>
<td>ÖN KOŞUL</td>
<td>Ön koşul yoktur.</td>
</tr>
<tr>
<td>YETERLİK</td>
<td>Yun eļafının uzunluk ve inceliğini tespit etmek</td>
</tr>
<tr>
<td>MODÜLÜN AMACI</td>
<td>Genel Amaç Bu modül ile gerekli ortam sağlandığında, yün eļafının ham madde kontrollerini yapabileceksiniz.</td>
</tr>
<tr>
<td></td>
<td>Amaçlar 1. Laboratuvar koşullarını standartlara uygun olarak sağlayabileceksiniz.</td>
</tr>
<tr>
<td></td>
<td>2. Yun eļafının uzunluğunu tespit edebileceksiniz.</td>
</tr>
<tr>
<td>EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI</td>
<td>Ortam: Aydınlik ortam</td>
</tr>
<tr>
<td></td>
<td>Donanım: Yun eļafı, uzunluk tespit cihazı, incelik tespit cihazı</td>
</tr>
<tr>
<td>ÖLÇME VE DEĞERLENDİRME</td>
<td>Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçme araçları ile kendinizi değerlendirireceksiniz. Öğretmen modül sonunda ölçme aracı (çoktan seçmeli test, doğru-yanlış testi, boşluk doldurma, eşleştirme vb.) kullanarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek sizi değerlendirirecektir.</td>
</tr>
</tbody>
</table>
Sevgili Öğrenci,

Tekstil sektöründe iplik kalitesi büyük öneme sahiptir. Dokusuz yüzeyler hariç tekstilin her dalında iplik kullanılmaktadır, bu sebeple iplik kalite özelliklerinin yeteri kadar iyi olması gerekmektedir.

Kaliteli üretim yapabilmek, ham madde kayıplarını en aza indirerek fabrikada üretim maliyetini azaltabilmek, zamandan tasarruf sağlamak ve kârlılığı artırabilmek için kullanılan ham maddenin iplik yapılabilirlik özelliklerinin iyi bilinmesi gerekmektedir.

Bu bilgi ve beceriler sektörde planlama, üretim ve kalite kontrol bölümlerindeki iş ve işlemler için temel oluşturacaktır. Bu nedenle ham madde testleri ile bu işlemlerin yapılmasında kullanılan cihazların kullanımını ve çıkan sonuçların yorumlanması iyi bilmeniz önem taşımaktadır.

Bu modül ile tekstil sektörünün beklediği niteliklerde yetişmenizi amaçladığımız sizler, gerekli ortam sağlandığında tekniğine uygun yön elyafının uzunluk ve incelik testlerini yapabilecek bilgi ve becerileri kazanacaksınız.
AMAÇ

Öğrenme faaliyetinde kazandırılacak bilgi ve beceriler doğrultusunda uygun ortam sağlandığında laboratuvar ortamını standartlara uygun olarak sağlayabileceksiniz.

ARAŞTIRMA

- Laboratuvar ortamını standartlara uygun olarak sağlayabilmek için gerekli bilgileri toplayınız.
- Araştırmada konusu hakkında kaynak taraması yapınız.
- Topladığınız bilgileri arkadaşlarınızla tartışınız ve raporlaştırarak dosyalar oluşturunuz.
- Hazırladığınız raporu arkadaşlarınızla paylaşınız.

1. LABORATUVAR KOŞULLARINI SAĞLAMAK

1.1. Kalite Kontrolünün Tanımı

Kalitenin çok çeşitli tanımları yapılmaktadır.

Kalite; bir mal veya cismin kullanımında tasarlanan amaçlara uygunluk derecesidir.

Kalite; bir ürün ve hizmeti, müşterinin isteklerine cevap verebilecek özelliklerde, en uygun maliyette, rekabet koşullarına uygun şekilde üretmektedir.

1.2. Tekstile Kalite Kontrolünün Önemi ve Amacı

Günümüz toplumlarının uygarlık anlayışı içinde giyim, insanın fiziksel ve ruhsal varlığını tamamlayan temel ihtiyaç maddesi durumundadır. Dolayısıyla sosyal bir ihtiyacı hâline gelen ev tekstilleri, üst giyim ve iç giyim ürünlere yaşamımızın pek çok alanında karşımaç çıkar.
Tekstil ürün alcıcısı ilk planda etkileyen faktörler, dış görünüş ve fiyat olabilir. Ancak mukavemet, ısı tutma, kolay temizlenebilme, kolay kuruyabilme, ütü tutma gibi kullanım sırasındaki özellikler de tüketiciyi büyük ölçüde yönlendirir. Uzun süreli kullanım düşünülüğünde bu özellikler yani kalite faktörü ön plana çıkar.

- Mamul tasarımının geliştirilmesi,
- Daha ucuz ve kolay işlenebilir malzeme seçimi,
- İşletme maliyetlerinin azaltılması,
- İşçilik ve malzeme kayıplarının en aza indirilmesi,
- Personelin moralinin yükseltmesi,
- Müşteri memnuniyetini azaltmak,
- İletişim ve iletişim ağlarının geliştirilmesi.

1.3. Kalite Kontrolü Etkileyen Faktörler

Kalite kontrolü etkileyen faktörlerin başında üretim araçları ve yöntemleri gelmektedir. Son yıllarda gelişen otomasyonun kalite kontrolü üzerinde büyük etkisi vardır. Bunlar;

- Ham madde,
- Tesis, makine ve üretim yöntemleri,
- Teknolojik seviye,
- İnsan gücü (yönetici, teknisyen, işçi),
- Pazar ve tüketici özellikleri,
- Mali olanaklar,
- Eğitim düzeyi olarak sınıflandırılabilir.

1.4. Kalite Kontrol Yöntemleri

Amacı problemin niteliğine, pratik zorluklara ve maliyet faktörlerine göre geliştirilen kalite kontrol sistemi içerisinde çeşitli yöntemler vardır. Bunlar aşağıda açıklanmıştır.

- Test yöntemleri

Ham madde yarı mamul ve mamul maddelere ait çeşitli özelliklerin saptanması için uygulanan yöntemler test yöntemleri denir.
Test yöntemi; seçilen ölçüm aleti ile yapılan ölçümleri, sonuçların değerlendirilmesini, ölçümlerde farklılık varsa standart sapmanın hesaplanmasını ve elde edilen sonuçların standartlarla karşılaştırılmasını kapsar.

- **Muayene yöntemi**

Muayene, ham madde, yarı mamul ve mamulden beklenen fiziksel ve kimyasal değerlerin saptanması için yapılan testlerdir. Bu testler sübjektif olarak yapılacağı gibi ölçüme veya sayıma olabilir.

- **İstatistiksel kalite kontrol**

- **Proses kontrolü**

Bitmiş ürün ya da mamul üzerinde yapılmayıp üretilmekte olan ürün üzerinde yapılmaktadır.

1.5. Kalite Standartları

1.5.1. Standardın Tanımı ve Amacı

Standart, çeşitli mal veya hizmet tiplerinin azaltarak sadeleştirilmesi, en ekonomik tiplerin seçilmesidir.

İşletmelerin esas amacı müşterinin istekleri doğrultusunda kaliteli ürün üretemektir. Bunun yanında işletmeyi daha kaliteli ürün üretebilmek için ürettiği ürünlerden kâr etmesi gerekir. Standartlaşmanın amaçlarını aşağıdaki gibi sıralayabiliriz.

- Üretimde, mamul ve parça sayısını azaltarak üretim maliyetlerini düşürmek
- En iyi şekilde kaliteli mal ve hizmet üretmek tüketicinin çıkarlarını korumak
- İşçilik ve makine verimliliğini artırmak
- Çalışanların sağlığı ve güvenliğini sağlamak
- Malzeme kayıplarını en aza indirmek
- Üretilen ürünlerin kalitesini yükseltmek daha geniş bir alıcı kitlesine ulaşabilmek
- Tamir bakım ve yedek parça gibi giderleri en aza indirmek
- Stokları en aza indirmek
1.6. Kalite Kontrol İçin Gerekli Şartlar

İplik üreten işletmelerde, lifin fiziksel kontrolleri, işletmelerin iplik fiziksel testler laboratuvarında yapılar.

