KİMYA TEKNOLOJİSİ

VANALAR
524KI0345

Ankara, 2012
• Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırma ve yönelik olarak öğrencilerin rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

• Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.
• PARA İLE SATILMAZ.
İÇİNDEKILER

AÇIKLAMALAR .. iii
GİRİŞ .. 1
ÖĞRENME FAALİYETİ–1 ... 2
1. VANALAR .. 2
 1.1. Genel Bilgi ... 2
 1.2. Vana Çeşitleri ve Fonksiyonları .. 3
 1.2.1. Geyt (Sürgülü) Vanalar ... 6
 1.2.2. GLOB Vanalar .. 9
 1.2.3. Kelebek Vanalar ... 14
 1.2.4. Oturmalı Vanalar ... 15
 1.2.5. İğne Vana ... 17
 1.2.6. Diyafıramlı Vanalar .. 18
 UYGULAMA FAALİYETİ .. 19
 ÖLÇME VE DEĞERLENDİRME .. 25
ÖĞRENME FAALİYETİ–2 ... 28
2. OTOMATİK KONTROL VANALARI .. 28
 2.1. Pnömatik Kontrollü Vanalar .. 29
 2.2. Selenoid Kontrollü Vanalar ... 31
 UYGULAMA FAALİYETİ .. 34
 ÖLÇME VE DEĞERLENDİRME .. 37
ÖĞRENME FAALİYETİ–3 ... 38
3. ÇEK Kontrol VANALARI ... 38
 3.1. Tanımı ve Çeşitleri .. 38
 3.2. Piston Tipi Çek Vana .. 39
 3.2.1. Bilyeli Çek Vanalar .. 39
 3.2.2. Kapaklı Çek Vanalar ... 40
 3.2.3. Kaldıraçlı Çek Vana ... 41
 3.2.4. Stop Çek veya Geri Dönüşsüz Vana .. 41
 UYGULAMA FAALİYETİ .. 42
 ÖLÇME VE DEĞERLENDİRME .. 45
MODÜL DEĞERLENDİRME ... 46
CEVAP ANAHTARLARI ... 49
KAYNAKÇA .. 51
AÇIKLAMALAR

<table>
<thead>
<tr>
<th>KOD</th>
<th>524KI0345</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAN</td>
<td>Kimya Teknolojisi</td>
</tr>
<tr>
<td>DAL/MESLEK</td>
<td>Proses</td>
</tr>
<tr>
<td>MODÜLÜN ADI</td>
<td>Vanalar</td>
</tr>
<tr>
<td>MODÜLÜN TANIMI</td>
<td>Bu modül; elle kumandalı, otomatik, çek vanaları kullanabileme ile ilgili bilgi ve becerilerin kazandırıldığı bir öğrenme materyalidir.</td>
</tr>
<tr>
<td>SÜRE</td>
<td>40/32</td>
</tr>
<tr>
<td>ÖNKOŞUL</td>
<td>Vanaları kullanmak</td>
</tr>
</tbody>
</table>
| YETERLİK | Genel Amaç
Bu modül ile gerekli ortam sağlandığında, el ile kumandalı, otomatik kontrollü ve çek vanaları kullanabileceksiniz. Amaçlar
1. Elle kumandalı vanaları kullanabileceksiniz.
2. Otomatik kontrol vanalarını kullanabileceksiniz.
3. Çek vanaları kullanabileceksiniz. |
| MODÜLÜN AMACI | Ortam: Temel kimyasal işlemlerini yapmak için gerekli donanım ve tüm donanımın bulunduğunu laboratuvar, kütüphane, Internet bağlantısı, bireysel öğrenme ortamları vb.
Donanım: Atölyede; teknoloji sınıfı, İnternet bağlantısı, ilk yardım malzemeleri, vana ve boru flanş, conta, vida, hortum, bağlantı elemanları, basınç ayar elemanları, çek vana, boru flanş, conta, vida |
| EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI | ÖLÇME VE DEĞERLENDİRME
Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçme araçları ile kendinizi değerlendireceksiniz. Öğretmen modül sonunda ölçme aracı (çoktan seçmeli test, doğru yanıltı vb.) kullanarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek sizi değerlendirecektir. |
Sevgili Öğrenciler,

Her geçen gün gelişen ve değişen teknolojiye ayak uydurmak zorundayız. Özellikle teknik bir alanda çalışacak bireyin bu konuda daha hassas olması gerekmektedir.

Çalışma ortamında mühendislerin planları doğrultusunda, basınç gösteren araçlar, sıcaklık ölçme donatımları, seviye göstergeleri (basınç tipi, şamandıra tipi seviye göstergeleri ve diğer göstergeler), akış miktarı ölçme enstrümanları (doğrudan ve dolaylı yoldan ölçen cihazlar, değişken kesitli ölçme cihazları, elektrikli cihazlar, sıcaklık farkına göre çalışan cihazlar), analiz yapmada kullanılan araç gereçleri, alarm cihazları ve devreden çıkarma enstrümanları kullanabilen; üst düzeyde genel yeteneğe sahip, fen bilimlerine, özellikle kimyaya ilgili, dikkatini uzun süre bir noktaya yoğunlaştırabilen, yönergeleri izleyebilen, tedbirli, gerektiğinde bir sorunu ele alıp çözebilen kimseler olmaları gerekmektedir.

Vanalar modülü ile konular mesleki gelişim temelinin sağlam atılması sağlanacak şekilde hazırlanmaktadır. Ancak unutulmamalıdır ki meslegenide ilerlemek, teknolojik gelişmeleri yakından takip ederek kavrayabilmesi ve hatta uygulamalar ile yeni ufuklar açabilmek ancak temeli sağlam atılmış birikimler ile olur. Bu modülde yer alan faaliyetler size; uygulama yaparak öğrenmeyi ve kullanılabilecek bilgiye sahip olmayı sağlayacaktır.
ÖĞRENME FAALİYETİ–1

AMAC

Gerekli ortam sağlandığında kuralına uygun olarak elle kumandali vanaları kullanabileceksiniz.

ARAŞTIRMA

➢ Vanaların kullanım alanlarını araştırınız.
➢ Vanaların çeşitlerini araştırınız.
➢ Petrokimya tesislerinde kullanılan vanaları araştırınız.

1. VANALAR

1.1. Genel Bilgi

İnsanoğlunun başta su ve hava olmak üzere çeşitli akışkanlara hükmetmek; bu akışkanların geçişini veya durdurulmasını sağlamak, debisini ayarlamak, geri dönüşünü engellemek, akış yönünü değiştirmek, akış basıncını sınırlamak ve akış emniyetini sağlamak gibi amaçlara ulaşmak için kullandığı mekanik cihazlara vana denir.

Resim 1.1: Çeşitli vanalar

Diğer bir tanımlama ile vana; akışkanlara yol veren, onları durduran, karıştıran veya akışkanın yönünü ve/veya miktarını, basınç veya sıcaklığını değiştirebilen bir cihazdır.

Akışkanları durdurmak, yol vermek veya ayarlamak için boru hatlarına monte edilmiş ekipmanlardır.

