PLASTİK TEKNOLOJİLERİ

TRANSFER KALIP ÜRETİMİ- 1

Ankara, 2014
Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilerle rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

- Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.
- PARA İLE SATILMAZ.
## AÇIKLAMALAR

<table>
<thead>
<tr>
<th>ALAN</th>
<th>Plastik Teknolojisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAL/MESLEK</td>
<td>Plastik Kalıpçılığı</td>
</tr>
<tr>
<td>MODÜLÜN ADI</td>
<td>Plastik Transfer Kalıp Üretimi -1</td>
</tr>
<tr>
<td>MODÜLÜN TANIMI</td>
<td>Plastik transfer kalıpları ve özellikleri, transfer kalıplarında işlenen plastikler, transfer kalıplarının yapım resimlerinin çizimi, kalıp merkezleme ve bağlantı konumlarının belirlenmesi bilgilerini kullanarak transfer kalıbı yapma yeteneginin kazandırıldığı öğrenme materyalidir.</td>
</tr>
<tr>
<td>SÜRE</td>
<td>-40/32-</td>
</tr>
<tr>
<td>ÖN KOŞUL</td>
<td>Temel beceriler, teknik resim, bilgisayarla çizim modüllerini başarmış olmak</td>
</tr>
</tbody>
</table>
| YETERLİK           | 1. Plastik transfer kalıplarının yapım resimlerini çizmek  
                      2. Transfer kalıp elemanlarının merkezleme ve bağlantı konumlarını belirlemek |
| MODÜLÜN AMACI      | Genel Amaç  
                      Transfer kalıplarının üretimini istenilen ürün özelliklerine uygun olarak yapabileceksiniz.  
                      Amaçlar  
                      Transfer kalıplarının imalata uygun yapım resimlerini çizebilirsiniz.  
                      Transfer kalıplarının merkezleme ve bağlantı konumlarını istenilen hassasiyette oluşturabileceksiniz. |
| EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI | Bilgisayar, Cad-Cam programları, gönye, cetvel, plotter, çizim kâğıdı, tesviyecilik araç gereçleri, markalamada gereçleri, talaşlı üretim makineleri vb. araç ve gereçler |
| ÖLÇME VE DEĞERLENDİRME | Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçme araçları ile kendinizi değerlendireceksiniz. Öğretmen modül sonunda ölçme aracı (çoktan seçmeli test, doğru-yanlış vb.) kullanarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek sizi değerlendirecektir. |
Sevgili Öğrenci,

Günümüzde üretim yöntemleri sürekli olarak değişmekte ve hızla gelişmektedir. Teknolojik gelişmeleri yakından takip edip uygulama fırsatı bulan imalatçılar ve firmalar daha kaliteli ve dayanıklı ürünleri piyasada kendilerine yer bulabilmektedir.

Seri üretimde kalıp imalatının önemi çok büyüktür. Plastiklerin işlenmesi ve ürün hâline dönüştürülmesinde de kalıp imalatı son derece önemlidir. Plastik kalıp imalatı teknolojik gelişmelerle yapılmasını zor olan veya yapımı uzun süren, yüksek maliyetli kalıplar kısa zamanda, düşük maliyet ile yapılır hâle gelmiştir. Ülkemizde kalıp imalatı hızla gelişmiştir ve oldukça geniş bir uygulama alanına sahiptir. En eski plastik kalıplama yöntemlerinden olan ve özellikle termoset plastiklerin kalıplanmasında kullanılan transfer kalıplama yöntemi de hızla gelişmiştir.

Plastik malzemelerden yapılan parçaların istenilen kalite ve özellikte olabilmesi için, kalıp üreticisine büyük sorumluluklar düşmektedir. Bu modülde transfer kalıbı yapımında ilk aşamalardan biri olan yapım resimlerinin çizilmesi, merkezeleme ve bağlantı konumlarının istenilen hassasiyette oluşturulmasını bilgi ve uygulamaları anlatılmıştır.
AMAÇ

Transfer kalıplarının imalata uygun yapım resimlerini çizebileceksiniz.

ARAŞTIRMA

- Çevrenizdeki plastik sıkıştırma kalıp üretimi yapan iş yerlerini ve ilgili internet adreslerini ziyaret ediniz.
- Plastik transfer kalıplarının çeşitleri ve özellikleri, kalıp elemanlarının yapım ve montaj resimlerinin çizim tekniklerini ve bu amaçla kullanılan bilgisayar programları hakkında araştırmaya yapınız.
- Plastik transfer kalıplarının ısıtılması yöntemlerini araştırarak bilgilerinizi arkadaşlarınızla paylaşın.

1. PLASTİK TRANSFER KALIPLARININ YAPIM RESİMLERİNİ ÇİZMEK

1.1. Plastik Transfer Kalıpları

1.1.1. Transfer Kalıplarının Tanımlanması


Kalıplanacak olan malzemenin, yükleme odasında kalıp içindeki ısıtılgı vasitasıyla istilıp ergiyik hâle getirildikten sonra dalıcı veya dalma pistonlu hidrolik pres yardımıyla basınç uygulanarak kalıp çukuru içine doldurup kalıplanmasını sağlayan kalıplara transfer kalıpları denir.

Termoset plastiklerin, transfer kalıplama metoduyla kalıplanmanın avantajları aşağıda açıklanmıştır.
- Transfer kalıplama devresi, sıkıştırma kalıplamaya göre daha kısıadır.
- Çok yakın toleranslarda kalıplama yapılabilir.
- İnce cidarlı (et kalınlığı) parçalar kalıplanabilir.
- Maça pimi daha az zorlanır.
- Plastik malzeme, kalıbın içine yerleştirilen parçaların etrafını daha iyi sarar.
1.1.1.1. Transfer Kalıp Elemanları

Şekil 1.1’de bir transfer kalıbı ve elemanları gösterilmiştir.

- **Üst plaka:** Kalıp üst yarımının kalıp presine bağlanmasını ve kalıp elemanlarının desteklenmesini sağlayan kalıp elemanı.
- **Dalıcı plaka:** Dalıcının bağlandığı ve desteklediği kalıp elemanıdır.
- **Destek:** Üst kalıp yarımının, alt kalıp yarımına gireceği hareket alanını belirleyen kalıp elemanıdır.
- **Yükleme odası:** Plastik ham maddenin konulduğu kalıp elemanıdır.
- **Erkek kalıp plakası:** Erkek kalının ve yolluk burcunun bağlı olduğu ve desteklediği kalıp elemanıdır.
- **Erkek kalıp:** Kalplanacak parçanın iç kısmına şekil veren kalıp elemanı.
- **Dişi kalıp**: Kalıplanacak parçanın dış kısmına şekil veren kalıp elemanıdır.

![Yükleme odası ve yolluk burcu](image)

- **Maça pimi**: Üretilen parça üzerindeki girintileri şeklini veren kalıp elemanıdır.
- **Dişi kalıp plakası**: Dişi kalıbın, maça pimlerinin ve iticilerin bağlandığı ve desteklendiği kalıp elemanıdır.
- **İticı pim**: Kalıplanan parçanın, kalıptan çıkartılmasında kullanılan kalıp elemanıdır.
- **Destek plakası**: Alt kalıp yarımının ve itici pimlerin desteklenmesinde kullanılan kalıp elemanıdır.

Şekil 1.1’de gösterilen yolluk, dağıtıcı kanal ve giriş kanalları transfer kalıbının bir elemanı değildir. Bunlar plastik malzemenin kalıp boşluğuna ulaşması için parça üzerinde açılmış olan kanallardır. Ayrıca artık çekme kanalı ve KAÇ (kalıp açılma çizgisi)’ta kalıp elemanı değildir.

### 1.1.1.2. Transfer Kalıplarının Çalışma Prensibi


### 1.1.1.3. Transfer Kalıplarının Avantajları

- Kalıplama işlemi, sıkıştırma kalıplama metoduna göre daha kısa zamanda yapılır.
- Elektrikli veya buharlı ısıtma sistemiyle kalıbın ön ısıtması, kısa zamanda gerçekleştirilmektedir.
Transfer kalıplamada yolluk ve giriş kanallarından hız kazanarak geçen plastik madde, kalıp boşluğunu daha kolay doldurur.
Kalıplanan plastik parçanın her kesitinde homojenlik sağlanmakta ve parça içinde hava boşluğu bulunmamaktadır.
Transfer kalıplamada, aksişkan hâldeki plastik malzeme sadece geçiş yollarında aşınma yaptığından sıkıştırma kalıplamaya oranla kalıp boşluğunu daha az aşırdır.

1.1.1.4. Transfer Kalıplarının Dezavantajları

- Sıkıştırma kalıplarına oranla, transfer kalıplarının yapımı daha zor ve zaman gerektirir.
- Kalıp maliyeti yüksektir.
- Sıkıştırma kalıplarına oranla, daha fazla kalıp elemanlarına gerek duylmaktadır.
- Transfer kalıplamada kullanılan presler, sıkıştırma kalıplamada kullanılan preslerden daha pahalıdır.

1.1.2. Transfer Kalıplarının Çeşitleri

Transfer kalıbı yükleme odalı ve dalma pistönlü olmak üzere ikiye ayrılır.

1.1.2.1. Yükleme Odalı Transfer Kalıbı

Şekil 1.2’de ön biçimlendirilmiş ham madde yüklü kalıbın açık konumu gösterilmiştir.

![Ön biçimlendirilmiş ham madde yüklü kalıbın açık konumu](image)

Şekil 1.2: Ön biçimlendirilmiş ham madde yüklü kalıbın açık konumu

![Diagram](image)

**Şekil 1.3: Transfer kalbinin kapalı durumu**

Şekil 1.5: Transfer kalıbının, kalıplama işleminde sonraki tam açık hali

Şekil 1.6: Dağıtıcı kanal ve giriş kanalı olmayan transfer kalıbı

Şekil 1.7: Yolluk şekli
Yükleme odası ve dalıcının yapılması

Yükleme odası ve dalıcının ikisi de aşınmaya karşı dayanıklı çeliklerden yapılır ve sertleştirildikten sonra taşlanır. Yükleme odaları ve dalıcılar, kare, dikdörtgen ve yuvarlak kesitli yapılır. Bu kesitin şekli bazı faktörlere göre seçilir. Bunlar;

- Kalıplanacak parçanın şekli
- Kalıp çukuru sayısı
- Kalıp gövdesi içindeki mesafedir.

Yuvarlak kesitli yükleme odası ve dalıcılar işleme kolaylığı bakımından tercih edilir.

Yükleme odası ile dalıcı arasındaki tek taraflı boşluk 0.025 mm – 0.075 mm verilir. Yükleme odasının alanı bütün kalıplama alanlarının (kalıp boşluğu – dağıtıcı – yolluk vb.) toplamından % 20 - % 30 daha büyük yapılır.

Yükleme odasının hacmi, kalıp boşluklarının, dağıtıcı kanallarının ve yolluğun toplam hacimlerine 0.4 – 0.8 mm kalınlıkta bir artış meydana getirecek kadar bir miktar eklenerek yaklaştırılmalıdır. Yükleme odasının hacmi, bu bulunan hacmin en az iki katı olarak yapılır. Yükleme odasının derinliği, hacminin alana bölerek bulunur. Ayrıca ön biçimlendirilmiş malzeme üzerine basınç tam olarak gelmeden önce dalıcının yükleme odasının içine bir miktar girmesine olanak sağlayan şişme faktörünü dâhil etmek gerekir. Plastik malzemenin daha kolay akması için yolluk ve yükleme odasının iç kısmının parlatılmış olması gerekir.

1.1.2.2. Dalma Pistonlu Transfer Kalıbı


Şekil 1.8'de dalma pistonlu transfer kalıbını kapalı konumda, ön biçimlendirilmiş plastik malzemeler hedef alana inişte ve dalma pistonu aşağıya doğru hareket etmek üzere gösterilmiştir. Ön biçimlendirilmiş ham madde, akışkan hâle getirilerek dağıtıcı ve giriş kanalından, kalıp boşluğuna aktarılması kalıbın ısıtılması ve basınçın uygulanması ile gerçekleştirilir.

**Dalma pistonlu transfer kalıplarına iki şekilde ham madde doldurulur.**

- Isıtılan ön biçimlendirilmiş ham madde hedef alanına konur. Kalıp kapandığı zaman, ön biçimlendirilmiş ham madde ileme silindirinin içinde yıфтılmış olur. Sonra kalıp tam kapanır ve dalıcı aşağıya doğru kendi kursunu tamamlamak üzere hareket eder.
- Kalıp kapatılır ve ön biçimlendirilmiş ham madde kapalı kalıbın ileme silindirinin üstündeki açık kısmından doldurulur. Sonra dalıcı hareket eder ve ham maddeyi kalba doğru iter.
1.1.3. Transfer Kalıplarının Özellikleri

Termoplastiklerin kalıplama yöntemiyle termoset plastiklerin kalıplanma yöntemleri birbirinden farklıdır. Termoplastikler enjeksiyon, şişirme, ekstrüzyon vb. gibi kalıplarda kullanılırken, termoset plastikler genel olarak sıkıştırma ve transfer kalıplarında kullanılmaktadır.

Transfer kalıplamanın bir diğer termoset plastik kalıplama yöntemi olan sıkıştırma kalıplarına göre birtakım üstünlükleri vardır. Transfer kalıplarında sıkıştırma kalıplarına nazaran parça basımı daha kısa sürer. Daha hassas parçalar kalıplanabilir. İstilmiş olan malzeme yolluk ve dağıtıcılar vasıtasıyla kalıp çukurunu daha iyi sarar.
Bir transfer kalıbı yapımına başlanmadan önce yolluk, dağıtıcı ve giriş kanalının çok iyi etüt edilmesi gerekmektedir. Böylece kalıptan arzu edilen verim elde edilecektir.

Kalıplanacak malzemenin ön ısıtmaya tabi tutulması nedeniyle yolluklar ve dağıtıcidan rahat geçip kalıp boşluğunu tam doldurması transfer kalıplarını sıkıştırma kalıplarından ayyaran en önemli özellik ve üstünlüğüdür. Bu üstünlükten dolayı bir kalıpta birden fazla ürün elde edilmiş verimli mümkündür, bu durum üretim hızını da artırır.

Termoset plastiklerin ısıya, elektriğe ve darbeye dayanıklı olma ve tabii tutulması ve termoset plastik ve transfer kalıpları üzerinde yapılacak bir takım iyileştirmelerle kullanım alanı bakımından plastikin metallerin yerine geçmesi sağlanabilir.

1.2. Transfer Kalıplarında İşlenen Plastikler

Plastik transfer kalıplarında genel olarak termoset plastikler işlenmektedir. Bunlardan bazıları aşağıda açıklanmıştır.
1.2.1. Termoset Plastikler

Bu termoset malzemelere çapraz bağlı plastikler de denir. Bu malzemelere çapraz bağlı denmesinin sebebi, kimyasal reaksiyonlar neticesi makro moleküler arasında kimyasal bağ meydana gelmesidir.