İplik fiziksel testler laboratuvarında yapılacak olan testlerin güvenilir olabilmesi için bazı şartlar gereklidir. Bunlar aşağıdaki verilmiştir.

1.6.1. Numune Alma Teknikleri

İncelemesi yapılacak materyalin genel özelliklerini belirtecek biçimde alınan parçalara numune denir. Yapılan işleme de numune alma işlemi denir.

Testleri yapılacak olan bütün bir parti elyaafının tamamını test etmek mümkün olmadığından o partiyi temsil edecek şekilde numuneler alınır.

Değişik numune alma yöntemleri olmasına rağmen numune almanın esası rastgele numune almaktır. Ancak miktarlar çok olduğunda pratikte buu yapmak güçtür.

Ancak çoğu zaman partiden gelişigüzel numune alınması pratik olarak zordur. Tavsiye edilen numune alma metotları bu zorlukları büyük ölçüde göz önüne almara hazırlanmıştır.

Ön yargı olmadan (sondaj usulü) partinin değişik noktalarından laboratuvar numunesinin alınması demektir. Numune alma aşağdaki aşamalarda yapılır.
1.6.1.1. Lif Kontrolü İçin Numune Alma

Lif kontrolü yapmak için numune almda çeşitli metotlar kullanılır. Bunlar lifin cinsine göre değişir. Pamuk, yün ve sentetik elyahta numune alma yöntemleri farklıdır.

Yün numunesinin balyalardan alınmasını sondaj metodu oldukça iyi netice vermektedir. 60 cm uzunluğunda 12–18 mm çapında bir boru, balya içerisinde elle veya elektrikli matkapla sokulur. Bu şekilde sondaj ile 1 kg laboratuvar numunesi hazırlanır.

Balya sayısına bağlı olarak bazı standartlarda (ASTM) belirttiği gibi değişik sayıda balyadan numune alınır.

Liflerden test için gelişigüzel numune almda çeşitli metotlar uygulanır ki bunlardan bazıları aşağıda kısaca ele alınmıştır.

- **Böl gelere ayırma metodu**: Bu metodun esası, laboratuvar numunesinin değişik bölgelerinden ufak tutamlar alıp bu tutamları ikiye ayırdıktan sonra bir parçasını atmak ve kalan ufak tutamları birleştirerek test numunesini hazırlamaktır.
- **Boyama metodu**: Daha ziyade yün için kullanılan bu metotta numune cam üzerine yayıldıktan sonra belli bölgeler boyanır ve daha sonra her iki uçu boyalı lifler alınıp diğerleri atılır.
- **Yapay liflerden numune alma**: Yapay liflerden numune almda yine yukarıda bahsedilen hususlar dikkate alınarak yapılarak ve alınan numunelerden yapılan testlere ve sonuçlara güvenilebilir.

1.6.1.2. Bant Kontrolü İçin Numune Alma

Bantta uygulanacak olan deney yönteminin amacı uygun olarak kovalardan teste gerekli olacak uzunluk ve sayıda bant numunesi alınır.

1.6.1.3. Fitil Kontrolü İçin Numune Alma

Fitile uygulanacak olan deney yönteminin amacı uygun olarak fitil yumağından teste gerekli olacak uzunluk ve sayıda fitil numunesi alınır.

1.6.1.4. İplik Kontrolü İçin Numune Alma

İpliğe uygulanacak olan deney yönteminin amacı uygun olarak iplik partisinden çeşitli sayıdaki kopslardan teste gerekli olacak uzunluk ve sayıda numune alınır.

1.6.2. Cihazların Kalibrasyonu ve Personel

Test cihazlarını kullanan kişinin iyi eğitimli olması şarttır. Test yapacak kişinin test metotlarını iyi bilmesi ve yeterli tecrübe sahibi olması gerekir. Personelden kaynaklanan hatalar test sonuçlarının güvenilirliğini zedeler.

1.6.3. Kalite Kontrol Laboratuvarının Özellikleri

- Laboratuvar, sarsıntı ve hava basınç değişmelerinden etkilenmemek için zemin veya en alt katlarda bulunmalıdır.
- Laboratuvar kapılarının özel korumalı veya çift kapı olması gerekir.
- Işığın yansıması açısından duvar renklerine ve camlara dikkat etmek gereklidir.
- Sıcak ve soğuk havanın etkilerinden uzak durmak için penceler çift camlı olmalıdır.
- Cihazların mümkün olduğu kadar kapı, pencereler ve havanın değişim gösterdiği yerlerden uzak olarak yerleştirilmeli gerekir.
- İstício ve klima tesisatı gereklidir olup cihazları etkilememelidir.
- Laboratuvardaki deneylerin pek çoğu karşılaştırma esasına dayandığı için metrekarede aydınlatmanın iyi ve eşit dağılımı olması gerekir.
- Cihazların yerleri tespit edilirken güneş ışığı yönü düşünülerek cephe kontrolü iyi yapılmalıdır. Pencere bulunmayabilir, güneş ışığı yerine suni ışıklandırma yapılması tercih edilmelidir.

1.6.4. Laboratuvar Atmosfer Şartları

Tekstil liflerinin en önemli özelliklerinden biri de rutubetli atmosferde su buharı, alması kuru atmosferde kaybetmeleridir.

Liflerin rutubet alma miktarları çevrenin nispi rutubetine bağlıdır. Yani rutubet alma, havada mevcut su buhari miktarına değil nispi rutubete bağlıdır.

Lif özelliklerini rutubet alma miktarı büyük ölçüde etkiler. Rutubet alma çevresindeki nispi rutubete bağlı olarak nispi rutubetin lif özelliklerine etkisi çok fazladır. Bu bakımdan tekstil materyallerinin fiziksel özellikleri, sabit koşullarda test edilmelidir.

Tekstil materyalinin test edilmesi için uluslararası standart olarak hava koşulları belirlenmiştir.

Laboratuvar standart atmosfer koşulları; 20 °C±2 sıcaklık ve 65% RH ±2 bağıl nem, tropikal bölgelerde ise 27 °C±2 sıcaklık ve 65% RH ±2 bağıl nemli sabit koşulların oluşturulduğu odadır.
1.6.5. **Kondisyonlama İşlemi**

Liflerin ağırlık, mukavemet, ölçüm gibi birçok fiziksel özellikleri lifte mevcut rutubet miktarına, dolayısıyla çevre koşullarına bağlı olarak değişir. Bu nedenle tekstil materyallerinin fiziksel özellikleri test edilmeden kondisyonlanmalıdır.

1.6.5.1. **Amacı**

Kondisyonlama, fiziksel muayenede hataları önlemek ve üretimde elyaflın işlenmesini kolaylaştırmak için belirlenmiş bir nem düzeyine getirme işlemidir.

1.6.5.2. **Laboratuvarında Kondisyonlanmanın Yapılması**

Oluşabilecek hataları önlemek için tüm numuneler % 10–25 nispi nem ve 50 °C’de değişmez ağırlığa gelinceye kadar kondisyonlama fırınında kurutularak ön kondisyonlamaya tabi tutulur. Daha sonra standart atmosfer şartlarında (% 65±2 nispi nem 20 ±2°C) bekletilir ve teste tabi tutulur. İşletme laboratuvarlarının nem derecesinin ölçülmesinde;

- Assman psikometrisi cihazı,
- Termohigrograf nem ölçme cihazı kullanılır.

![Resim 1.2: Nem ölçme cihazları](image)

Kondisyon süresi numune ağırlığının dengeye ulaşması için gereken süre olarak belirlenir. Arka arkaya 2 saat arayla alınan tartımlar da numune ağırlığında % 0,25’ten daha büyük bir değişim olmamalıdır.
NOT: Uygulama Faaliyeti–1’de, tekstil materyalı üzerinde kondisyonlama işlemi uygulamasını yapınız.