Vanalar, borulama armatürleri içinde ağırlıklı bir yer tutarlar. Günümüzde geniş bir yelpazede; basit açma, kapama musluklarından, aşırı karmaşık servo sistemlere uzanan ve akışkanların kontrolü için kullanılan çok fazla sayıda vana çeşitli kullanılmaktadır. Bunlar;
uzay uygulamalarında kullanılan çok küçük ölçüme vanalarından, çapı metrelerle, ağırlığı tonlarla ifade edilen boru hattı vanalarına kadar değişiklik gösterebilmektedir. Değişik amaçlı kullanımlarda, kontrol edilen ağırlık; bilinen sıvılar, gazlar, buharlar, radyoaktif malzeme olabileceği gibi, katı partiküller içeren sıvılar ve gazlar da olabilir. Hatta un, çimento gibi katı tozlar da ağırlık olarak dikkate alınabilir. Vanalar; vakum bölgesinde 7000 bar ve üzerindeki basınçlara, -200 °C soğuktan ergimiş metal sıcaklıklarına kadar kullanılabilmektedir. Ömürlerine gelince; sadece bir kere açma veya kapama yapabilecek vanalar olduğu gibi, bakım ve onarım gerektirmeden binlerce kez açıp kapamasi beklenen vanalar da vardır.

Vanaların boru donanımına bağlanışları flanslı, dişli veya kaynaklı (soket veya alın kaynaklı) olabilir.

Vanaların çoğu el kumandadır. Elektrik motoruyla veya mekanik olarak dışlı mekanizma ile etkilenenleri de vardır. Son grubuna giren vanalar da çok büyük ve ulaşılamaz bir yere yerleştirilir veya bir cihaz tarafından kumanda edilir.

Resim 1.2: Boru hatları üzerine takılı olan vanalar

1.2. Vana Çeşitleri ve Fonksiyonları

Vanalar, özel yapıda ve özel amaçlar için kullanılan bazı tiplerin dışında genel olarak aşağıda verildiği şekilde sınıflandırılır.

- Akış kontrol şekline göre;
- **Kapama vanaları:** Akışkanın istenilen yerde olup olmadığını kontrol eder, akışkanların karışmasını izin verir veya engeller, acil durumlarda akışı keser. Kapalı konumda belirlenmiş bir sızdırma değerini aşmamaları, açık konumda da basınç kaybını minimize etmeleri beklenir.

- **Kısma ve kontrol vanaları:** Debinin zamana bağlı olarak değiştirilmesi veya ayarlanması istendiğinde kullanılır. Elle (Manuel) veya aktüatör ile akış debisini, basınçını ve sıcaklığını düzenler. Ayrıca, değişen şartlar ve etken faktörü kontrolü ile bir parametrenin sabit tutulması gibi görevleri de olabilir.

- **İstenmeyen işletme şartlarının önlenmesini sağlayan vanalar:** Bunların içinde en önemlileri; istenmeyen basınç artışlarını önlemek ve bir hatta akış geri dönüşünü veya bir hatta akışkanın karışmasını önleme görevleridir.

Bağlantı şekline göre;

- **Vidalı (iç vidalı, dış vidalı):** Genelde DN 50, vida sızdırmazlığının çok önemli görülmediği durumlarda da DN 100 anma ölçüsüne kadar kullanılır. Bu bağlantılarında kendi kendine sızdırmazlık sağlayan (TS 61-210, ISO 7/1) ve sağlamayan (TS 61-200, ISO 228/1) vidalar söz konusudur.

- **Sıkıtırımlı (Wafer-Sandviç tip):** Kendisinde herhangi bir bağlantı sistemi olmayıp flaştan armatür ve/veya tesisat flaşları arasında sıkıştırılacak monte edilebilen, vana boyut ve ağırlığında ciddi küçülme sağlayan bir bağlantı şeklidir. Kolay monte edilip sökülebilme avantajı da vardır.

- **Rakor bağlantılı:** Vidalı bağlantılı vanaların, boruların geri sökülmeleri gibi sorunlu işlemlere yol açmadan monte edilip sökülebilmesi sağlayan ara bağlantı sistemidir.
- **Kelepçe bağlantılı:** Hortumların vanaya bağlantısı için kullanılır. Yüksek basınçlar için uygun değildir.
- **Sert lehim bağlantılı:** Genelde bakır ve bakır alaşımı malzemeden imal edilmiş vanaların, yine aynı malzemelerden borulara bağlantısı için kullanılır. Kolay sayılabilecek bir bağlantı şeklidir. Yüksek sıcaklık ve yüksek basınç uygulamalarında kullanılmaz.

- **Kapama organının iş hareketine göre**
 - Doğrusal
 - Akış yönüne dik eksende dönerek

- **Akış Yönüne göre**
 - Düz
 - Köşe
 - Üç yollu
 - Dört yollu
 - Çok yollu

- **Fonksiyonlarına göre**
 - Kapama
 - Boşaltma
 - Basınç ayar
 - Basınç düşürme
 - Debi ayar
 - Seviye ayar
 - Seviye ayar
 - Karşıtma

- **Tahrik şekline göre**
 - El ile (manuel)
 - Aktüatör tahrikli

- **Malzemeye göre**
 - Metal (demir ve alaşımaları)
 - Metal (demir dışı metaller ve alaşımaları)
 - Termoplastik malzeme
 - Elastomer malzeme

- **İmalat yönteminde göre**
 - Döküm
 - Dövme
 - Çekme çubuktan
 - Enjeksiyon döküm
Gövde yapısına göre
- Tek parçalı
- İki parçalı
- Üç parçalı
- Çok parçalı

Salmastra cinsine göre
- Elastomer örgü veya paket salmastralı
- Kendi kendine sızdırmazlık sağlayan O-Ring salmastralı
- Metal körük salmastralı
- Membran salmastralı

1.2.1. Geyt (Sürgülü) Vanalar

Resim 1.3: Geyt vana resimleri ve iç görünümü

Geyt vanalar iki kısma ayrılır:
- **Vana mili içerde olan:** Vana açılıckça mil vana simiti üzerine çıkılmaz. Mil vana simiti ile beraber döner. Bu vanalarda dolgu üstündeki aşınma minimumdur.
1.2.1.1. Geyt Vanalarının Çalışma Şekli ve Bakımı

- Bu vanalar elle çalıştırılırken, açmak için el volanı saat ibresinin aksine, kapamak için ise saat ibresi yönünde döndürülür.

- Milin gresörülükle yağlanması dışında herhangi bir periyodik muayene ve koruyucu bakım gerektirmez.