Plastik materyaller arasında termoset materyaller pek çok avantaj sağlamaktadır. Bunlar:
- Yüksek termal karalılık
- Yüksek boyutsal kararlılık, yük altında deformasyon ve akmaya karşı direnç
- Yüksek rıjilik ve sertlik
- Mükemmel elektriksel yalıtım

1.2.1.1. Fenolikler (Bakalitler)

Fenol ve formaldehitin kimyasal bileşimidir. Fenol formaldehit reçinesi özellikle rıjilik, sıcağa karşı direnç, iyi yalıtma özellikleri ve ucuzluğu dolayısıyla başta elektrik malzemeleri olmak üzere birçok yerde uzun zamandır kullanılan, termoset özellikte önemli bir üründür.

Fenolik plastikler kullanım amacı ve özelliklerine göre basit olarak altı grupta hazırlanır.
- Genel amaçlı, odun unu dolgulu
- Darbe dayanımlı, selülozik, cam lifi veya mineral dolgulu
- Akıtma–sizdurmaz
- Isıya dayanıklı
- Özel amaçlı


Darbe dayanıklı tipler, kendine bu özelliği verecek selülozik, mineral veya cam elyafı dolu ihtiva eder.

Sızdırmaz tip, çok parlak, döner kalıplama veya basınç kalıplama süreçlerine uygun bir malzemedir. Hassas yerlerde kullanılır.


Özel amaçlı reçinelerinin kimyasal direnci arttırılmış olup, bunun dışında birçok iyi özelliklere sahiptir.

Fenolik reçineler her ne kadar basınç (şıkıştırma) kalıplamaya elverişli bir grup ise de verimi artırmak amacıyla özel düzenekli birçok cihazda kullanılmaktadır.

Yaprak hâlinde ince levha yapımında, dökümcülükte, zımpara taşı yapımında, hava gazı ve petrol yağları taşıyan boruların yapımında, çamaşır makinesi pervanesi, televizyon çerçevesi, ütü ve mutfak eşyanın yapımında, elektrik şalter kutusu, duy, priz ve elektrik bağlantılı elemanlarının yapımında kullanılır.

1.2.1.2. Aminolar (UREA – MELAMİN)

Amino (grup) reçineleri formaldehit ile amino (NH₂) grubu ihtiva eden eden çeşitli bileşiklerin kontrollü tepkimeleri sonucu elde edilen termoset ürünlerdir. Urea (üre) – formaldehit ve melamin – formaldehit reçineleri bu sınıfın belli başlı örnekleridir. Bunlar sıvı, katı, toz ve granül hâlde piyasada bulunur.

Amino reçinelerinden yapılan parçalar sert, dayanıklı ve elektrik yalıtma özellikleri çok iyidir. Birçoğumuz bulunan fenolikerden üstündür.


Aşınmaya karşı yüksek direnç gösteren ve yüzey kalitesi çok iyi olan bu tür plastikler; üre formaldehit reçinesi kalıp tozu olarak, bazı elektrik malzemeleri, kozmetik ambalaj kapları, düzgün ve parlak yüzeyli çeşitli mutfak eşyaların yapımında banyo ve mutfakların kaplanmasında kullanılır. Yapıtırıcı sıvı tip reçinelerde kontrplak üretiminde ve yapıştırılmasında kullanılır.
Melamin formaldehit reçineleri de kaliteli mutfak malzemeleri, fiş, priz gibi elektrik malzemeleri, işitme cihaz kutuları, tıraş makinesi gövdeleri yapımında kullanılır. Sıvı reçine ise formika ve benzeri katmanlı malzemelerin yapımı ile tekstil endüstrisinde elyaf pekiştirmesi, su geçirmezlik ve yanmazlığı artıran bir unsur olarak kullanılır. Sıvı reçine değişik amaçlarda yapiştırıcı olarak da kullanılır.

1.2.1.3. Silikonlar

Silikonlar, yüksek sıcaklıklardaki mükemmel dayanıklılıkları, UV ışınlarına karşı dirençli olmaları, yüzey özellikleri, iyi dielektrik nitelikleri nedeniyle hızla organik kaynaklı polimerlerin yerini almaktadır.


Vücut ile mükemmel uyumları sayesinde medikal alanda kullanılır. Kolay şekillendirilebilir, fiziksel özelliklerinin kolayca değiştirilebilmesi, kalıpların şekle sokulabilmesi ve otomobil sanayinde kullanımlarına olanak sağlar. Yüksek ve düşük sıcaklık performansları çok iyi olduğundan firınlarda conta olarak kullanılır.

Duvar kaplamalarında ve boya sanayisinde yüzeyleri nemden koruma amaçlı kullanılır. Elektronik malzemelerin nem, toz ve kimyasallardan korunması amaçlı ve yapaştırıcı olarak kullanılır.

Silikon kauçuklar vana koruyucusu, yağlı aksamlarda conta, direksiyon dişli kutusunda “O”ring, dalgıç başlığı, paten tekerleği imalinde veya boru hortum, kablo, tel olarak, profil veya köpük şeklinde kullanılır.

1.2.1.4. Polyester

Sertlik, hava şartlarında etkilenmemesi, çeşitli kimyasallara dayanım gibi daha birçok iyi özelliklerle polyesterler vazgeçilmez, önemli polimerlerdir.

Polyesterin özgül ağırlığı 1,3 g / cm^3'dür. Dolgu maddesiyle güçlendirildiğinde özgül ağırlığı 1,5 g / cm^3 ile 2,28 g / cm^3 arasında değişir. Cam elyafıyla güçlendirilen polyesterin çekme dayanımı oldukça yüksekktir. Bu plastiklerin çekme katsayısı çok fazla değildi.

Polyesterlerin, özellikle cam fiber dolgulu olanları yüksek sıcaklık direnci, boyutsal kararlılıklar ve düşük nem tutma özellikleriyle elektrik – elektronik parçaların üretiminde yaygın olarak kullanılmaktadır. PBT elektrik, elektronik, haberleşme ve otomobil endüstrisinde kullanılır. Örneğin, elektrik motor aksamları, cihaz şasileri, kondansör kapları, LED görüntüleri, elektronik cihazlar için havalandırma pervaneleri, bağlanı serileri, bobinler, telefon dağıtım kutuları bu polyesterlerden üretilir.


Işık üretimi sürekli bir ısı birikimini beraberinde getirir. Özellikle cam fiber katkılı polyester yüksek sıcaklık direnci ve kaygan özelliklerini sahip olduklarından ışıklandırma alanında uygulama bulmaktadır. Lamba prizleri, duylar, adaptörler, el feneri kapları ve projektör ışıkları fiber katkılı PBT ve PET'den üretilir.

Polyesterler, bilgisayar teknolojisinde kullanılan klavyeler, telefonlar, faks makineleri ve kelime İşleme cihazları gibi yüksek hassasiyet ve kaygan özelliklerine sahip olması istenen uygulamalarda kullanılır.

1.2.1.5. Epoksiler


Epoksi reçinelerin özgül ağırlığı 1.11 g / cm³ ile 1.80 g / cm³ arasında değişmiştir. Epoksi reçinelerin elektrik, isi ve kimyasal dirençlerile mekanik özellikleri çok iyidir. Sertlik yanında esneklik ve darbe dayanımı, yüksek yapışma gücü ve korozyona karşı metalleri koruma epoksi reçinelerin belirgin özelliklerindendir. Cam elyaflı dolgu maddesiyle güçlendirildiğinde çekme dayanımı 4.6 kg / mm² ye kadar ulaşır.


1.2.1.6. Poliüretanlar

Özgül ağırlığı 1.15 g / cm³ ile 1.2 g / cm³ arasında değişmektedir. İyi bir yalıtkandır. Sıcaklığa karşı dayanıklı, genellikle –40 ºC ile 120 ºC ve bazı özel formüllerle –60 ºC ile 205 ºC arasında sıcaklıklarda etkilenmez. Kimyasal maddelere karşı direnci yüksektir.


1.3. Kalıp Malzemeleri

1.3.1. Çelik Seçiminin Kalıp Tasarımındaki Yeri

1.3.2. Çelik Seçiminde Temel Etmenler

Bir parçanın tasarımlarına ait çelik seçiminde en önemli etmenler de saptanmış olmalıdır. Çeliklerin pek çok türü ve farklı özellikleri vardır. Bunun her tasarımda türünün birer birer siraaldi gözden geçirilmesi ne olması ne de gerekli olabilir. Yapılması gereken şudur; belli bir parçanın çelik seçiminde o parçanın göreceği işler ve nitelikler dikkate alınarak en önemli özellikler sıralanmalıdır. Özelliklerin yanında bulunabilirlik ve maliyet etkenleri de değerlendirilmelidir. Temel etkenler üç bölümde toplanabilir.

- Çelik özellikleri
- Bulunabilirlik ve sağlanabilirlik
- Maliyet ve ekonomi

1.3.3. Plastik Kalıplar İçin Malzeme Seçimi

- Plastik kalıplar için malzeme seçimine etki eden başlıca faktörler:
  - Kalıplanacak plastik tipi
  - Kalıplama yöntemi
  - Kalıplanacak parçanın tasarımını
  - Maliyet

- Kalıp malzemesi ile ilgili faktörler:
  - Mekanik dayanımı
  - Aşınma dayanımı
  - Korozyona direnç
  - Termal iletkenlik
  - Tokluk veya güçlülük

- Kalıp imalatı ile ilgili faktörler:
  - Sertleşebilme kabiliyeti
  - Isıl işlemde boyutsal denge
  - İşlenebilme
  - Kaynak yapılabilme
  - Parlatılabilir mekabiliyeti.
  - Temin edebilme

1.3.4. Kalıp Malzemesi Tipleri

Çoğunlukla plastikler, aşağıda belirtilen dört malzeme grubunun birinden üretilir.

- Hazır sertleştirilmiş çelikler
- Yüzey sertleştirilmiş çelikler
- Tüm kesit boyunca sertleştirilen çelikler
- Berilyum bronzları
1.3.5. Malzeme Temini


1.4. Tornalama

Kalıp elemanlarının üretiminde sıkça kullanılan tezgahlardan biri torna tezgâhıdır.

1.4.1. Tornanın Tanımı

Kendi eksenleri etrafında dönen, sıkı ve emniyetli bir şekilde bağılanmış iş parçaları üzerinden, uygun açıda birendon kesiciler yardımları taşan ve kaldıran tezgâhlara, torna tezgâhı denir.

1.4.2. Torna Tezgâhı Çeşitleri

- Universal torna tezgâhları
- Özel işlem torna tezgâhları
  - Revolver torna tezgâhı
  - Düşey torna tezgâhı
  - Otomat torna tezgâhı
  - Hava torna tezgâhı
  - Kopya torna tezgâhı
  - Bilgisayarlı nümerik kontrollü (CNC) torna tezgâhı

1.4.3. Universal Torna Tezgâhı ve Kısımları

![Resim 1.1: Universal torna tezgâhı kısımları](image_url)
Gövde: Tornanın dökümünden yapılan ve diğer kısımları üzerinde taşıyan temel organıdır.

Devir hız kutusu: İçinde fener milini ve buna hareket veren dişlileri bulundurur. Torna tezgâhının devir sayısı bu dişlilerle değiştirilir.

İlerleme hız kutusu: Tornanın talaş miline ve ana miline çeşitli dönme hızları vermeye yarar. İçinde hızın belirlenmesini sağlayan dişliler vardır.


Tabla: Kalemin fener mili eksenine dik olarak ilerlemesini sağlar. Otomatik ilerlemesi için arabanın dişlilerinden yararlanılır.

Suport: Açı bölüntülü tablasından yararlanıp istenilen açıyla döndürülen diş yüksekliklerin tornalanmasını sağlar. Ayrıca elle kısa ilerlemelerde kullanılır.

Kalemlık: Kalemin doğrudan veya katerle tornaya bağlı olduğunuzdur.

Gezer punta: Tornanın kayıtları üzerine monte edilmiş ve ileri geri hareket etmektedir. Üzerindeki punta ile iş parçalarını desteklemekte mandrenle de matkabin bağlanmasını sağlamaktadır.

Torna yatakları: Torna dolabında bulunan ve uzun, ağır iş parçalarının desteklenmesini sağlayan elemandır.

1.4.4. Torna Tezgâhlarında Güvenli Çalışma Kuralları

- Çalışma ortamına uygun iş önlüğü giyiniz (Dar veya bol olmayan, kolları lastıklı).
- Tezgâh ikiye tanınız ve öğreniniz.
- Tezgâhın bilmediğiniz kısımlarını kurcalayınız.
- Tezgâh çalışırken yanından ayrılmayınız ve başkaları ile tezgâh başında şakalaşmayınız.
- Dikkatinizi işe veriniz.
- Tezgâhı çalışırken aydınlatmanın yeterli olmasına dikkat ediniz.
- Ayna anahtarını kesinlikle ayna üzerinden unutmayınız.
- Uzun malzemeleri işlerken, tezgâh dışına çıkan yerlerine dikkat ediniz.
- Talaşlardan korunmak için tezgâh koruyucu kapağını kullanınız.
- Çıkan talaşları elinizle almayın. Talaş alma kancası kullanınız.
- Tezgâh çalışırken ege yapacaksanız, dikkatli bir şekilde egeyi tutunuz.
- Tezgâhı durdurmadan kesinlikle ölçmeye yapmayınız.
- Ayna durmadan iş parçasına ve dönen aksana dokunmayınız.
- Torna karşısında dengeli bir şekilde durunuz.

1.4.5. Torna Kesicileri

1.4.5.1. Torna Kesicilerinin Sınıflandırılmaları

Kendisine özgü açıları ve kesici kenarı olan talaş kaldırma işlemlerini gerçekleştiren makine gereçlerine kesici takım denir. Çeşitleri şunlardır:
Gereçlerine göre:

- Takım çeliği kalemler
- Seri çelik kalemler (HSS)
- Sert maden uçlar
- Kalite ve dayanımları yüksektir. Sert malzemelerin işlenmesinde kullanılır. Piyasada en çok kullanılan kalemlerdir. CNC tezgâhlarda bu kalemler kullanılır.

Biçimlerine göre

- Sağ ve sol kaba talaş kalemleri
- Sağ ve sol yan kalemleri
- Alın tornalama kalemleri
- Kanal kalemleri
- Vida kalemleri
- Profil kalemleri
- Delik kalemleri
- Keski kalemleri

1.4.5.2. Kesicinin Tornalama Şekline Uygun Seçilmesi

1.4.5.3. Torna Kesicilerinin Bilenmesi

Torna kesicileri kullanıldıkça sürtünme, ısınma ve malzeme sertliğinden dolayı körlenir ve bilenmeleri gerekir. Bileme elde veya aparatla olur. Torna kesicileri işlenecek malzemenin sertliğine ve yüzey kalitesine göre belirli açılarda bilenir.

Şekil 1.10: Torna kalemi açıları

Torna kesicilerini elde bilemek için, kesicinin cinsine göre taş seçimi yapılmalıdır. Pratik olarak sert kesicileri bilerken küçük taneli, sık dokulu, yumuşak taş, yumuşak kesicileri bilerken büyük taneli, sert taş seçilmelidir.

Şekil 1.11: Ayaklı zımpara taş tezgâhi

1.4.6. Katerler

Kalemliğe doğrudan bağlanamayan küçük kesicilerin bağlanmasında kullanılan prizmatik veya silindirik şekildeki takımlardır.