1.6.5.3. İşletmede Kondisyonlanmanın Yapılması

İşletme içindeki elyafın kolay işlenebilmesi için kondisyonlanır. Liflerin, yüksek nispi nemli bir atmosferde belli bir süre depolanması ya da kondisyonlama cihazının kullanılarak yapılır. İşletmelerde kondisyonlama şu amaçla yapılır:

- Tekstil materyallerinin nem dengesinin sağlanması için % 65 rutubet ve 20 derecede rutubet miktarını değiştirmek
- Ham madde, işlenmiş hâldeki elyafın içerdığı nem miktarının oranını saptamak
- Tekstil materyalini denge hâline getirmek ve sonra atmosfer şartlarına (20 derece ve % 65 nem) maruz bırakmak yoluya aradaki oranı bulmak,
- Standart gereği kazanma ölçüsüne uygun olacak şekilde gelinceye kadar tekstil materyalinin bir miktar su absorblamasına izin vermek
UYGULAMA FAALİYETİ

- Tekstil materyali üzerinde kondisyonlama işlemini yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kondisyonlama yapılacak alanın temizliğini yapınız.</td>
<td>Temizlik kurallarına uyunuz.</td>
</tr>
<tr>
<td>Cihazın doğruğunu kontrol ediniz.</td>
<td>Uçuntuların iyi bir şekilde temizlenmesine dikkat ediniz.</td>
</tr>
<tr>
<td>Oluşabilecek hataları önlemek için tüm numuneler % 10–25 nispi nem ve 50 °C’de değişmez ağırlığa gelinceye kadar kondisyonlama firinda kurutarak ön kondisyonlamaya tabi tutunuz.</td>
<td>Kalibrasyonun yapılmadığına bakınız.</td>
</tr>
<tr>
<td>Numune tekstil materyalını kondisyonlayınız.</td>
<td>Kondisyonlama firinda kurutma işlemine dikkat ediniz.</td>
</tr>
<tr>
<td>Laboratuvardaki standart atmosfer koşullarını termohigrograf cihazı ile ölçünüz.</td>
<td>Kondisyonlanacak elyafın karışmamasına dikkat ediniz.</td>
</tr>
<tr>
<td>Termohigrograf cihazındaki değeri doğru not ediniz.</td>
<td></td>
</tr>
</tbody>
</table>

Temizlik kurallarına uyunuz.
Uçuntuların iyi bir şekilde temizlenmesine dikkat ediniz.
Kalibrasyonun yapılmadığına bakınız.
Kondisyonlama firinda kurutma işlemine dikkat ediniz.
Kondisyonlanacak elyafın karışmamasına dikkat ediniz.
Termohigrograf cihazındaki değeri doğru not ediniz.
Sonuçları değerlendiriniz.

Sonuç istenilen değerlerde ise elyafın testlerini yapınız.

Sonuç istenilen değerlerde değilse Kondisyonlama işlemlerini gözden geçiriniz.

Çıkan sonucu verilen değerlerle karşılaştırınız.

Sonuçları arkadaşlarınızla tartışarak karşılaştırınız.

Zamanı iyi kullanınız.

Zamanı iyi ve verimli kullanmaya önem veriniz.

KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçüleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kondisyonlama yapılacak alanın temizliğini yaptıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Cihazın doğruluğunu kontrol ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Oluşabilecek hataları önlemek için tüm numuneleri % 10–25 nispi nem ve 50 ºC’de değişmez ağırlığa gelinceye kadar kondisyonlama firımda kurutarak ön kondisyonlamaya tabi tuttunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Numune tekstil materyalini kondisyonladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Laboratuvarındaki standart atmosfer koşullarını termohigrograf cihazı ile ölçünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Sonuçları değerlendirirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Sonuç istenilen değerlerde ise elyafın testlerini yaptıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Sonuç istenilen değerlerde değilse kondisyonlama işlemlerini gözden geçirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Çıkan sonucu, verilen değerlerle karşılaştırınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Sonuçları arkadaşlarınızla tartışarak karşılaştırınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Zamanı iyi kullanınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıda boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

1. () Kalite, bir mal veya cismin kullanımında tasarlanan amaçlara uyguluk derecesidir.

2. () Mamul tasarımının geliştirilmesi kalite kontrolün amaçlarından değildir.

3. () Muayene, ham madde, yarı mamul ve mamulden beklenen fiziksel ve kimyasal değerlere saptanması için yapılan testlerdir.

4. () TSE tarafından hazırlanan standartlar Türk Standardı adını alır.

5. () Sondaj usulü numune alma, ön yargılı olarak partinin değişik noktalarından laboratuvar numunesinin alınması demektir.

6. () İncelemesi yapılacak materyalin genel özelliklerini belirtecek biçimde alınan parçalara numune denir.

7. () Kondisyonlama, laboratuvarda ve işletmede kondisyonlama olarak iki şekilde yapılır.

8. () Kondisyonlamanın amacı, satış veya materyallerin işlenmelerini kolaylaştırmak için elyafı, belirlenmiş bir nem düzeyine getirmektir.

9. () Kondisyonlama herhangi bir ortamda yapılabilir.

10. () Termohigrograf basınç ölçme cihazı olarak kullanılır.

DEĞERLENDİRME

ÖĞRENME FAALİYETİ–2

AMAÇ

Öğrenme faaliyetinde kazandırılacak bilgi ve beceriler doğrultusunda uygun ortam sağlandığında yön elyafının uzunluk tespini yapabileceksiniz.

ARAŞTIRMA

➢ Yük eleyafının uzunluk tespini yapmak için gerekli bilgileri toplayınız.
➢ Araştırma konusu hakkında kaynak taraması yapınız.
➢ Topladığınız bilgileri arkadaşlarınızla tartışınız ve raporlaştırarak dosyalar oluşturunuz.
➢ Hazırladığınız raporu arkadaşlarınızla paylaşınız.

2. UZUNLUK TESPİTİ

Lif uzunluk değerleri; eğirme performansı, iplik inceliği, düzgünliğini, mukavemeti, tutumu üzerinde etkilidir. Kısa eleyaf yüzdesi artışta üretim aşamalarında şu sorunlarla karşılaştırılabilir.

➢ İplik kopmaları artar.
➢ Mukavemet düşer.
➢ Nope miktarı artar.
➢ Düzgünliği artar.
➢ Tüylenme oluşur.
➢ Telef oranı artar.

2.1. Yün Elyafında Uzunluk

Uzunluk yön lifi için önemli özelliklerden biridir. Uzunluk ve incelik büklümü ve üretimi direkt etkiler.

Uzunluk deyince bir lifin iki ucu arasındaki mesafe akla gelir. Uzunluğun birimi mm’dir. Yünde ince lifler kısa, kalın lifler uzundur. Bununla beraber yünde kalite sınıflarının tespitinde ortalama lif uzunluğuna önem verilir.

Lif ne kadar uzun olursa eğirme esnasında temas edilen yüzey o derece artar, bu da tutunma kuvvetini artırarak mukavemeti artırır. Uzunluğun yanı sıra uzunluk dağılımı da çok önemlidir. Uzunluk dağılımı ne kadar dar bir alanı kapsıyorsa o kadar homojen iplik elde edilebilir.
Yün lifinin iplik hâline getirilmeden önce belli başlı özelliklere sahip olması gerekir. Elyafın eğrilebilmesi için boyu en az 10 mm uzunluğunda olmalıdır.