Resim 1.5: Geyt vanasının malzemelerinin resimleri

Şekil 1.6: Geyt vanasının kesit görünümü

1) Vana simidi 2) Hareket mili 3) Samastra ve flanşi 4) Samastra cıvatası ve somunu
5) Kapak cıvatası 6) Vana gövdesi 7) Kapak 8) Kapak burcu 9) Vana mili 10) Sit ringleri
11) Vana dili
1.2.2. Glob Vanalar

Resim 1.7: Glob vanasının iç görünümü

Şekil 1.8: Glop vanasının kesit görünümü

1) Vana simidi 2) Hareket mili 3) Samastra ve flanş 4) Samastra civatasi ve somunu
5) Kapak civatasi 6) Vana gövdesi 7) Kapak 8) Kapak burcu 9) Vana mili 10) Siringleri
11)Vana dili

Vanannın milinden itibaren olan sızdırmazlık ise elastik sızdırmazlık ringlerinden oluşan salmastra kutusu ile sağlanmaktadır. Glob vanaların kullanıldığı bazı akışkanlar; su, sıcak su, kızgın su, buhar, kızgın yağ, basınçlı hava, akaryakıt, LPG, ısı transfer yağları ve kimyasal akışkanlardır.

Glop vanalar gövdesi pik döküm iç aksam komple paslanmaz çeliktir. Bağlantular flanşlı olarak yapılmaktadır.

Üretim çapları (1/2”–(8”) arasında olup basınç değerleri maksimum 16 bar’a kadardır. Sıcaklık aralığı malzeme yapısına göre -10°C’den 300°C’ye kadardır.

- **Uygulamalar:** tekstil endüstrisi, enerji üretimi, rafineriler-petrokимya tesisleri, gemi inşaatları, kimya sektörü, gıda tesisleri, kağıt fabrikaları

Resim 1.9: Glob vananın görünümü

Resim 1.10: Glob vana flanşlı köşe tip
Glob vananın çalışma şekli ve bakımı

Glob vananın elle çalışmasında, açmak için volan saat ibresinin aksine, kapama için saat ibresi yönünde döndürülür.

Bakımda milin yağlanması dışında periyodik muayene ve koruyucu bakım gerekmek. Bütün parçaları değişebilir.

Resim 1.11: Glob vanasının malzemelerinin resimleri : a (Gövde), b (Demontaj parçaları), c (Gövde ring), d (Disk), e (Mil grubu), f (Salmastra grubu), g (Kapak), h (Conta), i (Volan)

Glob vana tipleri
- Mil ve volana göre
 - Mil vidası dışta ve yükselen volanlı
 - Mil vidası dışta ve yükselmeyen volanlı
 - Mil vidası içte ve yükselen volanlı
 - Mil vidası içte ve yükselmeyen volanlı
 - Dönen milli
 - Dönmeyen milli
Avantajları:
- Mil vida dışta olanlarda; vida'nın akışkan ile teması olmaması, bakım kolaylığı agresif ve aşındırıcı özelliği olan akışkanlar için kullanım kolaylığı, yükselen milli ve volanlılarda; gözle strok kontrol imkânı, dönmemeyen millilerde; uzun sasmastra ömrü. Yükselmeyen volanlılarda; aktüatör uygulama kolaylığı.

Dezavantajları:
- Yükselen volanlılarda; volan için daha fazla yer ihtiyacı doğması, mil vida dışta, yükselmeyen volanlı ve dönmemeyen milli tip avantajlarının hepsine sahip olması rağmen, imalat maliyetleri yüksekter. Ayrıca; volan, köprü belirli bir kapak sistemi ile vana gövdesinden uzaklaştırılamamış ise sıcak akışkan ile çalışma durumunda, operatörün volanın aşırı ısınmasını sebebi ile vanayı açıp kapaması zorlaşmaktadır.

Gövde şekline göre
- Düz geçişli: Genelde yüksek basınç kayıpları söz konusudur. Her ne kadar adı düz geçişli olsa da bu sadece tesisata bağlantı için geçerlidir. Vana içinde akışkan bir "S" çizerek yol alır.
- Köşe: Tesisat köşe noktaları için avantaj sağlarlar.

Sasmastraya göre
• Kontrol vanası olarak kullanılan tiplerde “Ayar Karakteristikleri”ne göre:
 • **Doğrusal (lineer) karakteristik:** Strokta her birim artış, debide eşit artış sağlanmaktadır.
 • **Hızlı açma karakteristikli:** Bu karakteristik, vana açmaya başladığında maksimum debiye hemen çıkılması gereken durumlar için uygundur.
 • **Eş oranti karakteristikli:** Bu üç karakteristik tipi içinde, kontrol vanalarında en fazla kullanılmaktadır. Bu tipde, vananın her birim strok hareketinde deki değişimi, hareket öncesi elde edilmiş debi ile doğrudan orantılıdır. Bu vanalarda açma başlangıcında, strok küçükken debi değişimi az, vana tam açık pozisyona yaklaştığında, strok tamamlanırken deki değişimi orani yüksek olmaktadır. Bu karakteristik, kontrolün daha zor olduğu az strok, küçük debiler bölgesinde yarım açık pozisyona kadar, iyi ve hassas bir ayar imkanı sağlamaktadır.

• Uygulama örnekleri
 Sızdırmanın tehlike yaratabileceği durumlarda, Glob vana kullanılamamız gerekiyor ise iki vanayı birbirinin peşine bırakarak takabiliriz. Girişte bir kaçak söz konusu olursa yede bir vana sistemde hazır bulunmuş olur. Bu sistem ile basınç düşümünü de iki vanaya dağıtmış, toplam gürültü seviyesini düşürmüş oluruz.

• İşletmede dikkat edilecek hususlar
 Sızırmazlık, klape ve sit yüzeylerinin birbirinin üzerine oturmasını ile sağlanmış için, akışkanın temiz olmaması durumunda, iki yüzeyin arasına katı partiküllerin girmesi ile öncelikle sıçrama sağlanamayanacak ve yüzeylerde bozulmalar olacak, kaçak başlayacaktır. Akışkanın temiz olması, filtreleme her vanada olduğu gibi, bu vanalarda da çok önemlidir.

 Kullanılan akışkanın sıcaklık düşüğünde donma veya katılaşması söz konusu olabilecek ise gazdönemin serpan tinin, çeket gibi bir düzenele olması gerektir. Genel enerji tasarrufu açısından da vanaların ortama ısı kaybını en aza indirgemek ve aramızda dolu olmayan ve ortam sıcaklığından farklı akışkanın geçtiği vanalar muhakkak izole edilmelidir.

Bakım, onarım

Bu tür vanalarda en çok karşılaşılan sorunlar; sıздırmazlık yüzeylerinin aşınması ve salmastra kaçaklardır.

Mil salmastrasından kaçak söz konusu olduğunda, salmastra sıkıştırılmalar kaçaklar önlenmelidir. Ancak; vanalar tesisata bağlanmadan önce uzun süre depoda beklemiş veya sıkıştırılabilme sınırının sonuna gelmiş ise salmastralar elastikiyetlerini kaybederek kaçırmayı önleyemez hâle gelebilirler. Bu durumda onarım mümkün değildir ve salmastra yenilenmelidir.