1.4.6.1. Kater Çeşitleri

- Düz saplı katerler
- Sert maden uçlu katerler
- Keski katerleri
- Delik katerleri
- Vida kelemi katerleri
- Özel katerler
Kalem katere, katerin kalemlige bağlanması

Kalem kesme yaparken esnememesi için, katere kısa ve boşluksuz bağlanmalıdır. Kater ise kalemlige sıkı ve emniyetli bir şekilde, kesici ucu gezer punta yüksekliğinde bağlanmalıdır.

Resim 1.4: Kalemin kalemlige bağlanması

1.4.7. İş Parçalarının Torna Tezgâhına Bağlanması

İş parçalarını torna tezgâhına bağlamak için çeşitli bağlama araçları vardır.

1.4.7.1. Bağlama Araçları

- Üç ve dört ayaklı universal ayna

Üç ayaklı universal aynalar silindirik, üçgen, altıgen ve benzeri parçaların üç noktadan bağlanması için kullanılır.

Şekil 1.12: Üç ayaklı universal ayna

Resim 1.5: Dört ayaklı universal ayna

Dört ayaklı universal aynalarda dört noktadan merkezlenmesi gereken, genellikle kare kesitli iş parçaları bağlanır. Universal aynalarda bütün ayaklar aynı anda hareket eder.

- Mengeneli ayna

Yuvarlak kare ve düzgün olmayan dökülmüş ya da dövülmüş parçaları bağlamaya yarar. Her bir ayak birbirinden bağımsız olarak hareket eder. Bu bağlama işlemi istenen hassasiyette yapılabilir.
Delikli düz ayna

Resim 1.6: Delikli düz ayna

Resim 1.7: Fırdındü aynası

Fırdındü aynası
İki punta arasında tornalama yapabilmek için iş parçası üzerine takılan fırdındünden esinlenerek bu isim verilmiştir.

Mıknatıslı ayna
Bu aynalar mıknatslanma özelliği ile alın yüzeyine iş parçalarının bağlanmasında kullanılır.

Resim 1.8: Mıknatıslı ayna ve pens takımı

Pensler
Tam yuvarlak ve düzgün işlenmiş küçük iş parçalarını tornaya bağlamaya yarayan kovanlara pens denir.

İş kalıpları
Seri üretimde işin özelliğine göre oluşturulan aparatlara ve bağlama düzeneklerine iş kalıpları denir.

1.4.7.2. Parçaları Aynalara Emniyetli ve Salgısız Bir Şekilde Bağlama İşlem Basamakları

- İş parçasına uygun ayna seçiniz.
- Ayaklar iş parçasını eşit noktadan sığacağı için fazla zorlamayınız.
- Uzun bağlanması gereken iş parçalarını punta ile destekleyiniz.
- İş parçası üzerinde bağlanan fırdındünün emniyetli bir şekilde sıkıldığı kontrol ediniz.
- Küçük çaplı iş parçalarını pens ile bağlayıniz.
Delikli aynaya iş kalıplarını dikkatli bir şekilde bağlayınız.
Aynanın ve ayakların temiz ve yağsız olması gerekmektedir.

1.4.8. Kesme Sıvısı

Torna tezgâhlarında kalem ile iş parçası arasında kesme işlemi gerçekleştirdiğinde sürünmeden dolayı meydana gelen ısıyı azaltmak, iş parçasının yüzey kalitesini artırmak, kaliteli ve rahat kesme sağlamak amacıyla kesme sıvıları kullanılır.

Resim 1.9: Kesme sıvısının torna tezgâhında kullanılması

1.4.9. Tornada Ölçme

İşleme esnasında, orta hassasiyetteki işlerde kumpaslar, hassas işlerde ise mikrometreler kullanılır (Resim 1.10 Kumpas ve mikrometrelerin tornada kullanımı).

Resim 1.10: Torna tezgâhında kumpas ve mikrometre ile dış çap ölçümü

Torna tezgâhında kumpas ve mikrometrelerin kullanımlarında ölçme değerlerinin tam okunabilmesi için; kumpas ve mikrometre fener mili eksenine dik, boyuna ölçme işleminde iş eksenine paralel tutularak okunmalıdır. Tezgâh çalisırken kesinlikle ölçme işlemi yapılmamalıdır.
1.4.10. Alın Tornalama

1.4.10.1. Kesme Hızına Göre Devir Sayısı ve İlerleme Ayarlama

Alın tornalama işleminde kesme hızı bulunurken belirli değerlerin bilinmesi gerekir. Bu değerler direk tablolardan bulunabildiği gibi, kesme hızı formülünden hesaplanarak da bulunabilir. Kesme hızı aşağıdaki formül ile hesaplanır:

\[ V = \frac{\pi \cdot D \cdot N}{1000} \]

- \( V \) = Kesme hızı (m/dk)
- \( D \) = İşlenecek parçanın çapı (mm)
- \( N \) = Torna Tezgâhının devir sayısı (dev/dk)
- \( \pi \) = Sabit sayı (3.14)
- \( 1000 \) = sabit sayı

NOT: Alın tornalamada kalemin aldığı yoldan dolayı çap her defasında değişir. Çapın devamlı değişmesi devir sayısının da sürekli değişmesini gerektirir. Bu universal tornalarda mümkün olmadığı için ortalama çap alınarak hesaplama yapılır. (D.ort=D/2)

Hesaplama işlemlerinde kesme hızı;
- Malzeme cinsine
- Torna kaleminin cinsine
- Kaba ve ince tornalama durumuna göre tablolardan bulunur.

Örnek: Çapı 60 mm olan malzemenin alın kısmını 100 dev/dk. ile işleyebilmek için kesme hızı ne olmalıdır?

Cevap:

\[ D = 60 \text{ mm} \]
\[ V = \frac{\pi \cdot \text{D.ort} \cdot N}{1000} \]
\[ N = 100 \text{ dev/dk} \]
\[ \text{D.ort} = D/2 = 30 \text{ mm} \]
\[ V = 3.14 \cdot 30 \cdot 100 / 1000 = 9.42 \text{ m/dk} \]

1.4.10.2. Alın Yüzeylerin Kaba ve İnce Tornalanmasını Yapma

- **Kaba tornalama**
  Kaba tornalama işlemi genellikle fazla talaş verilerek dışarıdan merkeze doğru işlenerek yapılır. Kaba tornalama işlemi için kaba talaş kalemleri kullanılır. İlerleme elle veya otomatik olarak verilerek işlem tamamlanır.

- **İnce tornalama**
  İnce tornalama işlemi kaba tornalama işleminden sonra olduğu için az talaş verilerek yapılmalıdır. İnce tornalama için ince yan kalem seçilerek kalem tornanın kalemlüğine punta yükseklüğinde bağlanmalıdır. Kaleme işe başlamadan önce, parçanın alın kısmına göre 7°-8° açı verilmelidir. Kaleme merkezden dışarıya doğru talaş kaldırılarak ince tornalama işlemi bitirilir.
1.4.11. Punta Deliği Açma


Şekil 1.13: İnce tornalama işlemi

1. Torna tezgâhına punta deliği açılacak parça kısa bağlanır ve alın tornalama yapılır.
2. Uygun tezgâh devri seçilir ve gezer puntaya mandrenle punta matkabı bağlanır.
4. Punta deliği açma dikkat gerektiren bir iştir. Dikkat ve özen gösterilmezse punta matkabını kırılır ve işin içinde sıkışır.
1.4.12. Tornada Delme


1.4.13. Silindirik Tornalama

İş parçasından punta eksenine paralel boyuna talaş kaldırılarak silindirik parçaların elde edilmesi için yapılan tornalamaya silindirik tornalama denir.

1.4.13.1. Silindirik Dış Yüzey Tornalama İşlem Basamakları

İş parçası torna tezgâhına uygun şekilde bağlandiktan sonra malzemenin cinsine göre kesme hızı seçilir. Seçilen kesme hızına göre de devir sayısı hesaplanarak torna tezgâhı ayarlanır. Aşağıdaki işlem basamaklarına göre silindirik tornalama işlemi gerçekleştirilir.
İşlem basamakları:

- İş torna tezgâhına ayna punta arasında veya firdöndü yardımla iki punta arasına bağlanır.
- Kalem ucu punta yüksekliğinde ayarlanıp kalemlere temas ettirilir.
- Kesme hızı devir sayısı ve ilerleme hesaplanarak tezgâh ayarlanır.
- Kalem iş parçasının başlangıç noktasına getirilir.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem ucu iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem ucu iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem ucu iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasının başlangıç noktasına getirilir.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.
- Kalem iş parçasına temas ettirilir. Bu konumda mikrometrik bilezik sıfırlanır.

Resim 1.13: Torna tezgâhında silindirik dış yüzey tornalama

1.4.14. Kademeli Tornalama

Dairesel hareket yapan bir iş parçasının yüzeyleri üzerinden talaş kaldırarak, farklı çapların oluşturulması işlemine kademeli tornalama denir.

1.4.14.1. Uygun Sağ ve Sol Yan Kalem Seçmek ve Hazırlamak

İş parçalarının kademelerinin oluşabilmesi için merkezden başlayan sağ alın yüzeylerde, sağ yan kalem, sol taraftaki kademeleri işleyebilmek için ise sol yan kalem kullanılır. Kademeli tornalama işleme başladıktan önce bu kalemeler seçilmeli, daha önce anlatılan kesici bıçağın konusuna göre tezgâha bağlanmalıdır.

1.4.14.2. Kademeli Tornalamada İşlem Basamakları

- Tezgâh devri işlem çeşitine göre ayarlanır.
- Parça işleme metodu dikkate alınarak tornaya bağlanır.
- Tornalanacak kademeye uygun kesici takım seçilir ve kalemlere bağlanır.
- İşin alın referans alınarak, alından kademede boyu kadar açıklık ölçülerek işlenir.
Araba kademe boyu kadar ilerletilerek kalemle, parça dönerken çok az bir talaş verilerek,
parçanın üzeri kademe boyu kadar çizilir. Tezgâh durdurulur ölçü kontrolü yapılır.
Kaba olarak parça kademe çizgisine kadar talaş verilerek işlenir.
Yan kalemle kademe köşesi işlenerek 1. kademe oluşturulur.
Sonraki kademe için uygun kalem bağlanarak kademeler işlenir.
Ölçü kontrolü yapılarak işlem tamamlanır.

Şekil 1.15: Sağ ve sol yan kalemın kademeli tornalamadaki durumu

1.4.14.3. Dik Yan Yüzeyleri Tornalamak

Kademelerin dip kısımlarını oluşturabilmek için uygun kalem seçilerek dik yan yüzeyleri alın tornalanır gibi işlenir. Kademe keskin köşeli olacak ise yan kalem kullanılır.

Resim 1.14: Sol dik yan yüzeyleri tornalamak  Resim 1.15: Sağ dik yan yüzeyleri tornalamak

1.4.14.4. Kademelere Pah Kırmak

Torna edilerek elde edilen silindirik yüzeye alın yüzeyin birleştigi yerde keskin kenarlar veya köşeler oluşur. Pah kırma işlemi kesiciyi iş parçasına göre 30°-45°- 60° çevirip talaş kaldırarak veya ege zımpara ve benzeri takımlarla yapılır.
3. Plastik Transfer Kalıplarının Yapım Resimlerinin Çizimi

Plastik transfer kalıplarının üretimi üç aşamada gerçekleştirilir. Bunlar;
- Ürün tasarım ve akış analizlerinin yapılması ile kalıp tasarımının yapılması aşaması,
- Tasarlanan kalıp elemanlarının yapım ve montaj resimlerinin çizilmesi aşaması,
- Yapılm resimlerine uygun olarak kalıp elemanlarının imal edilmesi ve montajının yapıp denemesi aşamasıdır.

Şekil 1.17: Transfer kalıbı demonte resmi

Tasarımı yapılmış kalıbın ilk önce kroki resminin çizilmesinde önemli faydalar vardır. Yapım resmine başlamadan önce kroki resim üzerinde kalıpla ilgili tüm problemlerin çözümleri sonuçlandırılır ve değerlendirmeler yapılır. Daha sonra kalıp elemanlarının yapım resimleri teknik resim kurallarına uygun olarak, aşağıda anlatılan işlem sırasına uygun olarak yapılır.
32

Şekil 1.18: Plastik transfer kalıbı komple resmi
1.5.1. Transfer Kalıpları Yapım Resimlerinin Çiziminde Dikkate Alınacak Hususlar

Makinelere ve kalıplara, birçok elemanın birleştirilmesiyle oluşturulur. Bu parçaların malzemesi, işlenişini, yüzey kalitesini, kullanım amacını ve şekli çoğunlukla birebirinden ayırt edilir. Bir kalıp veya makinin parçalarının üretimi için yapım resimlerinin çizilmesi gerekir. Çizilen bu resimde o elemanın üretimi için bütün bilgiler bulunmaktadır.

**Yapım resmi:** Bir iş parçasının üretilmesi için gerekli bütün bilgi ve işaretleri içeren teknik resimdir.

Yapım resmi çizimi transfer kalıp üretiminin önemli aşamalarından biridir. Kalıp parçalarının üretimi yapacak kişiler yapım resimlerini okuyarak üretimi gerçekleştirebilirler. İyi çalışan bir kalıp imalatı eksiksiz, anlaşılır, herhangi bir tereddüde meydan vermeyen yapı resimlerinin çizimi ile mümkündür.


### 1.5.1.1. Yapım Resminde Bulunması Gereken Unsurlar

Kalıp yapımında gerekli olan ve yapım resminde bulunması gereklen unsurlar şunlardır:

**Yeterli sayıda görünüş:** Çizilen yapım resmi iş parçasını en iyi anlatacak şekilde çizilmelidir. Bazı iş parçaları, yapım resimlerinde tek görünüşle ifade edilebilirken, bazı iş parçaları iki ve daha fazla görünüşle ancak anlaşılabilir şekilde çizilebilmektedir. İş parçasının en az kaç görünüşte anlaşılır bir şekilde çizilmesi gerektiğini belirlemek, önemlidir.

**Ölçülendirme:** Yapı resimlerinde mutlaka bulunması gereklen bir unsurdur. İş parçasının imalatını yapacak kişinin elinde mutlaka o işe ait ölçüleri bulunmaktadır. Yapı resimlerini ölçülendirilirken eksik ölçü bulunmamalı, hesaplama gerektirmemeli ve resmin karışık görünmesine neden olmamalıdır.

- **Gerekli durumlarda kesit alınması:** İş parçası kaç görünüşle çizilerse çizilenin bazen delik, kanal, boşluk gibi kısımlar karışık görünebilir ve ölçülendirmeleri zor olabilir. İş parçalarının bu gibi yerlerden kesildiği varsayarak kesit resimleri çizilir. Böylece daha anlaşılır ve kolay ölçülen bir resim çizmek mümkündür.
- **Toleranslar:** İş parçalarının tam ölçüsünde, sıfır hataya üretimyeceği düşünüüleşmiş iş parçası mümessale edilen hata payı içinde üretilmelidir. Gerekli toleranslar resim üzerinde açıkça belirtilmelidir.
- **Yüzey kalitesi sembolleri:** İş parçalarının yüzeyleri çeşitli metotlarla ve pürüzlülük değerleriyle işlenmektedir. Yapım resimleri bu işleme metotlarını ve pürüzlülük değerlerini içermelidir.