<table>
<thead>
<tr>
<th>Kalite ‘S Cinsinden</th>
<th>Ortalama Çap (Mikron=10^4 cm) Cinsinden</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>18.8</td>
</tr>
<tr>
<td>70</td>
<td>19.7</td>
</tr>
<tr>
<td>64</td>
<td>20.7</td>
</tr>
<tr>
<td>60</td>
<td>23.3</td>
</tr>
<tr>
<td>58</td>
<td>24.9</td>
</tr>
<tr>
<td>56</td>
<td>26.4</td>
</tr>
<tr>
<td>50</td>
<td>30.5</td>
</tr>
<tr>
<td>48</td>
<td>32.6</td>
</tr>
<tr>
<td>46</td>
<td>34.0</td>
</tr>
<tr>
<td>44</td>
<td>36.2</td>
</tr>
<tr>
<td>40</td>
<td>38.7</td>
</tr>
<tr>
<td>36</td>
<td>39.7</td>
</tr>
</tbody>
</table>

Tablo 2.1: Yün lifinin incelik ve uzunluk değer tablosu

2.1.1. Tanımı

Yün lifinin uzunluğuna karar vermek zordur. Çünkü yün lifi yapısı gereği kıvrımlıdır. Bu nedenle yün lifinde iki uzunluk söz konusudur.

- **Kıvrımlı uzunluk:** Bir tek lifin kıvrımları düzeltmeden ölçulen uzunluk
- **Lif uzunluğu:** Kıvrımlar düzeltinceye kadar uzatılmış şekilde ölçülen uzunluk
2.1.2. Çeşitleri

Yün lifinin uzunluğunun ölçümünde iki metot kullanılır:

- Tek lif uzunluk ölçme metodu
- Demet hâlindeki liflerde uzunluk tayini

2.2. Yün Elyafında Uzunluk Ölçümü

- Tek lif uzunluk ölçme metodu

Tek lif uzunluk ölçüm metodunda, yarı otomatik aletler yardımıyla hem çalışanın yorulması önlenir hem de zamandan tasarruf edilir. Yün lifi uzunluğunu tespit etmek biraz zordur. Çünkü yün lifi doğal olarak kıvrımlıdır ve düzeltmek için biraz gayret sarf etmek gereklidir. Bu yöntemle liflerin tek tek uzunlıkları ölçülür. Yün elyafların uzunluk ölçümünde kullanılan yöntemler:

- Pens yöntemi ile uzunluk ölçümü

Bu metotta, uzunluk tayini için 2 pens, 1 cetvel, 1 siyah kadife levha gereklidir. Numuneden alınan liflerin ucuna 2 pens kıvrımları giderilinceye kadar çekilir ve doğrudan cetvel üzerinde uzunluğu ölçülür. Ölçülen uzunlukların ortalaması alınarak bir değer elde edilir.

Az aparat gerektiren bir yöntem olmasına rağmen çalışan kişinin fazla zamanını alan bir yöntemdir.

- Cam ve kadife kaplı levhada uzunluk ölçümü

Bu yöntem doğal olarak çok kıvrımlı olan elyaflar dışındaki bütün kesikli elyaflar için uygulanabilir.

Bir cam levha üzerine az miktarla beyaz vazein parafinli ya da gliserinli su sürülür. Bir tek lif ölçüklendi levha üzerine düz olarak yerleştirilir ve ölçüm yapılır. Bu işlem deneyin uygulanacağı her lif için tekrarlanır. Ölçülen uzunlukların ortalaması alınarak bir değer elde edilir.

Tek lif uzunluk ölçümü metodu uzun lif olmaları sebebiyle daha çok yün ve benzeri elyaflarda kullanılır.

- Wira cihazı ile uzunluk ölçümü

Wira uzunluk ölçüme cihazı yün ve kıl kökenli lif uzunluklarının ölçümü için uygundur. Kontrollü basınç altında yari otomatik olarak ölçümler yapılır. Çok sayıda tek elyafın ölçümleri seri şekilde yapılabilir. Wira uzunluk ölçüme cihazı, sonsuz bir vida ve dedektör oluşmuştur.
Resim 2.2: Wira uzunluk ölçme cihazı

Lifin baskı bloku arasındaki geçiş bittiği anda dedektör teli civaya temas etmiş ve civanın hareketi durmuş olur. Bu sırada pens yukarı doğru kaldırıcılı yivli vidanın yivini bozmadı olarak ölçülmesi ve cihazın tamburunda sayılan göstergesine kaydedilmiştir. Bu şekilde tekrarlanarak uzunluk ölçülür.

Bu cihaz yardımıyla saatte ortalama 500 lifin uzunluğunu ölçmek mümkündür. Anahtar tablosu 0,5 cm aralıklarla düzenlenmiştir. Ölçmeler sona erince cihazın tamburunda 0,5 cm aralıklara isabet eden lif miktari kaydedilir.

- **Demet hâlindeki liflerde uzunluk ölçümü**

Demet hâlindeki liflerde uzunluk ölçümü üç ayrı metotla yapılır.

- **Yapağıda tutam uzunluğunun ölçülmesi**

Uçlu yapağı ölçüleri ölçerken cetvelin o noktası tutam tabanına getirilir ve piramit şeklindeki taban ile tepesi arasındaki mesafemin ortasındaki noktaya kadar olan uzunluk ölçülür.

Tutam: Bir tulupta, doğal olarak kümelenmiş elyaflar demetleridir.

Tutam uzunluğu: Elyafların kıvrımlığı bozulmadan ve gerilmeden normal hâldeki tutam boylarının ortalama uzunluğudur.

Uçlu yapağı: Tutamların uç tarafı sivri bir şekilde biten yapağıdır.

- **Sorter cihazı ile uzunluk ölçümü**

Lif uzunluğu test edilecek elyaftan 1000 g numune alınır ve elle mümkün olduğu kadar paralel hâle getirilir.

Alınan elyaflar numunelerinin yarısı her defasında atılarak en fazla 1 g olan numune hâline getirilerek sorter tarafının iki tarak grubundan birincisinin üzerine konur ve bazı çatalıylaarak tarak aralarına atılır. Önce uçları en dışta tarakın dışına çıkmış olan lifler aletin özel pensi yardımıyla çekilir ve ikinci tarak grubu üzerine konulur.\(^{18}\)}

Bu durumda tarak grubunun dişleri ters taraftan düşürülmeye başlanarak iki taraf arasında kalan lifler pensle çekilerek kadife levha zemin üzerinde uzunluklarına göre birbirini takip eden gruplar hâlinde ayrı ayrı sıralanır. Bu şekilde ştapelleme de gerçekleştirilmiştir olur.

Lif gruplarının uzunlukları bir cetvelle, ağırlıkları ise terazi ile tartılarak ölçüldür. Elde edilen değerler bu amaçla kullanılan işletmeler tarafından hazırlanmış bir forma kaydedilir.

Ştapelleme: Elyaf uzunluğunu göstermek için alınan bir tutam elyafın paralelleştirilerek ştapel diyagramına benzer bir hâle getirilmesine denir.

Şapel uzunluğunun iplik üzerine etkisi: Şapel uzunluğu iplik düzgünliği ve kalitesi için önemlidir.

Uzun liflerden ince, kaliteli, düzgün yüzeyli, kısa liflerden kaba ve düşük kaliteli iplikler elde edilir.

- **Almeter (Almetre) cihazı ile uzunluk ölçümü**

Bu metot, liferin elektriklenme özelliklerinden yararlanarak elektrik akımlarındaki değişimleriyle lif uzunluğunu ölçer. Yün ve diğer kıl kökenli hayvansal liflerde uzunluğun objektif olarak ölçülenini sağlar. Ön önemli özelliği elyafın uzunluk dağılımı için kullanılmasıdır. Cihaz dört ana gruptan oluşur. Bunlar;
- Tarayıcı ve aksesuarları,
- Elektronik ölçüm ünitesi,
- Kaydedici,
- Voltaj regülatörüdür.

Resim 2.5: Almetre uzunluk ölçme cihazı

Uzunluk tespiti yapılacak olan elyaf numunesi cihazın taraklı olan kısmına yerleştirilir. Burada bir miktar taranan paralel lif demeti, üzerinde bulunduğu ızgarayla beraber tara bulan kısımdan çıkarılır.