Salmastra kaçaklarının tamamen önlenmesi için geliştirilmiş metal körük salmastralı vanalarda, bakım onarımının salmastrayı sıkmak için takibi gerektmez. Bu vanalarda, metal körük mekanik ömrünü (5.000, 10.000 vb. tam açma gibi imalatının verdiği ömür değerlerine göre) tamamlar ve delinir ise bunun yeni mil-salmastra grubu ile değiştirilmesi gerekir.

Sızdırmazlık yüzeylerinin zarar görmüş olması sonucu onarım işi gerektiğini, yüzeylerin taşlanması, alıştırılması gibi işlemler zorunlu olarak karşımıza çıkmaktadır. Bu yüzden bu tür onarım işinin imalatçı firmada yaptırılması daha doğru olur.

Kavitasyon, erozyon gibi problemler sonucu gövdede aşınma, delinme söz konusu olduğunda, teknik alt yapı mevcut ise gerekli önlemler alınarak ve teknolojik gerekler yerine getirilerek özellikle çelik vanalarda kaynak dolgusu ile onarım yapılabilir.

1.2.3. Kelebek Vanalar

Resim1.12: Kelebek vana çeşitleri

Kelebek vanaların uygulama alanları: ısıtma, havalandırma ve iklimlendirme sistemleri, su artış ve dağıtım sistemleri, maden sanayi, gemi inşası ve sondaj tesisleri, kimyasal ve petrokimyasal tesisler, gıda ve kimya işletmeleri, petrol ve gaz prosesleri, yangın söndürme sistemleri

Resim1.13: Kelebek vana çeşitleri

1.2.4. Oturmalı Vanalar

- Çalışma şekli

Oturmalı tip (Glob) vanalar; bir milin ucuna bağlı klapenin, akişkan geçiş deliğunin üstüne oturtulması veya kaldırılması ile akişkan geçişini kesip açarak görevlerini yerine

Şekil 1.14: Oturmalı vanaların çalışma prensibi

- **Üstünlükleri**
 - Hassas akış kontrolü sağlarlar.
 - Klapenin, sit ile sürtünmesiz, oturarak teması ile iyi bir sızdırmazlık sağlanır.
 - Yüksek basınç ve sıcaklıklara uygunsuz tipleri vardır.
 - Gaz akışkanları için de uygundurlar.
 - Çok sık ve çok sayıda açılıp kapanmaya uygundurlar.
 - Sürgülü vanalara göre, mil klapeyi doğrudan sitin üzerine bastırdığı için, bu kuvvet uygulaması, sızdırmazlığı olumlu etkilemektedir. Bu yüzden, özellikle atmosfere açık tehlike yaratabilecek yüksek basınçlı akış konusu olduğu durumlarda, kapama vanası olarak sürgülü vana yerine, Glob vanalar tercih edilmektedir.

- **Zayıf yönleri**
 - Yapıları itibari ile basınç kayıpları fazladır.
 - Ölü hacim içermektedirler. Vana içinde kalıntılar birikebilir.
 - Akış, sadece vana üstündeki belirtilmiş yönde mümkündür. İki yönlü çalışmaya uygun değildir.
 - Büyük anma ölçülerinde, açma kapama meline çok büyük kuvvetler etkilemektedir. Bu kuvvet, kapamayı zorlattmaktadır. Büyük debilerin kontrolü söz konusu olduğunda; akışı iki veya daha fazla küçük hatta ayırmak ve küçük Glob vanalar kullanabilmek genelde uygulanan bir yöntemdir.
Kullanım yerleri

Sıcak ve soğuk su tesisatları, buhar tesisatları, kızgın yağ tesisatları, petrokimya tesisleri, makine imalatı, özel araç imalatı vb.

1.2.5. İğne Vana

İğne vanalar küçük çaplı hatlarda hassas akış kontrolünü sağlamak için kullanılır. İğne vanaların tipi açılı ve glob vanalara benzer. Bronz ya da çelikten imal edilir ve su buhari, hava, su, yağ, gaz, fuel-oil, viskozitesi düşük akışkanlarda ve benzeri servislerde kullanılır. Mil dişleri normalden daha incidir ve daha hassas ayarlamalarda kullanılabilir.

İğneli vanalar, su şebekelerinde regülsasyon amaçına uygun kullanılmak için tasarlanmıştır. Tahrik mekanizmasının kumanda ettiği bir kran mekanizmasına bağlı klapenin, eksenel olarak hareket etmesi neticesinde, basınç, debi, seviye, sıcaklık ve benzeri parametrelerin regülasyonu yapılr. Klapa, gövde üzerindeki minimum sürünme yaratan klap rayları tarafından yataklanır ve böylelikle dengeli bir hareket sağlanır.

1.2.6. Diyaframlı Vanalar

Elle kumandalı vanaları kullanınız.

Kullanılan araç ve gereçler: Çekiç, tornavida, temizlik malzemesi, açık ağızlı ve yıldız ağızlı anahtar takımı, mengene, tel fırça, kurbağacık, pense

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakeți tezgâhınızı hazırlayınız.</td>
<td>Önliğınızı giyniz.</td>
</tr>
<tr>
<td>Kullanılan araç ve gereçler: Çekiç, tornavida, temizlik malzemesi, açık ağızlı ve yıldız ağızlı anahtar takımı, mengene, tel fırça, kurbağacık, pense</td>
<td>Sökmek için kullanacağınız malzemeleri atölye sorumlusundan alınız.</td>
</tr>
<tr>
<td>İş güvenliği önlemlerini alınız.</td>
<td>İş güvenliği önlemlerini alınız.</td>
</tr>
</tbody>
</table>

| Geyt vanayi tezgâhınızda mengeneye sabitleyiniz ve açık konuma getiriniz. | Sökmeye kullanacağınız malzemeleri hazırlayınız. |
| | Temizlik malzemelerini hazırlayınız. |