- **İş parçası ile ilgili açıklamalar:** İş parçasının işlenmesinden önce, işlenmesi sırasında veya işlendikten sonra yapılması gereken bazı açıklamalar gerekebilir. Bu açıklamaların yapım resminin uygun bir yerinde veya antedinde belirtilmesi gereklidir.

**Antet:** Antet yapım resimlerin kimlik kartları gibidir. Yapım resimlerine ait montaj numarası, işin gereci, çizen, o resmin hangi komple resme ait olduğu gibi bilgileri içermektedir. Antetlerin teknik resim kurallarına uygun olarak oluşturulması önemlidir.

### 1.5.1.2. Yapım Resminin Çizilmesinde İşlem Sırası

  - Çizim tasarımı yapılır (Örneğin görünüş sayısının tespiti, hangi parçaların tek olarak çizileceği, hangi parçaların birlikte aynı kağıda çizileceği, ölçeklerin nereye konulacağı, ölçümlerin ne olacağını vs.).
  - Simetrik parçalarda iki temel eksen öncelikle çizilir. Simetrik olmayan parçalarda öncelikle bir temel eksenle referans yüzeyi çizilir. Ana kenar ve eksenlerin çizimi yapılır.
  - Görünüşlerin çizimi yapılır.
  - Ölçülendirme yapılır.
  - Yüzey işaretleri ve toleranslar oluşturulur.
  - Varsa diğer bilgiler yazılır.
  - Antet oluşturulur.


Aşağıdaki resimlerde bir transfer kalıbının elemanlarından birinin yapım resmi çizimi bilgileriyle birlikte, işlem sırasıyla anlatılmaktadır.
İŞLEM: Ana eksenlerin çizimi: Çizim tasarımlı yapılarak görünüşler, açıklamalar, ölçümlendirme ve yüzey işaretleri dikkate alınarak resmin kağın neresine yerleştirileceği belirlenir. Bu alana simetrik parçalarda iki ana eksen simetrik olmayan parçalarda bir eksen bir ana kenar çizilir (Şekil 1.20).

İŞLEM: Ana ölçülerin (kenarların) çizilmesi: Resmin ana kenarları, ana eksenler referans alınarak çizilir (Şekil 1.21).

İŞLEM: Diğer eksenlerin çizilmesi: Resimde bulunan diğer eksenler çizilir (Şekil 1.22).

İŞLEM: Dairelerin ve varsa yayların çizimi: Doğrusal çizgiler dışındaki daire, elips, radıus ve yay gibi kısımlar çizilir (Şekil 1.23).

İŞLEM: Ayrıntılı kısımların çizilmesi: Resimdeki detay kısımlar diğer ana çizgiler çizilmeden önce çizilerek tamamlanır (Şekil 1.24).

İŞLEM: Yardımcı çizgilerin çizilmesi ve taramaların oluşturulması: Diğer yatay ve dikey çizgilerin ve tarama çizgilerinin gereğine göre çizilmesi ve resmin tamamlanması aşamasıdır (Şekil 1.25).
Şekil 1.20: Ana eksenlerin çizimi

Şekil 1.21: Ana çizgilerin çizimi

Şekil 1.22: Diğer eksenlerin çizilmesi

Şekil 1.23: Dairelerin yaylarının çizimi
İŞLEM: Ölçülendirme, yüzey işaretleri, yüzey kaliteleri, boyut, şekil ve konum tolerans işaretlerinin çizilmesi, varsa diğer bilgilerin yazılmasıdır (Şekil 1.26).

İŞLEM: Yazı alanının ve tolerans antedinin çizili doldurulmasıdır (Şekil 1.27).
Şekil 1.26: Yazı alanının ve tolerans antedinin çizimi
Şekil 1.27: Yazı alanının ve tolerans antedinin çizilib doldurulması
Bu şekilde kalıbın diğer parçalarının (8 numaralı dalıcı plakası veya öğretmeninizin belirleyeceği bir kalıp elemanı hariç, bu plaka daha sonra modül değerlendirme faaliyetinde çizilecektir.) yapım resimleri çizilerek, yapım resmi çizimi tamamlanır.
Şekil 1.29: Dişi kalıp
Şekil 1.30: Dişi kalıp destek plakası
Şekil 1.31: Takoz
Şekil 1.32: İtici plakası
Şekil 1.33: İtici destek plakası
Şekil 1.34: Alt bağlama plakası
Şekil 1.35: Dalıç zimba ve civata
Şekil 1.36: Kolon ve burç
Şekil 1.37: İtici ve kılavuz pim
Şekil 1.38: İtici ve kılavuz pim
UYGULAMA FAALİYETİ

Bir sıkıştırma kalıbı komple resmi (Şekil 1.37) ve kalıp elemanları resimlerinden (Şekil 1.38) yararlanarak, sıkıştırma kalıp elemanlarının yapım resimlerini çiziniz (8 numaralı dalıç plakası hariç).

Şekil 1.39: Transfer kalıbı demonte resmi
Şekil 1.40: Transfer kalıp elemanları
### İşlem Basamakları

- Çizim alanını hazırlayınız.
- Çalışma ortamınızı hazırlayınız.
- İş önlüğünü giyiniz.
- Çizilecek resimdeki maksimum yükseklik ve maksimum genişlik ölçülerini tespit ediniz.
- Tespit edilen değerlere göre çalışma sayfası limit ayarlarını yapınız.
- Kullanıdığınız çizim programının (Auto-cad, Solidworks) kullanıcı ayarlarını (katmanlar, çizgiler, renk, format, limit vb.) yapınız.
- Yaptığınız yapım resimlerini çiziniz.
- Çizime eksen çizgilerinden başlayınız.
- Bilgisayar destekli çizim modülünden faydalanınız.
- Teknik resim standartlarına ve kurallarına uygun olarak yapım resmi anlaşılabilir bir şekilde çizilmelidir.
- Yeter sayıyla görünüş, ölçülelimde, konum ve işleme toleranslarını, yüzey işleme işaretlerini koyunuz.
- Montaj resmini çiziniz.
- Montaj çizimine başlamadan önce çizeceğiniz görünüşleri ve alacağınız kesitleri belirleyiniz.
- Çizime eksen çizgilerinden başlayınız.
- Çizime başlarken en büyük ölçü değerlerine sahip parçanın çizimin başlamasını, çiziminizin daha kolay olmasını sağlar.
- Autocad komutlarını kullanarak montaj resmini bilgisayar ortamında çiziniz.
- Bileşenlerinin montaj sırasına dikkat ediniz.

### Öneriler

- Yapım resimlerini çiziniz.
- Çizime eksen çizgilerinden başlayınız.
- Bilgisayar destekli çizim modülünden faydalanınız.
- Teknik resim standartlarına ve kurallarına uygun olarak yapım resmi anlaşılabilir bir şekilde çizilmelidir.
- Yeter sayıyla görünüş, ölçülelimde, konum ve işleme toleranslarını, yüzey işleme işaretlerini koyunuz.
- Montaj resminin montaj sırasına dikkat ediniz.
- Bilgisayar destekli çizim modülünden, antet çizimi konusunu inceleyiniz.
- Antedi oluşturulacak çizimin montaj ya da detay resmi olusuna dikkat ediniz.
- Antet içi özelliklerin çizilen resme göre doğru değerlerde (geree, ölç, montaj sırası vb.) olmasına dikkat ediniz.
<table>
<thead>
<tr>
<th>Çıktı alınız.</th>
<th>Plotter veya printer yazma, çizme ayarlarınızı öncelikle kullandığınız çizim programında yapınız. Daha sonra kullandığınız programa uyumlu plotter ayarlarınızı yapınız.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Auto-cad programında Printer ve plotter yapılandırma ayarları CONFIG komutu ile yapılır veya “tools” çekme menüsünden “options” ve açılan pencereden “Plotting” sekmesini seçilir.</td>
</tr>
<tr>
<td></td>
<td>Plotter yazıcı kalem ve renk ayarlarını yapınız.</td>
</tr>
<tr>
<td></td>
<td>Montaj resminin ve yapım resimlerinin çıktısını alınız, kontrol ediniz.</td>
</tr>
</tbody>
</table>
**KONTROL LİSTESİ**

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri **Evet** ve **Hayır** kutucuklarına (X) işareti koyarak kontrol ediniz.

**DEĞERLENDİRME ÖLÇÜTLERİ**

<table>
<thead>
<tr>
<th>İşlem</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Çalışma ortamını çizim işlemi için hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. İş güvenliği ile ilgili tedbirleri aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Çizilecek resimdeki maksimum yükseklik ve genişlik ölçülerini tespit ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Tespit edilen değerler göre çalışma sayfası limit ayarlarını yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Çizime eksen çizgilerinden başladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Auto-cad komutlarını kullanarak yapılm resimlerini bilgisayar ortamında çizdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Bilgisayar Destekli Çizim modülünden faydalanarak, tolerans ve yüzey işleme işaretlerini oluşturduğunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Auto-cad komutlarını kullanarak montaj resmini bilgisayar ortamında çizdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Antet oluşturduğunuz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Çıktı oranlarına ve çizgi kalınlıklarına dikkat ederek çıktı aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Teknolojik kurallara uygun bir çalışma gerçekleştirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Süreyi iyi kullandınız mı? (8 saat)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**DEĞERLENDİRME**

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Plastik transfer kalıpları daha çok hangi malzemelerin kalıplanmasında kullanılmaktadır?
   A) Termoplastik
   B) Polietilen
   C) Termoset
   D) PVC

2. Transfer kalıplarında ürünün içine şekil veren eleman aşağıdakilerden hangisidir?
   A) İtici
   B) Kolon
   C) Dişi kalıp
   D) Erkek kalıp

3. Aşağıdakilerden hangisi transfer kalıp çeşitlerinden biridir?
   A) Dalma pistonlu
   B) Kalibreli
   C) Yarı taşmalı
   D) Taşmasız

4. Aşağıdakilerden hangisi transfer kalıbının üretiminde en çok özen gösterilmesi gereken elemandır?
   A) Bağlama plakası
   B) Dişi ve erkek kalıp
   C) İtici
   D) Destek plakası

5. Transfer kalıplarında yükleme odası ne işe yarar?
   A) Ürünün son şeklini aldığı kısımdır
   B) Ürünün kalıptan çıkarıldığı kısımdır
   C) Kalıbın ısıtıldığı kısımdır
   D) Kalıplanacak malzemenin konulduğu kısımdır

6. Aşağıdakilerden hangisi bir termoset malzemedir?
   A) Polietilen
   B) Polyester
   C) PVC
   D) Polipropilen
7. Epoksiler için depolama ömrü genelde ne kadardır?
   A) 12 ay
   B) 18 ay
   C) 24 ay
   D) 36 ay

8. Aşağıdakilerden hangisi kalıp malzemesi seçiminde temel etmen değildir?
   A) Kalıp çizim aşamaları
   B) Çelik özellikleri
   C) Bulunabilirlik ve sağlanabilirlik
   D) Maliyet ve ekonomi

9. Kendi eksenli etrafında dönen, sıkı ve emniyetli bir şekilde bağlanmış iş parçalan üzerinden, uygun açıda bilenmiş kesiciler yardımıyla talash kaldırılan tezgâhlara ne denir?
   A) Freze tezgahi
   B) Torna tezgahi
   C) Matkap tezgahi
   D) Taşlama tezgahi

10. Torna tezgahında, açı bölüntülü tablasından yararlanıp açılı yüzeylerin tornalanmasını sağlayan kısımdan aşağıdaki deneyimden hangisidir?
    A) Kalemlik
    B) Suport
    C) Tabla
    D) Araba

11. Aşağıdakilerden hangisi gereçlerine göre torna kalem çeşididir?
    A) Vida Kalemleri
    B) Keski Kalemleri
    C) Seri Çelik Kalemler
    D) Delik Kalemler

12. Aşağıdakilerden hangisi, torna tezgahında iş bağlam araçlarından biri değildir?
    A) Kalemlik
    B) Firdondu aynası
    C) Pensler
    D) Miknatıslı ayna

13. Tasarım aşaması tamamlanmış kalıp için sıradaki işlem aşağıdaki deneyimden hangisidir?
    A) Kalıp elemanlarını üretmek
    B) Kalıp montajını yapmak
    C) Kalıp bakımını yapmak
    D) Kalıp elemanları yapım resimlerini çizmek
4. Bir iş parçasının üretilebilmesi için gerekli bütün bilgileri içeren teknik resim aşağıdakilerden hangisidir?
   A) Komple resim  
   B) Yapım resmi  
   C) Perspektif  
   D) Kesit alma

15. Aşağıdakilerden hangisi, yapım resminde bulunması gereken bir özellik değildir?
   A) Antet 
   B) Yüzey işaretleri 
   C) Montaj 
   D) Ölçülendirme

DEĞERLENDİRME

**ÖĞRENME FAALİYETİ–2**

**AMAÇ**

Transfer kalıplarının merkezeleme ve bağlantı konumlarını istenen hassasiyette oluşturabileceksiniz.

**ARAŞTIRMA**

- Çevrenizdeki plastik transfer kalıpları üretimi yapan işyerlerini ve ilgili internet adreslerini ziyaret ediniz.
- Plastik transfer kalıbı yapımında kullanılan takım tezgâhları, kalıp yüzeylerinin işlenmesi, markalanması, bağlantı ve merkezeleme deliklerinin oluşturulması hakkında araştırma yapınız.

**2. TRANSFER KALİP ELEMANLARININ MERKEZELEME VE BAĞLANTI KONUMLARININ BELİRLENMESİ**

**2.1. Frezeleme ve Freze Tezgâhları**

**2.1.1. Frezelemenin Tanımı**

Kendi eksenli etrafında dönen freze çakısının ardından iş parçasının ileri-geri hareketi sayesinde yapılan talas kaldırma işlemine **frezeleme** denir.

Kesme hareketi, kesici takım tarafından, ilerleme hareketi ise iş parçası tarafından yapılır. Freze ile düz yüzeyler, eğrisel yüzeyler, dişli çarklar ve kanallar işlenir. Frezeleme işleminde, çok ağırlı freze çakısı daresel şekildeki kesme hareketini uygular. İlerleme hareketi genel olarak iş parçası tarafından yerine getirilir, fakat çakı tarafından da yapılabilir.

Frezeleme işlemini iki grupta toplayabiliriz.

- **Çevresel frezeleme**: Freze çevresindeki kesici dişler talas kaldırır ve meydana gelen yüzey, çakın dönme yüzeyine paraleldir. Bu usulde düzlemsel ve profilli yüzeyler elde edilir.
- **Alın frezeleme**: Freze çakısının alınındaki ve çevresindeki kesici dişlerin ortak etkisiyle elde edilen yüzey, çakın dönme eksenine dikeydir. Özellikle kesme işleminin büyük bir kısmı çevredeki dişler tarafından yapılır ve alınındaki dişler de ince işleme etkisi yapar.