Taranmış lifler makinenin asıl ölçme işleminin yapılacak bölüme getirilip buradaki iki şeffaf yüzey arasında yerleştirilir. Start düğmesine basılmasıyla beraber iki şeffaf yüzey arasında iyice bastırılmış lifler makine içine girer.

Makineye bağlı bilgisayarda gerekli ayarlamalar önceden yapıldığından numune kondansör arasından geçen uzunluk parametreleri elektronik olarak ölçülen kaydedilir. Ekranda lif uzunluğunu ifade eden histogram ve sayısal değerler belirir. İstenirse yazıcidan çıktı olarak sonuç alınır ve değerlendirme yapılır.
Yünde ortalama uzunluk analizi:

<table>
<thead>
<tr>
<th>Siniflar (cm)</th>
<th>Sinif Değerleri (cm)</th>
<th>Ağırlık (mg)</th>
<th>%</th>
<th>Kümülatif Frekans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.Kümülatif</td>
</tr>
<tr>
<td>5-16</td>
<td>15.5</td>
<td>20</td>
<td>2.0</td>
<td>100.0</td>
</tr>
<tr>
<td>14-15</td>
<td>14.5</td>
<td>40</td>
<td>4.0</td>
<td>98</td>
</tr>
<tr>
<td>13-14</td>
<td>13.5</td>
<td>60</td>
<td>6.0</td>
<td>94.0</td>
</tr>
<tr>
<td>12-13</td>
<td>12.5</td>
<td>70</td>
<td>7.0</td>
<td>88.0</td>
</tr>
<tr>
<td>11-12</td>
<td>11.5</td>
<td>85</td>
<td>8.5</td>
<td>81.0</td>
</tr>
<tr>
<td>10-11</td>
<td>10.5</td>
<td>100</td>
<td>10.0</td>
<td>72.5</td>
</tr>
<tr>
<td>9-10</td>
<td>9.5</td>
<td>115</td>
<td>11.5</td>
<td>62.5</td>
</tr>
<tr>
<td>8-9</td>
<td>8.5</td>
<td>130</td>
<td>13.0</td>
<td>51.0</td>
</tr>
<tr>
<td>7-8</td>
<td>7.5</td>
<td>110</td>
<td>11.0</td>
<td>38.0</td>
</tr>
<tr>
<td>6-7</td>
<td>6.5</td>
<td>80</td>
<td>8.0</td>
<td>27.0</td>
</tr>
<tr>
<td>5-6</td>
<td>5.5</td>
<td>60</td>
<td>6.0</td>
<td>19.0</td>
</tr>
<tr>
<td>4-5</td>
<td>4.5</td>
<td>40</td>
<td>4.0</td>
<td>13.0</td>
</tr>
<tr>
<td>3-4</td>
<td>3.5</td>
<td>35</td>
<td>3.5</td>
<td>9.0</td>
</tr>
<tr>
<td>2-3</td>
<td>2.5</td>
<td>20</td>
<td>2.0</td>
<td>5.5</td>
</tr>
<tr>
<td>1-2</td>
<td>1.5</td>
<td>20</td>
<td>2.0</td>
<td>3.5</td>
</tr>
<tr>
<td>0-1</td>
<td>0.5</td>
<td>15</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Toplam</td>
<td>1000.00</td>
<td>100.00=n</td>
<td></td>
<td>763.5</td>
</tr>
</tbody>
</table>

Tablo 1.1 Yün ortalama uzunluk analiz sonuçları
UYGULAMA FAALİYETİ

- Almeter cihazını kullanarak yün elyafları uzunluk testini yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
</table>
| Test yapılacak alanın ve cihazların temizliğini yapınız. | Temizlik kurallarına uyunuz.
Uçuntuların iyi bir şekilde temizlenmesine dikkat ediniz. |
| Cihazın ayarlarını yapınız. | Ayarları dikkatli ve kuralına uygun yapınız. |
| Testte hazırlamak üzere aldığınız bir tutam yün elyafını tarak üzerine yerleştiriniz. | Elyaf demetinin takım üzerine iyice sıkışmasını sağlayıniz. |
| Elyaf demetinin takım dışları üzerine iyice yerleşebilmesi için başka bir tarak ile üzerine bastırınız. | |
| Kapağı kapatınız. | Elyaf uzunluğunun 1,5 katı kadar tarama sayısı belirleyiniz (tecrübeyle). |
| Yapacağınız tarama sayısını düğmeyi kullanarak belirleyiniz. |
| Start düğmesine basarak taramayı başlatınız. |
| Cihaz çalışmaya başladıında elyafa karşılık çeneler arasında sıkıştırılarak lifleri taratınız. |
| Elyafın paralel hâle geldiğini gözlemleyiniz. |
| Taranan elyafı taraкла beraber hazırlama modülünden çıkarınız. |
| Cihazın 2. modülü esas ölçümün yapıldığı kısımdır. |
| Hazırlayıp paralel hâle getirdiğiniz elyaf demetini cihazın 2. modülü üzerine yerleştiriniz. |
1. Plaka arasına sıkışmasını sağlamak için kapağı kapatınız.

2. Kapağı kapatmayı unutmayınız.

3. Yün elyafının iki plaka arasına sıkışmasını sağlayınız.

4. Bu şekilde taranmış elyafı optik okuyucada ölçülebilir duruma getiriniz.

5. Optik okuyucuda okunabilmesi için yerleştirdiğiniz elyaf demetini cihazın içine doğru itiniz.

6. Cihaz üzerinde gerekli verileri giriniz.
ölçme işlemini başlatınız.

bilgisayar ekranında uzunluk eğrisini inceleyiniz.

elde ettiğiniz uzunluk verilerinin çıktısunuz yazıcıdan alınız.

sonuçları değerlendiriniz.

sonuç istenilen değerlerde ise elyafın testlerini yapınız.

sonuç istenilen değerlerde değilse test işlemlerini gözden geçiriniz.

çıkan sonucu, verilen değerlerle karşılaştırınız.

sonuçlar ararkadaşlarınızla tartışarak karşılaştırınız.

Zamanı iyi kullanınız.
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendirin.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçüleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Test yapılacak alanın ve cihazların temizliğini yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Cihazın ayarlarını yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Testte hazırlamak üzere aldığı bir tutam yün elyafını tarak üzerine yerleştirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Elyaf demetinin tarak dişleri üzerine iyi yerleşebilmesi için başka bir tarafla üzerine bastırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Kapağı kapatınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Yapacağınız tarama sayısını düğmeyi kullanarak belirlediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Start düğmesine basarak taramayı başlatınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Cihaz çalıșmaya başladığıda elyafın karşılığında çeneler arasında sıkıştırarak lifleri tarattınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Taranan elyafı taramakta beraber hazırlama modülünden çıkardınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Hazırlayınız paralel hâle getirdiğiniz elyaf demetini cihazın 2. modülü üzerine yerleşirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Plaka arasına sıkışmasını sağlamak için kapağı kapatınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Yün elyafının iki plaka arasında sıkışmasını sağladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Optik okuyucuda okunabilmesi için yerleşirdiğiniz elyaf demetini cihazın içine doğru ittiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Cihaz üzerinde gerekli verileri girdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Ölçme işlemini başlatınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Bilgisayar ekranında uzunluk egrisini incelediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Elde ettiğiniz uzunluk verilerinin çıktısını yazıcıdan aldıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Sonuçları değerlendirdiğiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Sonuç istenilen değerlerde ise elyafın testlerini yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Sonuç istenilen değerlerde değişti test işlemlerini gözden geçirdiniz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Çıkan sonucu, verilen değerlerle karşılaştırınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Sonuçları arkadaşlarınızla tartışarak karşılaştırınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Zamanı iyi kullanınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Aşağıdakilerden hangisi, bir lifin iki ucu arasındaki mesafeyi belirleyen özelliktir?
 A) İncelik
 B) Uzunluk
 C) Mukavemet
 D) Nem çekme

2. Aşağıdakilerden hangisi, kısa lif yüzdesi arttıkça üretim aşamalarında oluşan sorundur?
 A) Düzgünşüzlük azalır.
 B) Düzgünşüzlük değişmez.
 C) Düzgünşüzlük artar.
 D) Düzgünşüzlükle hiç alakası yoktur.