<p>| Volan somununu sökünüz. | Sökmek için uygun anahtarı kullanınız. |
| | Söktüğünüz her parça numara veriniz. |</p>
<table>
<thead>
<tr>
<th>Adımlar</th>
<th>Ayrı-Anlık İşlemler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Volanı (simit) yuvasında çıkarınız.</td>
<td>➢ Volana alttan çekile hafifçe sağa soluna dengeli tiklatınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Volanın yuvayı sıyrırmamasına dikkat ediniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Volanın pimi varsa dikkatlice çıkartınız.</td>
</tr>
<tr>
<td>➢ Glend saplamasının somunlarını sökünüüz.</td>
<td>➢ Sökmeye kullandığınız anahtarın somuna hasar vermemesine dikkat ediniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Söktüğünüz sağ ve sol somunları karıştırmayınız.</td>
</tr>
<tr>
<td>➢ Pimi sökünüüz.</td>
<td>➢ Sökmeye kullandığınız anahtar somuna hasar vermemesine dikkat ediniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Söktüğünüz sağ ve sol pimleri karıştırmayınız.</td>
</tr>
<tr>
<td>➢ Glend saplamalarını çıkartınız.</td>
<td>➢ Çıkardığınız sağ ve sol saplamaları karıştırmayınız.</td>
</tr>
<tr>
<td>İşlem</td>
<td>Aşamalar</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Kapak saplamasının somonunu sökünüz. | Somuna tam yerleşen anahtar seçiniz.
Somun ve saplamada diş sıyırılmaya dikkat ediniz.
Söktüğünüz sağ ve sol somun ve saplamaları karıştırmayınız. |
| Kapağı saat yönünün tersine çevirerek milden ayırınız. | Çevirmede acele etmeyiniz.
Milin çizilmesine ve yalama yapmamasına dikkat ediniz. |
| Glend ve lend flaşını çıkartınız. | Hasar vermemeye dikkat ediniz.
Titiz çalışmalısınız. |
<p>| Kapaktan burcu çıkartınız. | Hasar vermemeye dikkat ediniz. |
| Kapaktaki contayı çıkartınız. | Contayı çıkarmak için düz tornavida |
| ➢ Mil ve ringi yuvadan çıkarınız. | ➢ Dikkatli çalışmınız. |
| | ➢ Milli çıkarmada herhangi bir anahtar kullanmayınız. |
| | ➢ Çıkmıyorsa yüzeye oturuş şeklini kontrol ediniz. |
| ➢ Gövdeyi mengeneden sökünüz. | ➢ Vananın boru hattına bağlantını yerlerindeki contaları çıkarınız. |
| ➢ Parçaların temizliğini yapınız. | ➢ Numara sırasını karıştırmamaya dikkat ediniz. |
| | ➢ Korozyon kontrolü yapınız. |
| ➢ Gövdeyi mengene yerleştiriniz ve son numaradan başlayarak montajını yapınız. | ➢ Somunları saplamalara düzgün yerleştiriniz. |
| | ➢ Contanın kapağa tam olarak yerleştirilmişden emin olunuz. |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>➢</td>
<td>Mil ve ringin yuvaya tam olarak yerleştiğinden emin olunuz.</td>
</tr>
<tr>
<td>➢</td>
<td>Kapağı mile yerleştirmeden önce burcu, glend flanşını ve glendi takınız.</td>
</tr>
<tr>
<td>➢</td>
<td>Kapağı mile takarken saat yönünde yavaşça çeviriniz.</td>
</tr>
<tr>
<td>➢</td>
<td>Su hattına montajını yapınız.</td>
</tr>
<tr>
<td>➢</td>
<td>Su hattına bağlarken conta kullanınız.</td>
</tr>
<tr>
<td>➢</td>
<td>Somunlar için uygun anahtar seçiniz.</td>
</tr>
<tr>
<td>➢</td>
<td>Sızdırmazlık kontrolü yapınız.</td>
</tr>
<tr>
<td>➢</td>
<td>Gövde ile kapak arasında sızdırp sızdırmadığını kontrol ediniz.</td>
</tr>
<tr>
<td>➢</td>
<td>Açma kapamayı kontrol ediniz.</td>
</tr>
<tr>
<td>➢</td>
<td>Rapor hazırlayınız.</td>
</tr>
<tr>
<td>➢</td>
<td>Yaptığınız işlemleri sırasıyla yazınız.</td>
</tr>
<tr>
<td>➢</td>
<td>Sızdırmazlık kontrolünde varsa aksaklıklar belirtiniz.</td>
</tr>
</tbody>
</table>
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri Evet, kazanamadığınız becerileri Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. İş önlüğünü giyip çalışma tezgahınızı düzenlediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Sökmek için vanayı mengeneye sabitlediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Sökmek için kullanacağınız malzemeleri aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Temizlik malzemelerinizi hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Vanayı açık konuma getirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Söktüğünüz malzemelere söküş sırasına göre numara yazdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Contayı kapaktan çıkartıp sağlam conta montaj ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Mil ve ringde korozyon kontrolü yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Değişmesi gereken malzemeleri belirlediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Vananın tüm parçalarını söküp kontrol ettiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Vananın temizliğini yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Değişmesi gereken parçaları yenileri ile değiştirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Söktüğünüz parçaları son numaradan başlayarak montajını yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Vanayı su hattına montaj ederek sızdırmazlık kontrolü yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Raporunuzu hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Vanalar kapama organının iş hareketine göre nasıl sınıflandırılırlar?
A) Doğrusal-Akış yönüne dik eksende döner
B) Düz–Köşe hareket ederek
C) Karşıtıarak–Debi ayarı yaparak
D) El ile (manüel)-Aktüatör tahrikli

2. Aşağıdakilerden hangisi vanaların akış yönüne göre kullanılan çeşitlendirilerden biri değildir?
A) Düz
B) Köşe
C) İki yollu
D) Üç yollu

3. Aşağıdakilerden hangisi vanaların fonksiyonlarına göre kullanılan çeşitlerinden biri değildir?
A) Kapama-Boşaltma
B) Basınç ayar-Basınç düşürme
C) Debi ayar-Seviye ayar
D) El ile (manüel)-Aktüatör tahrikli

4. Aşağıdakilerden hangisi vanaların gövde yapısına göre kullanılan çeşitlendirilerden biri değildir?
A) Tek parçalı
B) İki parçalı
C) Üç parçalı
D) Rakor parçalı

5. Aşağıdakilerden hangisi vanaların salmastra cinsine göre kullanılan çeşitlendirilerdir?
A) Membran
B) Çekme çubuk
C) Enjeksiyon
D) Fittins

6. Aşağıdakilerden hangisi vanaların tahrik şekline göre kullanılan çeşitlendirilerendir?
A) Kapama-Boşaltma
B) Basınç ayar-Basınç düşürme
C) Debi ayar-Seviye ayar
D) El ile (manüel)-Aktüatör tahrikli

7. İmalat yöntemine göre kaç çeşit vana vardır?
A) 1 B) 2 C) 3 D) 4

8. Aşağıdakilerden hangisi vanaların görevi değildir?
A) Akıştı durdurmak
B) Akışkana yol vermek
C) Akışın hızını ayarlamak
D) Akışkanın sıcaklığını ayarlamak

9. Vanalar aşağıdaki malzemelerden hangisi ile boru hattına bağlanamaz?
A) Yapıştırıcı
B) Flanş
C) Alın kaynak
D) Dişli soket
10. Sık açılıp kapanan vanalar kaç ayda bir yağlanmalıdır?
A) Dokuz ayda bir B) Altı ayda bir
C) Üç ayda bir D) Ayda bir

11. Vanalar akış kontrol şekline göre kaç gruba ayrılır?
A) 1 B) 2 C) 3 D) 4

12. Vanalarda hareketli parçalar arasında sızdırmazlığın sağlanması aşağıdakilerden hangisine bağlı değilidir?
A) Basınç B) Viskozite
C) Sıcaklık D) Hız

13. Diyaframın görevi aşağıdakilerden hangisidir?
A) Akışını kontrol etmek B) Akışın hızını artırmak
C) Basıncı düşürmek D) Hareketli parçaları korozyondan korumak

14. Geyt vanalarının en önemli özelliği aşağıdakilerden hangisidir?
A) İyi akış sağlaması B) Kontrolü kolay olması
C) Ani basınç düşmesinde akışı kesmesi D) Ters akış sağlaması