59
2.1.2. Freze Tezgahı Çeşitleri

Çeşitli tip ve ölçülerde pek çok freze tezgahları varsa da bunların çoğu birbirine benzer. Sütunlu ve konsollu olanlar çoğunlukla okul ve endüstri atölyelerinde kullanılır. Sütunlu ve konsollu denmesinin sebebi, fener milinin bir sütun içinde yerleştirilmesidir.

Freze tezgahlarını yapılarına göre dört grupta incelemek doğru olur.

- Sütunlu ve konsollu tip freze tezgahları
  - Yatay freze tezgahi
  - Düşey freze tezgahi
  - Universal freze tezgahi
  - Kalıpçı freze tezgahi

- İmalat ve gövde tipi freze tezgahları

- Planya tipi freze tezgahları

- Özel freze tezgahları
  - Kopya freze tezgahları
  - Elektronik ve hidrolik kumandalı freze tezgahları

2.1.2.1. Sütunlu ve Konsollu Tip Freze Tezgahları

- Yatay freze tezgahi


Resim 2.1: Yatay freze tezgahi
Düşey freze tezgâhı


Resim 2.2: Düşey freze tezgâhı

Universal freze tezgâhı

Bu tezgâh, yatay ve düşey freze tezgâhlarının bir arada düşünülmüş ve geliştirilmiş hâlidir. Bu tezgâhlarda tablanın sağa ve sola 45° dönmesi sağ ve sol helis dişlerin otomatik bir şekilde açılması en önemli özelliklerindendir. Tablanın elle veya otomatik olarak hareketi sağlanabilir. Tablanın eğiklik konumunun rahatlıkla temini için açılı bölümler yapılmıştır.

Resim 2.3: Universal freze tezgâhı
Kalıptçı freze tezgâhı


Resim 2.4: Kalıptçı freze tezgâhı

2.1.2.2. İmalat ve Gövde Tipi Freze Tezgâhları


2.1.2.3. Planya Tipi Freze Tezgâhları


2.1.2.4. Özel Freze Tezgâhları

Özel frezeleme ve seri üretimler için tasarlanmış freze tezgâhlarıdır.
Kopya freze tezgâhı


Resim 2.5: Kopya freze tezgâhı

Elektronik ve hidrolik kumandalı freze tezgâhları

Dişli çark sistemlerinin büyük ölçüde kalktığı bu tezgâhlarda, kumanda elektronik ve hidrolik olarak yapılmaktadır. Çalışma sistemleri tamamen hidrolik olarak donatılmıştır. Bu tezgâhlarda kumanda kolaylığı ve zaman tasarrufu ile çok düzgün ve hassas işler elde etme imkânı vardır.

Resim 2.6: Elektronik freze tezgâhı (CNC)
2.1.3. Freze Tezgâhının Önemli Kısmıları

Şekil 2. 1: Plastik sıkıştırma kalıbı

Gövde
Büyük iş parçalarının zorlamasına dayanabilecek şekilde imal edilir. Tezgâhın en büyük kısmını teşkil eder. Font dökümünden yapılır.

Konsol
Üzerinde arabayi ve tablayi taşıyan destekli, dik doğrultuda aşağı ve yukarı hareket eder. Fonttan yapılır.

Araba
Tezgâhın enine hareketini sağlayan elemandır. Yatay ve düşey freze tezgâhlarında bulunur.

Tabla
Konsolun üzerine yerleştirilmiş, sağa sola hareket eden, iş parçasının üzerinde bağlı olduğu tabladır. İş parçasını ve çeşitli ağıtları bağlayabilmek için tablanın üzerine T kanalları açılmıştır. Alt tarafına da hareketini sağlayabilmesi için kırlangıçkuyruğu kanallar açılmıştır. Fonttan yapılır.
2.1.4. Yardımcı Aygıtlar

Başlık

Özel bir şekilde hazırlanan başlıklar, gövdenin başlık bağlanan kısmına bağlanarak tezgahanın kapasitesini yükseltir. Ayrıca değişik işlere göre geliştirilmiş değişik biçimli başlıklar geliştirilmiştir.

Döner tabla


![Resim 2.7: Döner tabla](image)

Malafalar ve yatakları


![Resim 2.8: Divizör](image)

Divizör ve görevi

İş parçasının çevresine eşit bölüntülü kanallar veya yüzeyler işlemek için hem tespite hem de döndürmeye yarayan aygıttır. Bunun bir bölme başlığı ve karşılık puntası vardır. İş parçası iki punta arasına bağlanır ve işlem yapılır. Bu aygıtla bir mil veya cıvatanın ucuna kare veya altıgen baş işlemeç, rayba veya kilavuz olukları açmak, ayrıca her çeşitli dişli çarkların dişlerini açmada kullanılır.
2.1.5. Freze Çakıların Biçimlerine Göre Tanıtılması ve Kullanıldığı Yerler

Kendi ekseri etrafında dönün ve genellikle çok dişli ağırlılarıyla talaş kaldırma işlemi yapan kesiciye freze çakısı adı verilir.

2.1.5.1. Freze Çakı Çeşitleri

- **Silindirik frezeler**

  ![Resim 2.9: Silindirik freze çakısı](image)

- **Kanal frezeleri**
  Bu tür freze çakılarının silindirik freze çakılarından farkı sadece dar olmasıdır (Resim 2.10). Bu çakıların bazılarının çevre yüzleri, bazılarının hem çevre hem de alın yüzleri keser. İsminden de anlaşıldığı gibi kanal açmak veya mevcut kanalları genişletmek için kullanılır.

  ![Resim 2.10: Kanal freze çakısı](image)

- **Alın frezeleri**
  Hem çevre hem de alın yüzeyinde kesici dişleri vardır (Resim 2.11). Alın frezeleri ile düzlem yüzeyler ve kanallar açılabılır. Ayrıca aynı anda birbirine dik iki yüzeyi işleme mümkündür.

  ![Resim 2.11: Alın freze çakısı](image)
Açı frezeleri


Resim 2.12: Açı freze çakısı

Parmak frezeler

Hem çevrelerinde hem de alın yüzeylerinde iki veya daha fazla kesici ağızları vardır (Resim 2.13). Silindirik veya konik saplı olarak imal edilir. İnce ve küçük parçaların kenarlarını dik işlemenek, kama kanalları açmak gibi işlemlerde kullanılır.

Resim 2.13: Parmak freze çakıları

“T” frezeler


Resim 2.14: ‘T’ freze çakısı
- **Modül frezeler**

  ![Resim 2.15: Modül freze çakısı](image)

- **Biçim (profil) frezeler**
  Çeşitli profillerin işlenmesi için kullanılan freze çakılarıdır. En çok kullanılanları iç ve dış bükey olanlardır. İhtiyaça göre özel olarak değişik profillerde imal edilir (Resim 2.16).

  ![Resim 2.16: Profil freze çakısı](image)

2.1.5.2. Freze Çakılarının Tezgaha Bağlanması

- **Freze çakılarının fener miline bağlanması**
  Ortası delikli freze çakıları uzun ve kısa malafa milleriyle, saplı freze çakılarının büyükleri özel sıkma düzenleriyle, küçükleri de pens-mandren tertibati ile freze tezgahi fener miline bağlanır. Delikli freze çakıları, malafa adı verilen bir milin üzerine takılır. Bu milin üzerindeki konik kısımda tezgah fener milinin uygun konik yuvasına yerleştirilip, arkasından bir vida ile çektilirerek tespit edilir (Resim 2.17).
Resim 2.17: Malafa milinin fener miline takılması

- Freze çakılarının malafalara bağlanması


Resim 2.18: Mors konik saplı malafa ve freze çakısı
Freze çakısı malafa miline takılırken malafa üzerinde serbestçe kaymalıdır. Çakiya çekicile vurulmamalıdır. Aksi hâlde malafa mili bozulabilir, çakı da kırılabilir.

Resim 2. 19: Freze tezgâhı üst başlık ve aparatları

Malafa somunu ön yatak çıkarılmadan gevşetilmelidir. Aksi hâlde malafa mili eğilir.

Resim 2. 20: Malafa miline takılan freze çakısı


Kısa malafalar da fener miline monte edildikten sonra freze çakısının kalınığına göre bilezikler kullanarak malafa vidası alından sıkıştırılır.
Resim 2.21: Kısa malafa mili ve uç vidasının dik başlığa takılması

➤ Saplı freze çakılarının pens adaptörü ve tutucularla bağlanması

Mors konikli freze çakısının fener miline mors koniği ile bağlanması, silindirik saplı freze çakısının fener miline bağlanması, genellikle özel sıkma düzenleri ile yapılır.

Resim 2.22: Parmak freze çakısının pense takılışı ve sıkılması

Resim 2.23: Pens adaptör takımı ve malafa mili

2.1.6. Mengenenin Tezgâha Bağlanması

Freze tezgâhında iş parçalarının bağlanması için kullandığımız tezgâh mengenesinin, freze tezgâhına bağlanması rastgele değil, teknijine uygun bir şekilde olmalıdır.  

2.1.6.1 Mengene Çenelerinin Gövdeye Paralelliğinin Sağlanması

İşlenen parçaların hassasiyetinin istenilen değerde çıkması, mengenenin tezgâh tablasına çok iyi bağlanması bağlıdır. Mengene çeneleri komparatörle kontrol edilerek tezgâh tablasına dengeli bir şekilde bağlanır (Resim 2.24).

Mengenenin tezgâh tablasına bağlanması işlem sırası:
- Tablanın üzeri temizlenir.
- Mengenenin alt yüzeyi temizlenir.
- Mengene, tabla üzerine ağızlar gövdeye paralel şekilde konur ve cıvata hafif sıkılır.
- Komparatör malafaya bağlanır.
- Komparatör ucu mengene hizasına gelmesi için tabla hareket ettirilir.
- Komparatör ucu mengenenin sabit çenesine dayatılarak sıfıra ayarlanır.
- Tabla sağa-sola hareket ettirilerek ağızların gövdeye paralellikleri kontrol edilir.
- Paralellikleri sağlamak için mengeneye hafifçe vurulur.
- Çenenin her iki tarafında komparatörden okunan değer aynı olmalıdır.
- Paralellik sağlandıktan sonra cıvata ve somunlar sıkılır.
2.1.6.2 Mengene Çenelerinin Gövdeye Dikliğinin Sağlanması

Mengene çenelerinin gövdeye dikliğinin sağlanmasında paralellikte takip edilen adımlar aynen yapılır. Sadece tabla enine hareket ettirilerek diklik sağlanır.

2.1.7. İş Parçalarının Freze Tezgâhına Bağlanması

İş parçalarının freze tezgâhına bağlanmaları aşağıdaki hususlara göre yapılmaktadır.

2.1.7.1. Mengene İle Bağlanması

Mengene, tablaya mengene gövdesinden geçen uygun civatalara, tabla üzerindeki T kanallarından yararlanılarak bağlanır. Mengene vidası döndürdüğü zaman hareketli çene kızak üzerinde sağa ve sola hareket ederek iş parçasının bağlanıp, sökülenmesini sağlar. İş parçasının bağlanmasında iş parçası altında uygun bir altlık konur. İş parçasının altlık üzerine iyi oturmasını sağlamak için pirinç bir malzemeyle iş parçası üzerine vurulurken iş parçası kuvvetlice sıkılır.

2.1.7.2. Vidalı Mengenelerle Bağlama

Endüstride en çok kullanılan mengene çeşididir. Küçük parçalarda iş parçasının altına taşlanmış uygun altlıklar konur.

- İş parçası daima sabit çene tarafına sıkıştırılır.
2.1.7.3 Civata ve Pabuçlarla Bağlama


Resim 2.25: Vidalı mengeneye işin bağlanması

Resim 2.26: Bağlama pabuç, civata ve somunları

- **Bağlama civata ve somunları**
  Freze tezgâhlarında bulunan “T ” kanallarına uyum özelliklerde yapılmış olan civataların başları genellikle kare şeklinde yapılır. Rondelâ ve somunlarla birlikte sıkma işleminde kullanılır.

- **Pabuçlar ve çeşitleri**
  İşlenecek parçayı tezgâh tablasına bağlayan makine parçalarıdır. Bu parçaların yassi, çatal, başlı ve özel amaçlı pabuçlar olarak birçok çeşidi vardır.
Dayama pabuçları ve çeşitleri
Mengenelere sığmayacak büyükükteki, değişik geometrik şekillerde olan parçaların cıvatalarla tezgâh tablasına sıkılmasında kullanılır. Çok değişik tip pabuç ve dayamalar mevcuttur.

Cıvata ve pabuçlarla bağlama kuralları şunlardır:

- Pabuçlar uygun şekilde yerleştirilmesi ve altına konacak takozun yüksekliği tam olmalıdır.
- Takoz, yüksek veya alçak olursa pabuç tam sıkma yapmaz.
- Cıvata iş parçasına yakın olmalıdır.
- Pabuç, iş parçası ve takozun üzerine geniş yüzeyle oturmalıdır.
2.1.7.4. Özel Bağlama Kalıp ve Araçları, Sinüs Tablaları ile Bağlama

Çok çeşitli iş parçaları olduğundan bunları tezgâh tablasına bağlamak için değişik şekillerde hazırlanan parçalardır. Özel bağlama kalıplarına iş kalıpları da denilmektedir. Parça sayısı çok fazla olan malzemeler için düşünülmeli.

Sinüs tablaları prizmatik bir kısımla uçlardaki iki silindirden meydana gelir. Çeşitli eğiklikteki parçaların tezgâh tablasına bağlanması için kullanılır.

2.1.7.5. Divizörle Bağlama

Gerekli temizlik yapıldıktan sonra uygun üç ayaklı universal ayna divizör miline takılır. Ayna, anahtar ile iş parçası çapından biraz fazla açılır. İş parçası ayaklar iş parçasına konur ve ayaklar iş parçasına yaklaştırılır. İş parçası kuvvetle sıkılır. İş parçasının çok kolay bağlanmasına imkân veren bu aynalara, silindirik, üçgen, altıgen biçimli işler bağlanabilir.

2.1.7.6. Amerikan Aynasıyla Bağlama

Genellikle kare kesitli kısa parçaları bağlayıp işlemek için kullanılır.

2.1.7.7. Ayna – Punta Arasında Bağlama


2.1.7.8. Firdöndü Aynası ve Punta (İki Punta Arasında) İle Bağlama

İş parçasının her iki ucuna punta deliği açılmış olması gerekir. Parçanın bir ucuna firdöndü bağlanır. Bu üç divizör tarafına denk getirilerek bağlanır.
Fırdöndü, iki punta arasına bağlanan iş parçalarının divizörle beraber dönmesini sağlar. İş parçası veya malafa üzerine bağlanır. Fırdöndünün kivrik kuşruğu divizörün punta çatalı arasına girer.