3. Yün lifinin iplik hâline gelebilmesi için gerekli en az uzunluk değeri aşağıdakilerden hangisi dir?
 A) 10 mm
 B) 1 mm
 C) 100 mm
 D) 0,1 mm

4. Bir tek lifin kıvrımlarının düzeltildiinden ölçülen uzunluğuna ne denir?
 A) Düzleştirilmiş uzunluk
 B) Gerilmiş uzunluk
 C) Kıvrımlı uzunluk
 D) Sıkıştırılmış uzunluk

5. Bir tek lifin, kıvrımları düzeltinceye kadar uzatılmış uzunluğuna ne denir?
 A) Kıvrımlı uzunluk
 B) Lif uzunluğu
 C) Sıkıştırılmış uzunluk
 D) Karışmış uzunluk

6. Aşağıdakilerden hangisi, pens yöntemi ile yapılan lif uzunluk ölçümüdür?
 A) Küme hâlindeki elyaf uzunluk ölçümü
 B) Fitil uzunluk ölçümü
 C) İplik uzunluk ölçümü
 D) Tek lif uzunluk ölçümü

7. Aşağıdakilerden hangisi, almeter (almetre) cihazı ile yapılan uzunluk ölçümüdür?
 A) Demet hâlindeki elyaf uzunluk ölçümü
 B) Fitil uzunluk ölçümü
 C) İplik uzunluk ölçümü
 D) Tek lif uzunluk ölçümü
8. Aşağıdakilerden hangisi, sorter cihazı ile yapılan uzunluk ölçümüdür?
 A) Fitil uzunluk ölçümü
 B) İplik uzunluk ölçümü
 C) Tek lif uzunluk ölçümü
 D) Demet hâlindeki elyaf uzunluk ölçümü

9. Aşağıdakilerden hangisi, elyafların kıvrımlığı bozulmadan ve gerilmeden normal hâldeki tutam boylarının ortalama uzunluğudur?
 A) Düzleştirilmiş uzunluk
 B) Gerilmiş uzunluk
 C) Lif uzunluğu
 D) Tutam uzunluğu

DEĞERLENDİRME

ÖĞRENME FAALİYETİ–3

AMAÇ

Öğrenme faaliyetinde kazandırılacak bilgi ve beceriler doğrultusunda uygun ortam sağlanılgında yün elyafının incelik tespitini yapabileceksiniz.

ARASTIRMA

- Yün elyafının incelik tespitini yapmak için gerekli bilgileri toplayınız.
- Araştırma konusu hakkında kaynak taraması yapınız.
- Topladığınız bilgileri arkadaşlarınızla tartışınız ve raporlaştırarak dosyalar oluşturunuz.
- Hazırladığınız raporu arkadaşlarınızla paylaşınız.

3. İNCELİK TESPİTİ

Yünde lif incelği çok değişken olup elde edildiği hayvan cinsine, tulup bölgesine ve yaşına göre değişir. Yünde genel olarak ince lifler uzun, kalın lifler ise kısadır. Lifler inceldikçe kalitesi de o oranda yükseler.

Resim 3.1: Yün lifi

3.1. Yün Liflerinde İncelik

Yün liflerinde incelik önemlidir ve lifin kalitesini belirler. Liflerin incelği, çaplarının ölçülmesiyle analizler. Lifin çapı ne kadar küçük olursa kalitesi o kadar yüksek olur. Liflerin incelığı, mikron (\(\mu = 10^{-4}\) cm) ile ölçülüp S derecesi ile ifade edilir. Liflerin ‘S derecesine göre mikron olarak kalınlıkları Tablo 1’de verilmiştir.
Listeden görüldüğü gibi ’S derecesi arttıkça lifin inceliği de artar. İncelikleri bakımından yün lifleri beş sınıfa ayrılır.

Merinos yünleri

İnce yün tipi de denilen bu yünler, anavatanı Avustralya olan merinos denilen bir cins koyundan elde edilir. Merinos koyunları yalnız yünü için yetiştirilir. En ince lifler bu hayvandan elde edilir. Kıvrımları fazla, keçeleşme özelliği yüksektir. Yumuşak tutumlu (tuşeli), aprelenme ve boyanma yeteneği fazla kumaşların yapımında kullanılır. 60-100 S inceliğinde olan merinos yünleri, dünyadaki yün üretiminin % 40’ını teşkil eder.

Orta yün tipi

Uzun yün tipi

Uzunluğu 180-230 mm arasında olan liflerdir. Orta yünlerden daha kalın ve parlaktır. 44-50 S derecesinde olup çeşitli İngiliz koyun ırklarından elde edilir. Palto ve pardösülük kumaşlar ile battaniye ve keçe yapımında kullanılır.

Crossbred(melez) yünleri

Bu yünler orta yün tipi incelिंgedirdir fakat kıvrımları fazladır. Merinoslarda İngiliz yerli koyunlarının melezleşmesinden elde edilen koyunlardan üretilir. Genellikle kamgarn kumaş yapımında kullanılır. 50-60 S derecesindedir.

<table>
<thead>
<tr>
<th>Kalite S Cinsinden</th>
<th>Ortalama Çap (Mikron=10⁻³ cm) Cinsinden</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>18.8</td>
</tr>
<tr>
<td>70</td>
<td>19.7</td>
</tr>
<tr>
<td>64</td>
<td>20.7</td>
</tr>
<tr>
<td>60</td>
<td>23.3</td>
</tr>
<tr>
<td>58</td>
<td>24.9</td>
</tr>
<tr>
<td>56</td>
<td>26.4</td>
</tr>
<tr>
<td>50</td>
<td>30.5</td>
</tr>
<tr>
<td>48</td>
<td>32.6</td>
</tr>
<tr>
<td>46</td>
<td>34.0</td>
</tr>
<tr>
<td>44</td>
<td>36.2</td>
</tr>
<tr>
<td>40</td>
<td>38.7</td>
</tr>
<tr>
<td>36</td>
<td>39.7</td>
</tr>
</tbody>
</table>
Halı yünleri

Dünyannın hemen hemen her yerinde yetişen çeşitli ırklara mensup koyunlardan üretilir. Bu tip yünlerde ince, orta ve uzun lifler yanında köpek kıllarına (kemp) da rastlanır. Ucuz yünülü kumaşlar, döşemelik, battaniye ve keçe yapımında kullanılır. İnceliği 70–200 mikron arasında değişir.

Türkiye’de yerli koyun ırklarından halı tipi yünler elde edilir. En iyi kalite yerli yün, kivircık ve dağlıç türlerinden üretilir. Pratikte yün lifinin sınıflandırılmasında ortalama inceliğin 70–200 mikron arasında değiştiği tespit edilir.

3.1.1. Tanımı

Yünün lifinin inceliği, çapının mikron cinsinden ifadesidir, ‘S derecesi ile ifade edilir.

3.1.2. Önemi

Üretilecek ipliğin numarasına göre, lif inceliğinin belirlenmesi gerekir.

3.2. Yün Lifı İncelik Tespît Yöntemleri

Yün lifi incelik tespitinde, net bir bilgiye sahip olmak için mutlaka ölçüm aletlerinden ve kullanılan metotlardan faydalanmak gerekir. Bu metotlar:

- Tek lifin incelik tespiti
- Mikroskopla lif İnceliği tespiti
- Mikroprojeksiyon metotları ile lif İnceliğinin tespiti
- Lanametreyle incelik ölçümü

- Küme hâlindeki liflerin incelik tespiti
- Hava geçirgenliği metoduyla incelik ölçümü (Mikroner cihazıyla ölçüm)
- Hava geçirgenliği metoduyla incelik ölçümü (Wira cihazıyla ölçüm)

3.2.1. Tek Lifte İncelik Tespiti

Yün lifinin inceliği mikroskop, mikoprojektor ve lanametre ile teker teker ölçülür ve mikron olarak incelik ortalaması alınır. İncelik ölçülen mikroskoplar piyasada lanametre olarak isimlendirilir.