15. Geyt vanalarda sürgü veya gövde ringlerinin değiştirilmesinde aşağıdakilerden hangisi uygulanmaz?
A) Vanayı tam açık konuma getirmek B) Gövde–kapak bağlantılarını söküp kapak grubunu gövdeden ayırarak
C) Sürgü ve sürgü sızdırmazlık yüzeylerini kontrol etmek, küçük hasarları lebleme yoluya gidermek
D) Glend saplamalarını tamamen boşaltmak

16. Aşağıdaki etkenlerden hangisi mil dışında olan geyt vanadan akan sıcak sıvı mil üzerindeki dişleri etkiler?
A) Sıcaklık B) Kirlenme
C) Korozyon D) Erozyon

17. Aşağıdakilerden hangisi sızdırmazlık özelliğini etkilemez?
A) Salmastra kutusunun dizaynı B) Mil ve yuvanın temizliği
C) Salmastranın yerleştirilme şekli D) Volanın dizaynı

18. Glob vanada mil hasarı giderilirken aşağıdakilerden hangisi uygulanmaz?
A) Diski milden ayırmak B) Glend ve glend flanşlarını yerlerinden sökmek
C) Volanı sökmek D) Kapak grubunu vanadan ayırmak
19. Aşağıdaki özelliklerden hangisi ideal bir salmastraya ait değildir?
A) Elastik olmalı
B) Fazla sürtünme ve ısı oluşturmalı
C) Mali aşındırmamalı
D) Korozif etkisi olmamalı

20. Aşağıdakilerden hangisi iğne vanaların özelliklerinden birisi değildir?
A) Iğne vanalar küçük çapta hatlarda hassas akış kontrolünü sağlamak için kullanılarlar.
B) Iğne vanaların tipi açılı ve global vanalara benzer.
C) Bronz ya da çelikten imal edilirler
D) Mil dişleri normalden daha kalın olup hassas ayarlamalarda kullanılarlar.

DEĞERLENDİRME

AMAÇ

Gerekli ortam sağlandığında kuralına uygun otomatik kontrol vanaları kullanabileceksiniz.

ARAŞTIRMA

- Otomatik kontrol vanalarının kullanım alanlarını araştırınız.
- Pnömatik kontrol vanalarını araştırınız.
- Selenoid kontrol vanalarını araştırınız.
- Petrokimya tesislerinde kullanılan otomatik kontrol vanalarını araştırınız.

2. OTOMATİK KONTROL VANALARI

İstırmak, soğutma, iklimlendirme ve herhangi bir proses sistemindeki boru ve basınçlı kaplarda kullanılan vana ve diğer tesisat elemanları işletmelerin ekonomik ve sağlıklı çalışmalarında önemli görevler üstlenirler. İşletmelerde enerji sarf edilerek üretilen ve üretilmiş ısıl enerjiyi taşıyan buhar, kızgın su, sıcak su, soğuk su, gaz vb. akışkanlar sistemin ihtiyacı karşılama doğrultusunda herhangi bir kayba uğramadan amaçlarına uygun taşınmalı ve kontrol edilmelidirler.

Otomatik kontrol vanaları genel olarak bir boru sistemindeki akışkanı istenen zamanda ve kontrol-emeğiyet fonksiyonlarını yerine getirecek şekilde durdurun, kısın (ayarlayan) veya akışkanı yol vererek yarayan makine elemanlardır. Kontrol vanaları, içindeki akışkanın geçtiği kesitin bir tahrik ünitesi tarafından değiştirilebilirdiği ve böylece içinde geçen akışkan miktarının (debinin) ayarlanmasına ve akışkanın yön değiştirilebilmesine olanak sağlayan vanalardır.

Kontrol vanaları genellikle aşağıdaki amaçları karşılamak için kullanılmaktadır. Akış belirli bir zaman veya olaya bağlı olarak tümüyle durdurmak veya tümüyle yol vermek için. Akışı belirli bir zaman veya kontrol fonksiyonu sonucu kontrol edebilen minimum akış değeri ile maksimum akış değeri arasında değiştirebilmek, Akışı başka yönlere çevirmek (ayrıştırmak), akışı başka yönlere toplamak (kabıstırılmak) için kullanılmaktadır.
2.1. Pnömatik Kontrollü Vanalar

Basınçlı hava olmadığında vana yayın gücü ile kapalı konumda olur ve akışkanı geçirmez. Basınçlı hava ile yay sıkışır, vana açık konuma gelir ve akışkan geçebilir.

Resim 2.2: Pnömatik kontrollü vana

- **Kullanım alanları:** Gıda sanayisinde, tekstil, makine, kimya, demir çelik, çimento, ilaç sanayisinde, kozmetik, petrol, gaz tesisatları, kimyasal madde, buhar, hava, su

- **Teknik özellikler:** Vana ölçülerı: 1/2" - 2" arası, Gövde: Paslanmaz çelik AISI 316, Aktüatör, basınç dayanımı: 40 bar (Atü), Çalışma sıcaklığı: -30 C ile +180°C arasında, Aktüatöre gerekli olan hava basınçları: 4-8 bar Aktüatöre giriş bağlantı: G 1/4" Sızdırmaz conta PTFE (isteğe bağlı olarak VİTON, EPDM), vana konumu normalde kapalı (NK), bağlantı dişli - dişli (Gas BSP, isteğe bağlı flanşlı yapılabilir.)

- **Pnömatik avantajları:** Hızlı açma kapatma, düşük basınç kaybı, yüksek geçiş olanağı, çeşitli kullanım alanı, bakım kolaylığı, uzun ömür, darbeye karşı dayanım olarak sayılabilir.

Şekil 2.1: Pnömatik vana çalışma prensibi

Resim 2.3: Pnömatik pistonlu vana
2.2. Selenoid Kontrollü Vanalar

Konumlarına göre selenoid valfler normalde açık ve normalde kapalı olmak üzere iki gruba ayrılmaktadır. Bobine enerji verildiğinde kapalı olan hattı açmaya yarayan valfler normalde kapalı; açık olan hattı bobine enerji verildiğinde kapatmaya yarayan valfler ise normalde açık selenoid valf olarak adlandırlmaktadır. Direk çekmeli Selenoid valfler bobine
elektrik enerjisi verildiğinde elektromanyetik kuvvet oluşmakta ve bu kuvvet valf içindeki hareketli nüveyi sabit nüveye doğru çekmektedir. Hareketli nüve, valfin giriş ve çıkışı arasındaki akışın gerçekleştiği orifisi açmakta (normalde kapalı tip) veya kapamaktadır (normalde açık tip) ve bu şekilde akış kontroldü sağlanmaktadır. Hareketli nüvenin orifisle temas eden yüzeyinde sızılmazlık conta ile sağlanır. Bu conta valfin içinden geçen akışa oranla temas ettiginden valfi kullanacağınız akışkanın türüne göre doğru sızılmazlık elemanının seçilmesi önemlidir.