Resim 2.30: Divizör ve punta

2.1.8. Frezenin Çalıştırılması

Tezgâhnin çalıştırılmasından önce yapılacak işlemler şöyle sıralanabilir:

- Freze milinin devir sayısı, gövde üzerinde bulunan devir kolları vasıtası ile ayarlanır.
- İş parçasının konumu ve talaş derinliği, konsolun yükseltilmesi alçaltılması ile düzenlenir. Düşey ilerleme için el tekerinden veya otomatik koldan yararlanılır.
- Enine hareket için enine ilerletme el tekerinden yararlanılır. İş parçası bu ayarlamayla frezenin altında istenilen konuma getirilir.
- Tablanın boyuna hareketi için tabla el tekerinden yararlanılır. Tablanın hareketi otomatik olarak da sağlanır.

2.1.9. Düzlem Yüzey Frezeleme

Kalıp plakalarında bulunan düzlemsel yüzeyler, aşağıda belirtilen usullere uygun olarak işlenir.

2.1.9.1. Düzlem Yüzeyin Durumu ve Büyüklüğine Göre Freze Çakısı Seçmek

Bir düzlem yüzeyi frezelemek için en çok kullanılan iki metot vardır. Birincisi çevresel frezeleme, ikincisi alın frezeleme yöntemidir.

Çevresel frezeleme, malafaya takılan silindirik bir freze çakısı ile yapılır. Alın frezeleme işleminde (Resim.2.31), genellikle sert maden üçlu kesici takımlar kullanılır. İşlenecek parçanın yüzey genişliğinden çok az büyük olan freze çakısı seçilir. Seçilen freze çakısı çapı iş parçasının genişliğinden mümkün olduğu kadar az büyük olmalıdır.

2.1.9.2. Freze Çakısı Dönüş Yönüne Göre Tabla İlerleme Yönünün Açıklanması

2.1.9.3. İşte Uygun Talaş Derinliği ve İlerleme Ayarı

Kesici takım iş parçası üzerine değinceye kadar konsol kaldırılır. Sıfırlama işlemi yapılır. Kesici takım ve iş parçası cinsine göre uygun talaş derinliği (1-3mm) verilir. İlerleme hızı seçilerek konsol üzerinden ayarlanır. Talaş derinliği ve ilerleme hızı gibi değerler işlenecek parçaya göre ve freze çakısına göre değişeeceğinden ilgili kataloglardan bakılabilir.

Hata yapma riskini göz önünde bulundurularak ilk talaş elle verilmelidir ve ölçme kontrol yapılmalıdır.

![Resim 2.33: Düzlem yüzey frezeleme](image)

2.2. Taşlama

Kendi eksenin etrafında yüksek devirle dönen, taş denen kesici takımla, iş parçalarının iç ve dış yüzeylerinden çok küçük talaşlar kaldırarak yüzeyleri yüksek ölçü tamlığı ve hassas yüzey kalitesinde işleyen tezgâhlara taşlama tezgâhları, bu işleme de taşlama denir.

2.2.1. Taşlama Tezgâhı Çeşitleri

- Düzlem yüzey taşılama tezgâhı
  - Yatay milli düzlem yüzey taşılama tezgâhı
  - Düşey milli düzlem yüzey taşılama tezgâhı
- Silindirik taşılama tezgâhları
  - Dış yüzey taşılama tezgâhları
  - İç yüzey taşılama tezgâhları
  - Puntasız taşılama tezgâhları

2.2.1.1. Düzlem Yüzey Taşılama Tezgâhları

Düzlem yüzeylerin taşlanmasıında kullanılan taşılama tezgâhları, yatay milli ve düşey milli düzlem yüzey taşılama tezgâhları olarak kendi aralarında sınıflandırılır.
Yatay milli taşlama tezgāhı

Yatay milli düzlem yüzey taşlama tezgāhları ile genellikle küçük boyutlu ve hassasiyeti fazla olan parçalar taşlanır. Aynı zamanda düz kanallar, açılı yüzeyler ve değişik profiller bu tip tezgāhlarda taşlanabilir.

Resim 2.34: Yatay milli düzlem yüzey taşlama tezgāhı

Bu tip taşlama tezgāhlarda tezgāh tablası sağa ve sola aynı zamanda derinlemesine ileri ve geri hareket edebilir. Taş mili başlığı ise sadece yukarı ve aşağı hareket edebilmektedir. Taşın aşağı ve yukarı hassasiyeti 0.01 mm'dir.

Düşey milli taşlama tezgāhı


Resim 2.35: Düşey milli düzlem yüzey taşlama tezgāhları
Düzlem yüzey taşlama tezgâhlarının önemli kısımları

Şekil 2.2’de düzlem yüzey taşlama tezgâhının önemli kısımları görülmektedir.

Şekil 2.2: Düzlem yüzey taşlama tezgâhlarının önemli kısımları

➢ Düzlem yüzey taşlama tezgâhı kontrol paneli

Düzlem yüzey taşlama tezgâhı kontrol paneli Resim 2.36’da gösterilmiştir.

Resim 2.36: Taşlama tezgâhı kontrol paneli
2.2.1.2. Silindirik Taşlama Tezgâhları

Silindirik iş parçalarının taşlanmasında kullanılan tezgâhlardır.

- **Silindirik taşlama tezgâhı çeşitleri**
  - Dış yüzey taşlama tezgâhları: Silindirik dış yüzeylerin taşlanmasında kullanılan tezgâhlardır.
  - İç yüzey (delik) taşlama tezgâhları: Deliklerin taşlanmasında kullanılan tezgâhlardır.
  - Puntasız taşlama tezgâhları: Silindirik parçaların puntaya alınmadan, iç ve dış yüzeylerinin seri olarak taşlandığı makinelerdir.

- **Silindirik taşlama tezgâhının kısımları**

Resim 2.37’de silindirik taşlama tezgâhının kısımları gösterilmiştir.

![Resim 2.37: Silindirik Taşlama Tezgâh Kücümler](image)

Silindirik taşlama tezgâhlarının ana kısımları şunlardır:
- Fener mili kutusu
- Gezer punta
- Kumanda panosu
- Zımpara taşı başlığı

**Fener mili kutusu:** Elektrik motorundan kayış ve kasnak sistemi yardımıyla aldığı dönme hareketini iş parçasına iletir. Fener milinin yataklanması sağlar. Fener milinin iç kısmı sabit puntanın dış kısmı ise universal veya firdöndü aynasının bağlanması için biçimlendirilmiştir.

**Gezer punta gövdesi:** Döner tabla üzerinde yatay olarak hareket eder. Görevi, alın yüzeylerine punta deliği açılmış parçaları punta yardımıyla desteklemektir. İş parçalarının ayna-punta arasında veya iki punta arasında taşlanmasını sağlar.

**Kumanda panosu:** Elektrik enerjisi ve hidrolık enerji ile çalışan sistemlere ait kumanda buton kol ve düğmelerin bulunduğu kısımdır.
Zımpara taşı başlığı: Zımpara taşı milini ve bu mile hareket veren elektrik motorunu taşır.

2.2.2. İşe Uygun Taşlama Tezgâhının Seçimi

Şekil 2.3’deki örnek parça, düzlem yüzey taşlama tezgâhında taşlanır.

Şekil 2.3: Düzlem yüzey taşlama

Şekil 2.4’deki örnek parça, düsey milli düzlem yüzey taşlama tezgâhında taşlanır.

Şekil 2.4: Düşey milli düzlem yüzey taşlama

Şekil 2.5’teki örnek parça, silindirik taşlama tezgâhında taşlanır.

Şekil 2.5: Silindirik taşlama

2.2.3. Zımpara Taşları ve Özellikleri

Aşındıracı taşı tanlerinin, birleştirme maddeleri ile istenen şekillerde preslenip şekillendirilmesiyle oluşturulan kesici aletlere zımpara taşı denir.

Zımpara taşlarının keskin kenarlı kristal parçacıklarına tane denir.

Zımpara taşları, kesici taneleri eleklerden geçirerek oluşturulur. Zımpara taşlarını elendikleri eleğin bir parmak mesafesindeki gezenek sayısına o taşın tane büyüklüğü denir.

83
2.2.3.1. Aşındırıcı Maddeler

Zımpara taşları aşındırıcı cinsine göre şu şekilde sınıflandırılır:

- **Doğal zımpara taşları**
  - Doğal korund
  - Kuvars
  - Elmas

- **Yapay zımpara taşları**
  - Korund
  - Silisyum karpit
  - Bornitrit
  - Bor karpit
  - Berilyum oksit
  - Elmas

2.2.3.2. Birleştirme Elemanları

Zımpara taşlarını oluşturan aşındırıcı taneleri bir arada tutabilmek için birleştirme maddesine ihtiyaç vardır. Birleştirme elemanları iki ana gruba ayrılır:

- **İnorganik birleştirme elemanları**
  - Seramik birleştirme elemanı (V)
  - Silikat birleştirme elemanı (S-Si)
  - Oksi-Klorit (Magnezit) birleştirme elemanı (O-Mg)

- **Organik birleştirme elemanları**
  - Bakalit birleştirme elemanı (B-Ba)
  - Kauçuk birleştirme elemanı (R)
  - Şellak birleştirme aracı (E)

2.2.3.3. Taşın Sertliği

Zımpara taşları tanelerinin tane kümesinden koparılmasına karşı gösterdiği dirence taşın sertliği denir. Taşın sertliği harflerle ifade edilir. Tablo I’de sertlik değerleri gösterilmiştir.

<table>
<thead>
<tr>
<th>Niteliği</th>
<th>Sertlik derecesi</th>
<th>Kullanma alanları</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aşırı yumuşak</td>
<td>A, B, C, D</td>
<td>Sert malzemelerin derin taşlama ve yan taşlamasında kullanılır.</td>
</tr>
<tr>
<td>Çok yumuşak</td>
<td>E, F, G</td>
<td></td>
</tr>
<tr>
<td>Yumuşak Orta</td>
<td>H, I, J, K</td>
<td>Geleneksel (olağan) metal taşlamada kullanılır.</td>
</tr>
<tr>
<td>L, M, N, O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sert</td>
<td>P, Q, R, S</td>
<td>Diş yuvarlak taşlama ve yumuşak malzemeleri taşlamada kullanılır.</td>
</tr>
<tr>
<td>Çok sert</td>
<td>T, U, V, W</td>
<td></td>
</tr>
<tr>
<td>Aşırı sert</td>
<td>X, Y, Z</td>
<td></td>
</tr>
</tbody>
</table>

**Tablo 1: Zımpara taşlarının sertliği**
Bir taşlama taşının sertlik derecesi, tane sertliğini değil, bağlama maddesinin taneyi tutma kuvvetini ifade eder. Sert malzemeler için yumuşak taş; yumuşak malzemeler için ise sert taş kullanırlar.

2.2.3.4. Taş Etiketine Ait Bilgiler

2.2.4. Taşın Dengelenmesi Yöntemleri

Büyük, geniş zımpara taşları ve özellikle yüksek çevresel hızlarda, dengelenme oldukça önemlidir. Çünkü dengeyi bozan kütlelerin merkezkaç kuvvetleri, devir sayısı ile bağlantılı olarak artır.

2.2.4.1. Statik Dengeleme

Statik dengeleme için, zımpara taşı bir dengeleme terazisine veya bir makaralı sehpanın dengeleme sehpası üstüne konulur (Resim 2.38). Dengeleme ağrılıkları, zımpara taşı her konumda hareketsiz durana kadar kanal içinde kaydırılır.

Resim 2. 38: Statik dengeleme
2.2.4.2. Dinamik Dengeleme


2.2.5. Düzlem Yüzey Taşlama Tezgâhlarına Zımpara Taşının Bağlanması

Zımpara taşının taş mili üzerine merkezkaç kuvvetinden etkilenmeyecek şekilde dengeli ve güvenli bir şekilde takılmasına “bağlama” denir. Zımpara taşları yüksek devirde çalışırken kaza meydana gelmesi için güvenli bir biçimde bağlantılı ve sağlamlığı kontrol edilmelidir. Dengeleme işlemi yapılmış zımpara taş, taş miline kesinlikle bağlantılımalıdır.

Dengelememiş olarak takılan taş, kesme işlemini zorlaştırır ve iş parçasının paralellüğünü bozar. Yataklanmış mil üzerinde dönen zımpara taşları flanş ve somun ile miline bağlanır.

**Şekil 2.7: Taş bağlama elemanları**

**Resim 2. 39: Zımpara taşının bağlantısı**
2.2.5.1. Taşın Bağlanmasında Dikkat Edilecek Hususlar

- Zımpara taşları hafifçe ve zorlanmadan taş miline takılmalıdır.
- Taşın her iki tarafına aynı büyüklikte flaş ve yumuşak contalar konulmalıdır.
- Her yeni bağlanan zımpara taş, en az 5 dakika müsaade edilen en yüksek devir sayısında ve boşta deneme amacıyla çalıştırılduktan sonra bilenip kullanmalıdır.
- Zımpara taşının takıldığı miler salgızsal dönecek ve sıkıştırma somunları, dönme yönünde gevşemeyecek tarzda vidalanmış olmalıdır.

2.2.6. Zımpara Taşının Bilenmesi

Körlenen veya keskinliğini kaybeden taşın keskinleştirmesine bileme denir.

Resim 2.40: Zımpara taşını bileme  Resim 2.41: Taşın hidrolik sistemle otomatik bilenmesi

2.2.6.1. Zımpara Taşıın Bileme Elemanları

- Bileme diski
- Bileme topacı
- Elmas bileyici
Elmas bileyici ile taş arasındaki ıssyı önlemek için soğutma suyu kullanmalıdır. Elmas bileyici veya bileme tekerini, taş üzerinde ilerletirken kenarlara yaklaştıkça bileme hızı azaltılmalıdır.

2.2.7. İş Bağlama Araçları

İş parçalarının bağlanmasında kullanılan aparatlardır. Bunlar aşağıda belirtilmiştir.

2.2.7.1. Tezgâh Mengenesi

İş parçalarının bağlanmasında kullandığımız, makineye bağlı olan mengenelerdir.

![Resim 2.42: Hassas tezgâh mengenesi](image1)

2.2.7.2. Bağlama Cıvata ve Pabuçları

Yine diğer birçok makinede olduğu gibi taşlama makinelerinde de iş parçalarının bağlanmasında bağlama pabucu ve civatalardan yararlanılır.

![Şekil 2.8: Bağlama pabucu](image2)

2.2.7.3. Mıknatıslı Tabla

2.2.7.4. İş Kalıpları

Seri üretimde, mengene veya mıknatsıslı tablaya bağlanarak taşlanması uzun zaman alan özel parçalar için bağlama kalıpları yapılır. Böylece iş parçaları seri olarak bağlanıp sökülür.

2.2.7.5 Divizör ve Karşılık Puntası

İş parçalarının işlenmesinde açısal bölme işlemleri yapan aparatlardır.

2.2.8. Düzlem Yüzey Taşlama

İş parçalarının düzlem yüzeylerinin taşlanması işlemidir.