- Mikroskopla lif İnceliği tespiti

Mikroskop birçok laboratuvar ve araştırma yerlerinde en çok kullanılan cihazlardan biridir. İncelik ölçümünde mikroskoba yerleştirilen liflerin görüntü netliği için ayarlar yapılır. Oküler mikrometre lif eksenine dik getirilerek lif genişliğinin okülerin kaç aralığını geldiği cetvelere kaydedilir.
İşlem sonucunda bulunan değerler mikrometre değeri ile çarpılarak liflerin ortalama inceliği tespit edilmiş olur.

- **Mikroprojeksiyon metotları ile lif incelik ölçümü**

 - **Kısa kesit metodu**

 Mikroprojeksiyon bütün tekstil laboratuvarlarında bulunan bir cihazdır. Mikroprojeksiyon ile elyaaf inceliğinin ölçülməsi için mikroskop metodunda olduğu gibi preparat hazırlanır ve ölçümler görüntünün dik olarak aksettiliği bir zemin üzerinde özel bir cetvel yardımıyla yapılır.

 Bu amaçla iyi karıştırılmış ve temizlenmiş numuneden Hardy mikrotomu ile uzunluğu 1-2 mm’yi geçmeyecek kesitler alınır. Kesitler bir lam üzerine alınarak mikroskopta olduğu gibi büyütme gücü belli olan mikroprojeksiyonda incelikleri ölçülür.
Bu metotla çalışılırken dikkat edilmesi gereken nokta, görüntünün düşürdüğü zeminde sadece merkezdeki çapı belirli bir daire içinde düşen liflerin inceliğinin okunmasıdır. Çünkü merkezdeki ve yanlardaki lif görüntülerinin büyüme oranları değişiktir.

- **Enine kesit sayma metodu**

Son derece hızlı sonuç alınabilecek bir metottur. Bu metodun esası; yün liflerinin enine kesitleri daireye yakın olduğundan belirli bir alan içindeki lif kesitlerinin sayısına göre ortalama inceliği saptamaktır.

Laboratuvar çalışmalarında lif demetinin normal bir şekilde sıkıştırılarak kesit alınması gerekir. Bunun için Hardy kesit cihazı kullanılır.

Kesit alabilmek için yün numunesinden bir tutam lif alınır. Lifler, parmaklar arasından çekilip birbirine paralel hale getirilir. 400-500 adet lif demet veya fitil hâline sokulur. Bu lifler Hardy cihazının yarığına yerleştirilir ve sıkıştırılır. Cihazın yarığından dışarı çıkan lif uçları 2-3 mm pay kalacak şekilde kesilir.

Bu şekilde sıkıştırmış olan ve hazırlanan lif demeti üzerine birkaç damla yapıtırıcı kollodion çözeltisi damlatılır. Bu çözelti uçucu olduğundan kısa bir süre sonra kurur ve lifler birbirine yapmış olur. Lif demetinin iki tarafından uçları, kesici ile diplerinden kesilerek lif kesiti hazırlanmış olur.

Şekil 3.1: Yün lif kesiti
Bu metotla çalışılırken enine kesit preparatı 500 defa büyütcek şekilde ayarlanmış mikroprojeksiyona konularak 125 cm² lik bir alana isabet eden görüntü içindeki lif kesitleri sayılmaktadır. Böylece bu alanın içinde yer alan kesit sayısıına göre ortalama incelik saptanmış olur.

- **Enine kesit metodu**

Bu metotla yün liflerinin inceliğini saptayabilmek için mikroprojeksiyon metodu kullanılır.

Yün liflerine ait preparatlar aynı şekilde hazırlanır ve lif kesitlerinin görüntüleri elde edilir. Bunların fotoğrafları çekilir ve daha önce bu amaçla fotoğrafları film şeritleri hâlinde çekilmiş ve incelikleri belli standartlara göre hazırlanmış numunelerle kıyaslanarak ortalama incelikleri saptanmış olur.

Böylelikle enine kesit metodu daha pratik ve süratli bir hâle getirildiğinden yün ticaretinde uygulama alanı bulunmuştur.

- **Lanametreyle incelik ölçümü**

Lanametrede incelik ölçme sistemi, mikroskop sistemine benzer. Bu amaçla gerekli preparatları mikroskopta olduğu gibi hazırlanarak cihaza yerleştirilir ve aynı yün tiplerinde aynı miktarda ölçüt yapılır.

Lanametrelerde ekran üzerinde görülen liflerin inceliklerini ölçebilmek için üzerinde belirli aralıklarla işaretleri bulunan ve bir merkez tarafından sağa ve sola hareket edebilen cetvel vardır. Lif incelikleri bunun yardımıyla ölçülür.

Burada önemli olan incelik tayininde doğru sonucu alabilmek için oldukça fazla sayıda ölçüm yapma gerekidir.
3.2.2. Küme Hâlinde Liflerde İncelik Tespiti

Bu yöntemde belirli ağırlıktaki elyaf örneği sabit basınç altında belirli bir hacme sıkıştırılır ve havanın elyaf içindeki geçiş hızına göre elyaf inceliğini saptanır. Aynı yöntemle çalışan iki farklı cihaz ile incelik ölçme işlemi yapılır.

Wira cihazı ile yün elyaf incelik ölçümü

WIRA yün elyaf incelik ölçme cihazı, geliştirilmiş mikroprosor kontrol sistemli dijital ekranlı elektronik test cihazdır. Hava akış prensibi sayesinde, belirli ağırlık ve basınç altında yün lifinin ortalaması mikron inceliğini hızlı şekilde ölçer.

![Resim 3.6: Wira lif incelik ölçüm cihazı](image)

Wira yün elyaf incelik ölçme cihazının üzerinde bulunan mikroprosesör test işlemini otomatik olarak kontrol eder ve ortalaması lif çapı sonuçlarını doğru genlikte LCD ekranında gösterir.

Cihazın çalışmasını otomatik olarak kontrol edilir ve test sonuçları LCD ekranında direkt okunur veya isteğe bağlı olarak yazıcı çıktısı veya PC bağlanışı veri aktarımı yapılabilir.

Wira yün elyaf incelik ölçme cihazının, önce kalibrasyonu yapılır. Taranmış, paraleleştirmiş 2.5 gram ağırlığındaki yün elyafı, numune gözlüğe yerleştirilir. Cihaz ile gelen vakum pompası ile hava numunenin içinden emilir. Elektronik sensörler hava akışını ve hava basıncını ölçer ve elyaf çapını otomatik olarak hesaplar.
W.I.R.A. cihazını kullanarak yün elyafı, incelik testini yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Test yapılacak alanın ve cihazların temizliğini yapınız.</td>
<td>➢ Temizlik kurallarına uyunuz.</td>
</tr>
<tr>
<td>➢ Cihazın ayarlarını yapınız.</td>
<td>➢ Uçuntuların iyi bir şekilde temizlenmesine dikkat ediniz.</td>
</tr>
<tr>
<td>➢ Bir tutam yün elyafını standardına uygun olarak ölçünüz.</td>
<td>➢ Ayarları dikkatli ve kuralına uygun yapınız.</td>
</tr>
<tr>
<td>➢ Cihaz üzerinde bulunan kapağı açınız.</td>
<td>➢ Kullanılan cihaz için ölçüm miktarı 2 g’dır.</td>
</tr>
</tbody>
</table>
- Plastik çubuk yardımıyla yün elyafını cihaz üzerinde yerine yerleştiriniz.

- Yün elyafının üzerine ağırlık yerleştiriniz.

- Ağırlığı iyice sıkıştırınız.

- Testi başlatınız.