Şekil 2.2: Selenoid vananın iç yapısı

Resim 2.7: Selenoid vanalar (valfler)

A: Giriş
B: Diyafram
C: Basınç Odası
D: Basınç Tahliye Borusu
E: Solenoid
F: Çıkış

Şekil 2.3: Selenoid vananın çalışma prensibi
Pnömatik kontrollü vanayı çalıştırınız.
Kullanılan araç ve gereçler: Selenoid vana, kurbağacık, boru anahtarı, sızırma Elemanı (sıvı conta), pense kontrol kalemi

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Kullanılacak malzemeleri hazırlayınız.</td>
<td>➢ İş önliğinizi giyiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Çalışma ortamınızı hazırlayın.</td>
</tr>
<tr>
<td></td>
<td>➢ İş güvenlik önlemlerini alın.</td>
</tr>
<tr>
<td>➢ Selenoid valf takıacak boruyu boru mengenesine sıkıca bağlayıniz.</td>
<td>➢ Boru çapına uygun selenoid valf seçiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Diş açılmış doğal gaz borusunu boru mengenesine sıkıca takınız.</td>
</tr>
<tr>
<td>➢ Sıvı contayı sürünüz.</td>
<td>➢ Diş açılmış tüm yüzeylere sürüünüz.</td>
</tr>
<tr>
<td></td>
<td>➢ Sıvı contayı elle sürmeyiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Sıvı contayı çok fazla sürmeyiniz.</td>
</tr>
</tbody>
</table>
| Selenoid valfi boruya takınız. | Selenoid valfi takarken gaz akış yönüne dikkat ediniz.
| | Selenoid valf boruya takarken dış atlamasına dikkat ediniz
| | Selenoid valfi el ile 2 tur çeviriniz
| | Dış tuttuğundan emin olunuz. |
| Kurağacık ile selenoid valfi sıkınız. | Sıvı contayı sürdükten sonra hemen sıkınız.
| | Selenoid valfi gaz hattına kurağacık ile sıkınız. |
| Selenoid valfi gaz borusuna takınız. | Selenoid valfin gaz akış yönüne dikkat ediniz. |
| Selenoid valfi gaz alarm cihazı ile irtibatlandırınız. | Gaz alarm cihazı ile selenoid valf arasında elektrik tesisatını yapınız.
| | Gaz alarm cihazına elektrik enerjisi veriniz.
| | Gaz kaçaklarında selenoid valfin çalışıp çalışmadığını kontrol ediniz. |
➢ Raporunuzu hazırlayınız. ➢ Uygulama sırasında aldığınız notlardan faydalanınız.
➢ Raporu işlem sırasına göre yazınız. ➢ Raporlarınızı kuralına uygun ve okunaklı olarak yazmaya özen gösteriniz.

KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri **Evet**, kazanamadığınız becerileri **Hayır** kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. İş önüğünüzü giyip çalışma masanızı düzenlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Kullanılacak malzemeleri hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Selenoid valf takılacak boruyu boru mengenesine sıkıca bağladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Selenoid valf takılacak dış açılmış doğal gaz borusuna sıvı contayı sürdüünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Selenoid valfı boruya taktıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Selenoid valfı takarken gaz akış yönüne dikkat ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Kurbağacık ile selenoid valfı sıkıca taktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Selenoid valf gaz borusuna takarken dış atlamamasına dikkat ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Selenoid valfı gaz alarm cihazı ile irtibatlandırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Selenoid valfın çalışıp çalışmadığını kontrol ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Kullandıınız malzemeleri temizleyerek teslim ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Raporunuzu teslim ettiniz mi?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru ise (D) yanlış ise (Y) harflerini işaretleyiniz.

1.() Otomatik kontrol vanaları Isıtma, soğutma, iklimlendirme ve herhangi bir proses sistemindeki boru ve basınçlı kaplarda kullanılan vana ve diğer tesisat elemanları işletmelerin ekonomik ve sağlıklı çalışanlarında önemli görevler üstlenirler.

2.() Otomatik kontrol vanaları için İşletmelerde enerji verimliliği çok önemli değil, üretilen ve üretilmiş ısıl enerjiyi taşıyan buhar, kızdın su, sıcak su gibi akışkanları sadece kontrol etmelidir.

3.() Pnömatik valfler, AC veya DC elektrik enerjisyle çalışan ve çeşitli akışkan hatlarının kontrolü işlevini gören iki veya üç yollu vanalardır.

4.() Pnömatik kontrollü vanalar gıda sanayisinde, tekstil, makine, kimya, demir çelik, çimento, ilaç sanayisinde, kozmetik, petrol, gaz tesisatları, kimyasal madde, buhar, hava, su tesisat sistemlerinde pek tercih edilmeler.

DEĞERLENDİRME

AMAÇ

Gerekli ortam sağlandığında kuralına uygun çek vanaları kullanabileceksiniz.

ARAŞTIRMA

- Çek vanaların kullanım alanlarını araştırınız.
- Çek vana çeşitlerini araştırınız.
- Petrokimya tesislerinde kullanılan çek vanalarını araştırınız.

3. ÇEK KONTROL VANALARI

3.1. Tanımı ve Çeşitleri

Çek vanalar ters yöndeki akışı önlenmesi amacıyla kullanılır. Çek vana hatlarda tek yönlü akışı sağlamak ve kendinden önceki ekipmanı ve prosesi korumak amacıyla yerleştirilirler. Vana hareketini direk akış olduğundan aldığı hareketle yapar. Dışardan bir kuvvet uygulanmaz. İki prosesi ayırmak amacıyla kullanılmamalıdır (Gate vana gibi değildirler.). Bazen tek yönlü vanalar olarak da isimlendirilirler. Çek vana hattaki ters akışı durdurur.

Çek vana çeşitleri:
- Piston tipi çek vanalar
- Bilyeli çek vanalar
- Kapaklı çek vanalar
- Kaldıraçlı çek vanalar
- Stop çek veya geri dönüşüsüz vanalar

Resim 3.1: Çalışma çek valf

Çek vanaları tek yönlü vanalar olarak da isimlendirilirler. Çek vana hattaki akışı durdurur.
3.2. Piston Tipi Çek Vana

Piston tipi çek vanalar operasyon gravitesi API (özgül ağırlık) ile çalışırlar. Sıvı akışıyla beraber piston yukarıya doğru hareketlenir ve akış yolu açılır. Ters akıста sıvı vanayı kapatma yönünde zorlar ve akış durur. Piston tipi çek vanalar kapaklı çek vanalara göre daha fazla basınç düşümü oluştururlar.

3.2.1. Bilyeli Çek Vanalar

Küresel çek vanalar ve piston çek vanalar aynı prensipte çalışırlar. Yalnızca piston yerine bilye mevcuttur.
Şekil 3.1: Bilyeli çek vanalar

3.2.2. Kapaklı Çek Vanalar

Resim 3.4: Kapaklı çek vana çeşitleri

Resim 3.5: Kapaklı çek vana kesiti
3.2.3. Kaldıraçlı Çek Vana

Bu servisler için özel yapımcı çek vanalar kullanılır.