2.2.8.1 Düzlem Yüzey Taşlama Tezgâhlarına İş Bağlama Kuralları

- İşin tablaya oturan yüzeyi düzgün olmalıdır.
- İş mümkün olduğunca tablanın ortasına yerleştirilmelidir.
- Açılı yüzeyler mıknatsıslı sinüs tablaları ile işlenmelidir.
- Açılı yüzeyleri işlemek için mıknatsıslı tablaya açılı mengene bağlanacaksı mengene tabanının düzgün olmasına dikkat edilmelidir.
2.2.8.2 Düzlem Yüzey Taşlamada İşlem Sırası

Taşlama prensibi

Taşlama, zımpara taş ile yüzeylerden talaş kaldırma işlemidir. Sertleştirilmiş veya yalnızca yüzey sertleştirme işlemi görmüş parçalarda taşlama ile ölçü tamlığı sağlanır. İş parçalarının dış yüzeylerini parlatmak amacıyla da taşlama yapılabilir.

Resim 2.45: Silinderik taşla yapılan düzlem yüzey taşlama

Yatay milli düzlem yüzey taşlama tezgahlarında zımpara taş kendi ekseninde yüksek devirde dönerek tablaya bağlı iş parçası da taşın ardından belirlenmiş bir hızda geçer. (Resim 2.45). Yatay milli düzlem taşlama tezgahları çevreden kesme yapar. Çevreden kesen taşlarla daha ince ve daha hassas yüzey kaliteleri elde edilir.

Şekil 2.10: Çevreden ve alındından kesen zımpara taşların ve iş parçasının hareketleri

Düşey milli düzlem taşlama tezgahları ise değişik şekil ve özelliklerdeki parçaların taşlanmaları için döner tablalı veya dikdörtgen tablalı yapılır (Şekil 2.11). Taş, alın yüzeyinden kesme yapar.

Şekil 2.11’de taş ve iş parçasının bağlandığı tezgah tablasının ve taşın dönüş ve hareket yönleri görülmektedir. Büyük ve ağır iş parçaları ile birden fazla iş parçası özdüş ve hızlı bir şekilde işlenmek istendiğinde düşey milli taşlama tezgahları kullanılır.
Düşey mili tezgâhlarda daha büyük kesme (talaş hacmi) olur; ancak işlenen yüzey kalitesi çok iyi olmaz. Taş alın yüzeyi ile kesme yapıştıktan sürünme fazla olur, bu da ısınamayı artırır.

**Taşın kesmesi**

Taş işe temas edince kesme konumunda olan her taş tanesi iş üzerinden talaş kaldırır. Kesme sırasında körlenen veya yerlerinde gevşemiş olan taneler taşın basıncı ile talaşlarla birlikte fırlar. İyi bir taşlama için gerekli bütün şartlar yerine getirilirse çıkan yüzey kalitesi temiz ve düzgün olur. Düzlem taşlamada iş, taşın altında ne kadar hızlı geçerse yüzey o kadar kaba ne kadar yavaş geçerse yüzey o kadar ince çıkar.

**Zımpara taşının çevre hızı**

Dönmekte olan zımpara taşının çevresindeki bir naktanın saniyede metre cinsinden aldığı yola kesme hızı denir. Kesme hızı değeri taşın özelliklerine göre imalatçı firma tarafından belirlenir.

**İşin ilerleme hızı**

Taşlama işleminde taş kendi ekseninde belirli bir kesme hızı ile dönerken iş parçası da taşın altında belirli bir hızla geçer. Buna taşın ilerleme hızı denir. İlerleme hızı, taşlama tezgâhının hidrolik sistemindeki akış kısmına valfleriyile azaltılır veya çoqlantılır.

**Taşın kesme hızı ile işin ilerleme hızının iş kalitesine etkisi**


**İlerleme miktarı ve talaş derinliği**

Taş milinin devir sayısı ve tablanın ilerleme hız değeri kadar tablanın enine yeni yanlamasına hareketi de çok önemlidir. Bu işleme tablanın ilerlemesi denir. İlerleme
değerinin artması taşlama payını artırır. Taşlaş payı çok olursa iş fazla isınır ve çarşılır. İlerleme her kursta bir veya iki kursta bir verilir. Bu istenilen yüzey kalitesine göre değişir. Kaba taşlamada ilerleme taş, işin her iki başında iken verilmelidir.

Son bitirme taşlı verilirken işin yalnız bir başında enine ilerleme verilmesi gerekir. Taşlanacak parçalara verilecek taşlama payları parçanın inceliğine ve kalınlığına göre değişir. Her pasoda verilmesi gereken taşlı derinliği kaba taşlama için( 0,05 mm), ince taşlama için 0,005 ile 0.010 mm değerlerini aşmamalıdır.

**Kurs boyu**

Kurs boyu ayarı düzlem taşlama tezgâhının yatay milli veya düşey milli oluşuna göre değişir. Yatay milli taşlama tezgâhlarında kurs boyu, zımpara taşı parçanın her iki ucundan 5–10 mm çıkacak şekilde ayarlanır. Yatay milli tezgâhlarda kurs boyu: L= iş boyu +10 mm düşey milli tezgâhlarda kurs, zımpara taşı parçanın her iki ucundan tamamen çıkacak şekilde ayarlanır.

**Taşlamada soğutma**

Taşın dönme ve işin taş altında ilerleme hareketi esnasında zımpara taşı taneciler kesici iş parçasının yüzeyine batarak kesme yapar. Kesme sırasında oluşan talaşlar yüksek sıcaklıkta macunlaşarak zımpara taşıın gözeneklerine girer ve taşı köreltir. Soğutma suyu macunlaşmayı ve yüksek kesme basıncından dolayı meydana gelen ısıyı düşürür.

2.2.8.3. Düzlem Yüzey Taşlamada İşlem Sırası

Güvenlik önlemleri alındıktan sonra;

- Taş bilenir. Taşın bilenmesi tabla üzerine konan elmas uçlu taşlama aparatıyla yapılır. Bazı tezgâhlarda hidrolik sistemle ileri doğru gidip gelme hareketi yapan elmas bileme aparatları bulunur.
- Miknatıslı tabla temizlenir, iş parçası bağlanır.
- Tablanın kursu ayarlanır ve yön değiştirme mandalları sıkılır.
- Makinenin hidrolik sistemini çalıştıran butonuna basılır.
- Soğutma sıvısı açılarak taş, iş parçasına yanaştırılır, en yüksek noktaya değince 0,050 mm taş derinliği verilir.
- Tablanın kurs yönü değiştirildiği anda enine ilerleme elle verilir.
- Taşlanacak yüzeyin paralellüğünü sağlamak için, iş parçası birkaç defa ters çevrilerek taşlanır.
- İş parçasının yüzeyi taşlarken yanıyorsa ilerleme ve taşlı derinliği azaltılır veya daha yumuşak taş kullanılır.
- İnce taşlı öncesi taş bilenerek bitirme taşlı verilir.

2.2.8.4. Ölçme ve Kontrol

Taşlanacak parçanın istenilen ölçüde olmasını sağlamak için kontrol edilmesi gerekir. Bunun için daha ziyade mikrometreden yararlanılır (Resim 2.46). Mikrometre ile ölçü kontrol edilerek verilecek ince taşlama payı saptanır.
2.2.8.5. Düzlem Yüzey Taşlamada Dikkat Edilecek Kurallar

- Tezgâha bağlanacak zımpara taşları işin ve tezgâhın özelliğine uygunsuz olmalı, taşı verilecek devir sayısı gereğinden yüksek olmamalıdır.
- Taşlama tezgâhlarındaki dönen kısımların yataklanması, yağlanması, ayarlaması ve bakımı tekniğine uygun yapılmalıdır.
- Taşın zorlanmamasına ve parçaya çarpmamasına dikkat edilmelidir.
- Kademeli düzlem yüzeylerinin taşlanmasında ayarlar, iyi kontrol edilmelidir.
- Taş zamanında düzeltilmelidir ve bilenmelidir.
- Makine tablası yataylık ve düzlemlik yönünden komparatörle kontrol edilmeli ve gerekirse taşlanarak düzeltilmelidir.

2.2.8.6. Taşın ve İşin Hızı İle İlgili Bağıntılar

- Zımpara taşı çok yumuşak ise ölçüsü çabuk düşeceği için, iş parçasının hızı azaltılır.
- Zımpara taşı çok sert ise işin yüzeyi cam gibi parlak olur, iş parçası çok ısınır. Böyle bir durumda tablanın hızı artırılır veya taşın hızı azaltılır.
- İnce taşlamada iş parçasının hızı artırılır; fakat tabla ilerlemesi değiştirilmez.

2.2.9. Silindirik Taşlama

Silindirik yüzeylerin taşlanması işlemidir.

2.2.9.1. Silindirik Taşlama Tezgâhlarının Çalışma Prensibi

Silindirik iş parçalarının iç ve dış yüzeylerini silindirik veya konik olarak taşlayan tezgâh türdür. Kovan, pim, mil gibi silindirik veya konik olması istenen yüzeyleri taşlamak için kullanılır. Bu tezgâhlara iş parçaları genellikle iki şekilde bağlanır:

- İş parçası aynaya bağlanarak punta ile desteklenir.
- İki punta arasına bağlanır, parça boyu uzun ise sabit ayaklarla desteklenir (Şekil 2.12).

Resim 2.46: Mikrometre ile kalınlık ölçme

Resim 2.47: İşi ayna punta arasına bağlama Şekil 2.12: İşin fındıdını punta ile bağlanması
Her iki bağlama şeklinde de iş parçası dönme hareketi yapan zımpara taşı önünden, dönerken uzunlamasına ileri geri hareket ederek geçer. Tablanın her kursından sonra zımpara taşı, verilecek talas derinliği kadar iş parçasına doğru ilerletilir. Tabla hidrolik sistemle otomatik olarak hareket ettirilir. CNC taşlama tezgâhlarında ise tablanın ileri geri hareketi bilyeli mil ile sağlanır.

CNC silindirik taşlama tezgâhları iş parçalarını istenilen yüzey kalitesi ve ölçütamlikta taşılayan bir tezgâhtır (Resim 2.48).

![Resim 2.48: CNC silindirik taşlama tezgâhı](image)

### 2.2.9.2. Silindirik Yüzey Taşlama Tezgâhlarında Çalışma Kuralları

- **İşin çevresel hız**
  İş parçasının hızı taş hızına göre belli bir oranda olmalıdır. İşin dönme hızı taş taneleri dökülüp yeni keskin tanelerin çıkmasını sağlayacak şekilde olmalıdır. Taş taneleri çabuk dökülüyor ve çapı düşüyorsa işin hızı azaltılmalıdır. Taşın etkisi sertse taşın iş parçasıyla olan teması coğaltılmalı; yani işin dönme hızı artırılmalıdır. İşin çevresel hız artırılrsa talas miktarı artar neticede taş çabuk aşırılır. Üretimin artırılması bakımdan böyle bir taşlama yöntemi seçilecektse daha sert taş seçilmelidir. Silindirik taşlamada iş ne kadar hızlı dönürse yüzey o kadar kaba ne kadar yavaş dönürse yüzey o kadar ince çıkar.

- **İlerleme ve talas derinliği**
  - İlerleme çok sayıda kesici tanelerin iş parçasına dokunmasını sağlayacak şekilde verilmelidir.
  - Kaba taşlamada ilerleme taş genişliğinin \(\frac{3}{4}\) ü ince taşlamada ise taş genişliğinin \(\frac{1}{3}\) ü kadar olmalıdır.
  - Kurs ayarı taş iş parçasından çıkmayacak şekilde verilmelidir.
  - Taş genişliği, taşlanacak yüzeyden büyük ise ilerleme verilmelidir (bkzn. Dalma taşlama).
  - İri taneli ve yumuşak taşlarda talas derinliği çok, ince taneli sert taşlarda ise talas derinliği az verilmelidir.
  - Talas derinliği çok ise işin dönme hızı az verilir.
Kaba ve ince taşlama
Kaba taşlamada talaş debisi (hacım) fazladır. Talaşları çabuk kaldırmak için, iş parçasının hızı ve enine ilerleme mesafesi (talaş derinliği) artırılır. Parçaları önce kaba sonra da ince taşlama ile işleyecək ince taşlama için son pasoda iki veya daha fazla talaş payı bırakılması gerekir. Tabla ilerlemesi de kaba talaştaki ilerlemenin 2/3’üne düşürtülmelidir.

Kurs boyu (iş kursu)
İlerlemede kurs ayarı, iş parçasının taştan tamamen çıkmasını ve taş muhafazalarına çarpmasını önleyecek şekilde olmalıdır (Şekil 2.13).

![Şekil 2.13: İş kursu](image)

2.2.9.2. Silindirik Yüzey Taşlamada İşlem Sırası

- İş parçası kademeli ise taşın yan yüzeylere değmesini önlemek için kademe diplere fatura açılır.
- İş parçası ısır işlem görmüşse tavlanarak gerginliği alınır.
- İş parçası üzerinde kama kanalı, yuvarlak veya yuvarlak olmayan delikler varsa bu delikler sert ağaçla doldurulur.
- İş parçası özelliğine göre, uygun fırıncı punta yardımıyla fırıncı aynası veya aynaya bağlanır. Kısa parçalar ayna ile bağlanarak taşlanır.
- Tabla elle ilerletilerek dayamaların yerleri ayarlanır. İş kursu ayarı yapılırken taş, genişliğinin 1/3’ü kadar parçanın kenarından dışarı çıkarılır.
- Taş, iş yüzeyine 1 mm aralıklı kalınca kadar yaklaştırılır.
- Tablayı hareket ettiren hidrolik sistem çalıştırılır ve taş işle yanaştırılarak mikrometrik bilezik sıfırlanır.
- Önce kaba talaş verilir, kaba talaş işlemi bitikten sonra taş bilirir.
- Komparatöre işin silindirikliği kontrol edilir.
- Mikrometre ile iş parçası ölçülür, kalan taşlama payı ince taşlama yapılarak bitirilir.

2.2.9.3. Silindirik Yüzey Taşlamada Dikkat Edilecek Hususlar

- Zımpara taş uygun nitelikte seçilmiştir olmalıdır.
- Taş salgısız bağlanmalıdır.
- İş parçası ve taş hızı arasında belirlenen oranla uyulmalıdır (Taş hızı esas alınmalıdır).
- İş parçası dengeli ve sağlam bağlanmalı ve uygun soğutma sıvısı seçilmelidir.

2.2.9.4. Silindirik Yüzey Taşlamada Güvenlik Önlemleri

- Taş takılmadan önce mutlaka kontrol edilmelidir. Taşı askıya alarak tornavida sapyla hafifçe vurulduğunda tok bir ses vermesine dikkat edilmelidir.
- Taşın dengelenmiş olmasına dikkat edilmelidir. Taş flanş çapına kadar kullanılmalıdır.
- Tabla yön değiştirirme dayamalarının yer iyi ayarlanmalıdır. İş parçasının taş mahfazasına değmemelidir.
- Ayarlamalar temizleme ve yağlama yapanakta taş tablada uzaklaştırılmalıdır.
- Gevşek ve kayan kayışlarla taşlama yapılmamalıdır. İş milini döndüren kayışın gerginliği iyi ayarlanmalıdır.
- Ölçü alet veya mastarları kutularında ve tezgâh üzerinde muhafaza edilmelidir, cebine konulmamalıdır.
- El ve baş dönüşteyen kısımlardan uzak tutulmalıdır.
- Tezgâh ait avadanlık, anahtar, gres yağı, komparatör, mikrometre gibi donanımlar tezgâh dolabında ait olduğu yere konulmalıdır.