- Elyaf uzunluğunun 1,5 katı kadar tarama sayısı belirleyiniz (tecrübeyle).
<table>
<thead>
<tr>
<th>Hava geçişi ile oluşan yükselmeyi cihaz üzerinde takip ediniz.</th>
<th>Barometre sabit noktaya geldiğiinde test bitecektir.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortamın sıcaklığını ve nemini kontrol ederek kaydediniz.</td>
<td></td>
</tr>
<tr>
<td>Elde ettiginiz sonuçlara göre tablo üzerinden elyaf inceliğini bulunuz.</td>
<td></td>
</tr>
<tr>
<td>Sonuçları değerlendiriniz.</td>
<td></td>
</tr>
<tr>
<td>Sonuç istenilen değerlerde ise elyafın testlerini yapınız.</td>
<td></td>
</tr>
<tr>
<td>Sonuç istenilen değerlerde değilse test işlemlerini gözden geçiriniz.</td>
<td></td>
</tr>
<tr>
<td>Çıkan sonucu, verilen değerlerle karşılaştırınız.</td>
<td></td>
</tr>
</tbody>
</table>
Sonuçları arkadaşlarınızla tartışıarak karşılaştırmınız.

Zamani iyi kullanınız.

Zamani iyi ve verimli kullanmaya önem veriniz.

KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıdaki listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Test yapılacak alanın ve cihazların temizliğini yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Cihazın ayarlarını yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Bir tutam yün elyafını standardına uygun olarak ölçtünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Cihaz üzerinde bulunan kapağı açtınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Plastik çubuk yardımıyla yün elyafını cihaz üzerinde yerine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Yün elyafının üzerine ağırlığı yerleştirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Ağırlığı iyice sıkıştırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Testi başlattınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Hava geçişi ile oluşan yükselmeyi cihaz üzerinde takip ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Ortamın sıcaklığını ve nemini kontrol ederek kaydettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Elde ettiginiz sonuçlara göre tablo üzerinden elyaf inceliğini</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Sonuçları değerlendiriniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Sonuç istenilen değerlerde ise elyafın testlerini yaptıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Sonuç istenilen değerlerde değişse test işlemlerini gözden geçirdiniz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Çıkan sonucu, verilen değerlerle karşılaştırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Sonuçları arkadaşlarınızla tartışıarak karşılaştırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Zamanı iyi kullanınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Aşağıdakilerden hangisi, yün lifinin incelik derecesini ifade eder?
 A) O derecesi
 B) P derecesi
 C) R derecesi
 D) S derecesi

2. Liflerin S derecesi arttırılca aşağıdaki kilerden hangisi gerçekleşir?
 A) Lifler incelir.
 B) Lifler değişmez.
 C) Lifler düzgün olur.
 D) Lifler kalınlaşır.

3. İnce yün tipi aşağıdaki kilerden hangisidir?
 A) Orta yün tipi
 B) Halı yünleri
 C) Merinos yünü
 D) Crossbred (melez) yünleri

4. İplik numarasının belirlenmesinde aşağıdaki kilerden hangisinin etkisi büyüktür?
 A) Lif rengi
 B) Lif inceliği
 C) Lif kirliliği
 D) Lif kıvrımlılığı

5. Yün elyafındaki tek lifin inceliğini aşağıda hangi cihazla tespit ederiz?
 A) Lanametre
 B) Mikroner
 C) Wira
 D) Cetvel

6. Aşağıdakilerden hangisi kümelerdeki liflerin incelik tespit yöntemdir?
 A) Germe çekme metodu
 B) Hava geçirgenliği metodu
 C) Sıkıştırma metodu
 D) Karıştırma metodu

7. Wira cihazı ile liflerin hangi özelliği tespit edilir?
 A) Uzunluk
 B) Kirlilik
 C) Incelik
 D) Kıvrımlılık
8. Yün lifinin küme hâlinde incelik tespiti testinde kaç g numune alınır?
 A) 4,5 g
 B) 9,5 g
 C) 1,5 g
 D) 2,5 g

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. “Bir ürün ve hizmet, müşterinin isteklerine cevap verebilecek özelliklerde, en uygun maliyette, rekabet koşullarına uygun şekilde üretmektedir.” tanımı aşağıdakilerden hangisidir?
 A) Elyafın yıkanması
 B) Elyafın kurutulması
 C) Elyafın yağlanması
 D) Kalite

2. Aşağıdakilerden hangisi, kalite kontrol yöntemlerindendir?
 A) Test yöntemleri
 B) Yıkama yöntemleri
 C) Kurutma yöntemleri
 D) Koparma yöntemleri

3. Aşağıdakilerden hangisi, bir lifin iki ucu arasındaki mesafeyi belirleyen test sonucudur?
 A) İncelik
 B) Uzunluk
 C) Mukavemet
 D) Nem çekme

4. Aşağıdakilerden hangisi, kısa lif yüzdesi arttıkça üretim aşamalarında oluşan sorundur?
 A) Düzgünsüzlük azalır.
 B) Mukavemet düşer.
 C) Düzgünsüzlük değişmez.
 D) Düzgünsüzlükle hiçbir ilgisi yoktur.

5. Bir tek lifin kivrımlarının düzeltilmeden ölçülen uzunluğuna ne denir?
 A) Düzleştirilmiş uzunluk
 B) Gerilmiş uzunluk
 C) Sıkıştırılmış uzunluk
 D) Kıvrımlı uzunluk

6. Aşağıdakilerden hangisi, tek lif uzunluk ölçüm metodu değildir?
 A) Pens yöntemi ile uzunluk ölçümü
 B) Cam ve kadife kaplı levhada uzunluk ölçümü
 C) Mikroner ile test yöntemi
 D) Wira cihazı ile uzunluk ölçümü
7. Aşağıdakilerden hangisi, liflerin inceliğinin ölçüm şeklidir?
A) Çaplarının ölçülmesi
B) Kıvrımlarının bulunması
C) Kirliliğinin ölçülmesi
D) Pens yöntemi ile uzunluk ölçümü

8. Yün lifinin küme hâlinde incelik tespiti testinde kaç g numune alınır?
A) 4,5 g
B) 9,5 g
C) 1,5 g
D) 2,5 g

9. “Yünün lifinin........., çapının mikron cinsinden ifadesidir, ‘S derecesi ile ifade edilir.” cümlesinde boş bırakılan yere aşağıdakilerden hangisi getirilmelidir?
A) Kıvrımlılığı
B) Kirliliği
C) Inceliği
D) Rengi

10. Wira cihazı ile liflerin hangi özelliği tespit edilir?
A) Uzunluk
B) Inceliğ
C) Kirlilik
D) Kıvrımlılık

DEĞERLENDİRME

Çevap Anahtarıları

Öğrenme Faaliyeti–1’in Çevap Anahtarı

<table>
<thead>
<tr>
<th></th>
<th>Doğru</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Yanlış</td>
</tr>
<tr>
<td>3</td>
<td>Doğru</td>
</tr>
<tr>
<td>4</td>
<td>Doğru</td>
</tr>
<tr>
<td>5</td>
<td>Yanlış</td>
</tr>
<tr>
<td>6</td>
<td>Doğru</td>
</tr>
<tr>
<td>7</td>
<td>Doğru</td>
</tr>
<tr>
<td>8</td>
<td>Doğru</td>
</tr>
<tr>
<td>9</td>
<td>Yanlış</td>
</tr>
<tr>
<td>10</td>
<td>Yanlış</td>
</tr>
</tbody>
</table>

Öğrenme Faaliyeti–2’nin Çevap Anahtarı

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
</tr>
</tbody>
</table>

Öğrenme Faaliyeti–3’ün Çevap Anahtarı

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
</tr>
</tbody>
</table>
MODÜL DEĞERLENDİRMENİN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
</tr>
</tbody>
</table>
KAYNAKÇA

- İplik testleri cihazlarını üreten firmaların katalogları ve eğitim notları.
- İplik testleri cihazları üreten firmaların veya temsilciliklerinin internet siteleri (Türkçe-İngilizce)
- Tekstil bölümünün bulunduğu üniversiteler
- Tekstil iplik işletmeleri