![Resim 3.6: Kadıraçlı çek vana çeşitleri](image)

3.2.4. Stop Çek veya Geri Dönüşsüz Vana

![Resim 3.7: Stop çek veya geri dönüşsüz vana](image)
Puamatik kontrollü vanayı çalıştırınız.

Kullanılan araç ve gereçler: Çalpara çek vana, diş açılmış boru, kurbagacık, boru anahtarı, keten veya teflon bant

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Kullanılacak malzemeleri hazırlayınız.</td>
<td>➢ İş önlüğünü giyiniz, maskenizi takınız.</td>
</tr>
<tr>
<td>➢ Kullanılacak boru çapına uygun çek valfi hazırlayınız.</td>
<td>➢ Çalışma ortamınızı hazırlayınız.</td>
</tr>
<tr>
<td>➢ Boruyu mengeneye bağlayınız.</td>
<td>➢ Tesisatın özelliğine uygun çek vana seçimine dikkat ediniz.</td>
</tr>
<tr>
<td>➢ Diş açılmış boruya keten sarınız.</td>
<td>➢ Çek vana kullanılacak boru çapına dikkat ediniz.</td>
</tr>
</tbody>
</table>
| ➢ Keten sararken ters sarmayınız ve tüm dişlerin arasına gelmesine dikkat ediniz. | }
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Keten üzerine sülyen boya veya antipas boya sürüüz.</td>
<td>➢ Sülyen veya antipas boya'yı sadece keten üzerine hafifçe sürünüz.</td>
</tr>
<tr>
<td>➢ Çek vanayı diş açılmış boruya takınız.</td>
<td>➢ Çek vanayı boruya sıkarken diş atlamamasına dikkat ediniz.</td>
</tr>
<tr>
<td>➢ Çek vanayı takarken yönüne dikkat ediniz.</td>
<td>➢ Çek vanayı takarken yön okuna (suyun akış yönü) dikkat ediniz. ➢ Yön kontrol işaretiine uyarak vanayı çalıştırınız.</td>
</tr>
</tbody>
</table>
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri **Evet**, kazanamadığınız becerileri **Hayır** kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. İş önüğünüzi giyip çalışma masanızı düzenlediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Kullanılacak malzemeleri hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Kullanılacak boru çapına uygun çek valfı hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Boruyu mengeneye bağladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Diş açılmış boruya kelen sardınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Keten üzerine sülven boya veya antipas boya sürdüınız mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Çek vanayı diş açılış boruya taktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Çek vanayı takarken yönüne dikkat ettiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Yönt kontrol işaretine uyararak vanayı çalıştırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Kullandığınız malzemeleri temizleyerek teslim ettiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Raporunuzu teslim ettiniz mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru ise (D) yanlış ise (Y) harflerini işaretleyiniz.

1. () Çek vanalar ters yöndeki akışın önlenmesi amacıyla kullanılır.

2. () Glop vanalar aynı çek vanalar gibi aynı çalışma prensibine sahiptirler.

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru ise (D) yanlış ise (Y) harfleri işaretleyiniz.

2. () İstenmeyen işletme şartlarının önlenmesini sağlayan vanalar: Bunların içinde en önemlileri istenmeyen basınç artışlarını önleme ve hatta akışın geri dönüşünü veya bir hatta akışkanın karışımasını önleme görevleridir.

3. () Akışkanların geçişini veya durdurulmasını sağlamak, debisini ayarlamak, geri dönüşünü engelleme, akış yönünü değiştirmek, akış basıncını sınırlamak ve akış emniyetini sağlamak gibi amaçlara ulaşmak için kullanılan mekanik cihazlara çekvalf denir.

4. () Vanaların boru donanım bağlantısı flanşlı, dişli veya kaymalı (soket veya alın kaymalı) olabilir.

5. () Kısm ve kontrol vanaları, akışkanın istenilen yerde olup olmadığını kontrol ederler, akışkanların karışımasına izin verirler veya engellerler, acil durumlarda akış keserler. Kapalı konumda belirlenmiş bir sızdırma değerini aşmamaları, açık konumda da basınç kaybını minimize etmeleri beklenir.

6. () Geyt vanalar genelde endüstride kullanılırlar. Çünkü geyt vanaların akışını tamamen kesilmesinde ya da tümü ile açılmasında kullanılarak üzere tasarlanmıştır.

7. () Geyt vanalar iki kisma ayrılır, mili altta kalan geyt vana, mili üstte kalan geyt vanalardır.

9. () Glob vanalar, düşük basınç ve düşük sıcaklıklarla kullanılmaya uygun vanalardır.

11. () Oturmalı vanalar sıcak ve soğuk su tesisatları, buhar tesisatları, kızgun yağ tesisatları, petrokimya tesislerinde kullanılmaktadırlar.
12. İğne vanalar büyük çaptaki hatlarda hassas akış kontrolünü sağlamak için kullanılırlar.

14. Otomatik kontrol vanaları genel olarak bir boru sistemindeki akışkanı istenen zamanda ve kontrol-emniyet fonksiyonlarını yerine getirecek şekilde durdurun ve kısaltan (ayarlayıcı) veya akışkana yol vermeye yarayan makina elemanlarındandır.

15. Kontrol vanaları, içinden akışkanın geçtiği kesitin bir tahlık ünitesi tarafından değiştirilebilirdi ve böylece içinden geçen akışkan miktarının (debinin) ayarlanmasına veya akışkanın yön değiştirilebilmesine olanak sağlamayan vanalardır.

17. Pnömatik kontrollü vanalar çalışma prensibi, basınçlı hava olmadığından vana yayın gücü ile kapalı konumda olur ve akışkanı geçirmez. Basınçlı hava ile yay sıkılarak, vana açık konuma gelir ve akışkan geçebilir.

19. Çek vanalar hatlarda tek yönlü akışı sağlamak için kullanılır fakat kendinden önceki ekipmanı ve prosesi korumak için çok da önemlidir.

20. Geýt vana çek vana çeşitlerindendir.

DEĞERLENDİRME

CEVAP ANAHTARLARI

ÖĞRENME FAALİYETİ-1’İN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
</tr>
<tr>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>D</td>
</tr>
<tr>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ-2’NİN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ-3’ÜN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>Y</td>
</tr>
<tr>
<td>No</td>
<td>Cevap</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
</tr>
<tr>
<td>12</td>
<td>Y</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>D</td>
</tr>
<tr>
<td>15</td>
<td>Y</td>
</tr>
<tr>
<td>16</td>
<td>D</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
</tr>
<tr>
<td>18</td>
<td>D</td>
</tr>
<tr>
<td>19</td>
<td>Y</td>
</tr>
<tr>
<td>20</td>
<td>Y</td>
</tr>
<tr>
<td>21</td>
<td>Y</td>
</tr>
<tr>
<td>22</td>
<td>D</td>
</tr>
<tr>
<td>23</td>
<td>D</td>
</tr>
</tbody>
</table>
KAYNAKÇA

- MEGEP (Kimya Teknolojisi Alanı Akışkanlar Mekanıldığı Modülü)