2.2.9.5. Dış Yüzeylerin Taşlanması

- **Boyuna taşlama**

İş, kendi eksenin etrafında uygun bir çevresel hızla dönerken aynı zamanda boyuna ilerleme hareketi yapar. İş parçasının ilerleme hareketi taş genişliğinden fazla olmamalıdır. Boyuna taşlamada taş sabit olup iş parçası boyuna ilerleme hareketi yapar. Taşın dönüş yönü ile işin dönüş yönü aynıdır (Şekil 2.14).

![Şekil 2.14: Boyuna taşlamada işin ve taşın dönüş yönleri](image)

- **Dalma taşlama**

Taşın dönüş yönü ile işin dönüş yönü aynıdır. Ancak iş parçası yalnızca eksenin etrafında döner, boyuna hareket etmez. Taş parçaya talas derinliği kadar kadar. Profilli parçalarda taş iş parçası görünüşüne göre bilenir (Şekil 2.15).
Konik taşlama

Boydan boya konik yüzeyler ile iş parçasının üç kısımda veya ortasında bulunan konik yüzeyler tezgâh tablasına açı verilerek işlenir (Şekil 2.16).

2.2.9.6 Silindirik Taşlamada İşin Bağlanma Şekilleri

İşin iki punta arasında taşlanması

Düz veya kademeli miller ve bunlara benzer parçalar iki punta arasında taşlanır (Resim 2.49). İş parçasını bağlamak için firdöndü aynası ve firdöndü bileği kullanılır. İşi döndüren fener mili tarafların takılacak punta sabit veya tıraşlı olur. İş, boydan boya taşlanacaksa tıraşlı punta kullanılması gerekir. Tıraşlı punta işin alın yüzeyine bastırırken punta yuvası da merkezeleme yapar.
- **İşin aynaya bağlanarak taşlanması**

Kademeli, boyu kısa ve alın yüzeylerine punta yuvası açılamayan parçalar, aynaya bağlanarak taşlanır. Ayrıca ile iş bağlarken ayakların iyi ve salgısız sıkma yapmasına ve ayna ayaklarının temizliğine dikkat edilmelidir.

- **İşin malafa üzerinde taşlanması**


![Şekil 2.17: İş parçasının malafaya takılması](image)

![Şekil 2.18: Ayarlı malafa](image)

**2.3. Raybalama**

Raybalama, deliği hassas bir yüzey kalitesi ile istenilen ölçüye getirmek için yapılan bir işlemidir. Matkapla delinen delik tam ölçüsünde olmadığı gibi hassas bir iş için yüzeyi de gerekli düzgünliğe elde edilemez. Hassas ve düzgün bir yüzey elde edilmek istenirse önce delik, ölçüsünden biraz küçük olarak delinir sonra tam ölçüsüne getirmek üzere raybalanır.

**2.3.1. Rayba Çeşitleri**

Rayba çeşitleri aşağıda belirtilmiştir.

- **Silindirik raybalar:** Bu raybalar silindirik deliklerin raybalanması için kullanılır.

![Resim 2. 50: Silindirik raybalar (düz oluklu- helis oluklu)](image)

Konik raybalar: Konik deliklerin raybalanmasında kullanılan bu raybaların, hem kaba hem de ince işleme için, bütün standart ölçüleri vardır.

![Resim 2. 51: Konik rayba](image)

Resim 2. 52: Ayarlı rayba


Resim 2. 53: Silindirik el raybaşı


2.3.2. Rayba Çekmede İşlem Sırası

Raybalama payı 0,1mm ile 0,5mm arasında değişir. Raybalama payı raybalanacak malzemeye ve delik çapına göre belirlenir. Bunda daha çok delik çapı etkendir. Küçük çaplı deliklerde raybalama payı 0,1mm- 0,2mm, büyük çaplı deliklerde 0.4mm–0.5mm civarında olmaktadır.

Elde rayba çekerken;

- Rayba tam dik olarak ağzılatmalıdır.
- Rayba her zaman kesme yönünde döndürülmelidir.
- Kama kanalı deliklerde helis oluklu rayba salınmalıdır.
- Rayba delik içinde az ve düzenli bir baskı ile döndürülen icerletilmelidir.
Makinede rayba çekerken;

- İş parçası ve rayba makineye tam ekseninde itinalı bir şekilde bağlanmalıdır.
- Raybanın dönme hızı iş parçasını delen matkabın devir sayısına göre 1/3 oranında olmalıdır.
- Sert malzemelerde kesme hızı 5m/dk.’yi geçmemelidir.

Raybalamada Karşılaşılan Sorunlar, Nedenleri ve Çözümleri

<table>
<thead>
<tr>
<th>Sorun</th>
<th>Nedenleri ve Çözümleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delik ölçüsü büyük çıkıyor.</td>
<td>Makine milinde ve kizaklarda boşluk veya raybada salgı var, salgısız konuma getiriniz.</td>
</tr>
<tr>
<td></td>
<td>Raybanın bağlanması hatalı (kovan, pens vs.), uygun bağlama aracı seçiniz.</td>
</tr>
<tr>
<td></td>
<td>Raybanın ağızlama boyu uygun değil veya bilemeleri hatalı, düzgün bilemiş uygun rayba kullanınız.</td>
</tr>
<tr>
<td></td>
<td>Kesme hızı ve ilerleme çok yüksek olabilir.</td>
</tr>
<tr>
<td></td>
<td>Düşük yoğunluıcta kesme sıvısı kullanılmış, uygun yoğunluıta kesme sıvısı kullanınız.</td>
</tr>
<tr>
<td>Delik ölçüsü küçük çıkıyor.</td>
<td>Raybanın ölçüsü toleransı uygun değil ve bileme hatalı olabilir.</td>
</tr>
<tr>
<td></td>
<td>Rayba payının küçük seçilmişinden dolayı yeterli talaş kaldırılamadığı için malzeme plastik deformasyona uğrıyor olabilir.</td>
</tr>
<tr>
<td></td>
<td>Yüksek yoğunluıta kesme sıvısı kullanılmış olabilir.</td>
</tr>
<tr>
<td>Konik veya oval delik çıkıyor.</td>
<td>Makine milinde salgı vardır.</td>
</tr>
<tr>
<td></td>
<td>Takımın ağızlaması uygun değil, takım ağızlamasını delik ekseninde yapınız.</td>
</tr>
<tr>
<td></td>
<td>Ön delik eksenile rayba eksenleri çarpışmıyor olabilir.</td>
</tr>
<tr>
<td>Deliğin yüzey kalitesi iyi değil.</td>
<td>Rayba payı küçük seçilmiş, uygun rayba payı seçiniz.</td>
</tr>
<tr>
<td></td>
<td>Ağızlama boyu kısa ve kesici ağızlarda salgı vardır.</td>
</tr>
<tr>
<td></td>
<td>Kanal helis yönü yanılsı seçilmiş, uygun helis de rayba seçiniz.</td>
</tr>
<tr>
<td></td>
<td>Kesme hızı ve ilerleme uygun değil, kesme hızı ve ilerleme uygun değerlerde uygulayınız.</td>
</tr>
<tr>
<td></td>
<td>Kesme sıvısı uygun değil, soğutma basıncını artırınız.</td>
</tr>
</tbody>
</table>

2.4. Merkezeleme ve Bağlanı Konumlarının Belirlenmesi

2.4.1. Referans Düzlem Yüzeylerin Takım Tezgâhları İle İşlenmesi

Kalıp elemanlarını işlemeeye başlamadan önce iş planı yapılması gerekir. Örneğin hangi parçalardan başlanacağını, hangi tezgâhların kullanılabileceği, hazır temin edilecek parçaların belirlenmesi, hangi parçaların birlikte işleneceği gibi.

2.4.1.1. İş Parçasını İşleme İçin Oluşturulacak Referans Yüzeylerinin Belirlenmesi


Şekil 2.19’da prizmatik iş parçasında 1,2, ve 3. nolu yüzeyler referans yüzeyi olarak alınabilir. Şekil 2.19’da silindirik iş parçasında 1 ve 2. nolu yüzeyler referans yüzeyi olarak alınabilir.

Referans yüzeylerinin uygun takım tezgâhları ile işlenmesi

Kalıp elemanlarının hazır olarak alınabileceği belirlenip temin edilmeye yoluna gidilirken işlemecek elemanların da referans yüzeyleri uygun takım tezgâhlarında işlenir. Genellikle silindirik iş parçalarının referans yüzeylerini işlemek için torna tezgâhı, prizmatik iş parçalarının referans yüzeylerini işlemek için de freze tezgâhı seçilir.
Şekil 2.21’deki iş parçasının 1, 2 ve 3 nu.li referans yüzeyleri freze tezgâhında birbirine 90° ve istenen yüzey kalitesinde olacak şekilde temel frezeleme becerilerinden yararlanarak işlenmelidir. Bu referans yüzeyleri işlenirken ölçü dikkate alınmaz, en az talaş kaldırmak işlemi ile referans yüzeylerinin 90° olması sağlanmalıdır.

Şekil 2.21: İş parçası referans yüzeyleri

Kalıp plakalarından birinin referans yüzeylerinin (1-2-3 yüzeyleri) işlenmesindeki işlem sırası aşağıda açıklanmıştır.

- Mengeneği, freze tezgâhının tablasına gönyesinde bağlayınız.
- Freze çakısını tezgâha bağlayınız.
- 2 nu.li yüzey üstte olacak şekilde, parçayı mengene yüzeyine paralel olacak şekilde bağlayınız.
- Tezgâhın devir sayısını ve ilerleme hızını ayarlayınız.
- Yüzeyi önce kaba, daha sonra ince talaş vererek frezeleyiniz.
- İş parçasını mengeneden sökünüz.
- İş parçasını 3 nu.li yüzeyi üstte olacak şekilde, gönye yardımcıyla 3 nu.li yüzeyin 2 nu.li yüzeye 90° dik olarak mengeneye bağlayınız.
- Yüzeyi önce kaba, daha sonra ince talaş vererek frezeleyiniz.
- İş parçasını mengeneden sökünüz.
- 3 nu.li yüzeyin 2 nu.li yüzeye 90° dik olup olmadığını kontrol ediniz.
- İş parçasını 1 nu.li yüzeyi üstte olacak şekilde, gönye yardımcıyla 2 ve 3 nu.li yüzeylere 90° dik olacak şekilde bağlayınız. Gerekiyorsa altlık kullanınız.
- Yüzeyi önce kaba, daha sonra ince talaş vererek frezeleyiniz.
- İş parçasını mengeneden sökünüz.
- İşlenen yüzeylerin birbirleriyle 90° dikliklerini kontrol ediniz.
Resim 2.54’de iş parçasının referans yüzeylerinden birinin freze tezgâhında işlenmesi görülmektedir.

Resim 2. 54: Freze tezgâhında iş parçasından talaş kaldırma işlemi

Birinci referans yüzeyi işlendikten sonra diğer referans yüzeyleri de sırası ile işlenir (Resim 2.55). Burada yüzeylerin birbirine tam 90° olması son derece önemlidir. Gerekirse 90° dikliği sağlamak için komparatör kullanılmalıdır (Resim 2.56).

Resim 2. 55: Freze tezgâhında referans yüzeylerinin işlenmesi

Resim 2. 56: Komparatörle iş parçasının diklik ve paralelliğinin sağlanması
2.4.2. Transfer Kalıp Elemanlarının Markalanması

Referans yüzeylerinin işlenmesi tamamlandıktan sonra ana ölçülerin işlenmesi için iş parçasının uygun markalama aletleri ile markalanması gerekmektedir. İş parçası, Temel Talaşlı Üretim–1 modüldeki markalama bilgilerden yararlanılarak, ana ölçülerinde markalanır (Resim 2.57).

Resim 2.57: İş parçasının markalanması

Şekil 2.22: Referans yüzeylerine göre markalanmış bir iş parçası
Kalıp plakasının referans yüzeylerine göre markalanmasındaki işlem sırası aşağıda açıklanmıştır.

- İş parçasının markalanacak kısına, markacı boyası sürülür (Resim 2.58).
- İş parçası işlenen referans yüzeylerinden birisi üzerinde pleyte yerleştirilir ve arkası V yatağına dayatılır (Resim 2.58).
- Mihengir gerekli yükseklik ölçüsünde ayarlanır.
- İş parçası sıkça tutularak mihengir aracılığı ile çizilir (Resim 2.59).
- İş parçasının diğer yüzeyleri de bu şekilde markalanır.
- Markalama çizgilerinin kaybolmaması ve daha iyi görünümesi için noktalama işlemi yapılır (Şekil 2.22).

Burada dikkat edilmesi gereken husus, çizgiler net bir şekilde görünen aynı yerde iki veya daha çok çizgi oluşturulmamalıdır.

*Resim 2.58: İş parçasının V yatağına dayatılması*

*Resim 2.59: İş parçasının markalanması*

2.4.3. Ana Ölçülerin Takım Tezgâhları İle Oluşturulması

Referans yüzeyleri işlenen ve ana ölçüsünde markalanmış iş parçası ana ölçülerine getirilmek üzere freze tezgâhına uygun düzlemde bağlanır (Resim 2.56). Markalama çizgileri sürekli takip edilerek iş parçası ana ölçümlerinde işlenir. Yüzeylerin birbirine olan paralel ve dikliklerine mutlaka dikkat edilmelidir.
Bu şekilde sıkıştırma kalıp elemanları (çekirdek ve dalıcı zumba hariç) ana ölçülerinde uygun takım tezgâhlarda işlenir.

Kalıp elemanları ana ölçüsüne getirilirken taşlanacak yüzeylerde taşlama payı bırakılmalıdır. Bu yaklaşık olarak 0,5mm’dir.

Resim 2.60: Çeşitli takım tezgâhları

Kalıp plakasının referans yüzeylerine göre ana ölçülerin işlenmesindeki işlem sırası aşağıda açıklanmıştır.

- Mengene, freze tezgâhının tablasına gönyesinde bağlayınız.
- Freze çakısını tezgâha bağlayınız.
- İş parçası daha önce işlenen referans yüzeylerinden mengeneye veya altağa oturtularak ana ölçülerinde işlenmelidir.
- İş parçasını 2 num. yüzeyinden (Şekil 2.21) oturtarak mengene tablasına bağlayınız.
- Tezgâhın devir sayısını ve ilerleme hızını ayarlayınız.
- Yüzeyi önce kaba olarak frezeleyiniz.
- Frezelenen yüzeyin, 3 num. referans yüzeyine (Şekil 2.21) 90° dik olup olmadığını gönye ile kontrol ediniz.
- İş parçası yüzeyini ince talaş vererek ölçüsüne getiriniz.
- İş parçasını mengeneden sökünüz.
- İş parçasını daha önce işlenen 3 num. yüzeyinden mengeneye oturtarak 90° dik olacak şekilde bağlayınız.
- Yüzeyi önce kaba olarak frezeleyiniz.
- Frezelenen yüzeyin, diğer referans yüzeylerine 90° dik olup olmadığını gönye ile kontrol ediniz.
- İnce talaş veriniz frezeleyerek ölçüsüne getiriniz.
- İş parçasını mengeneden sökünüz.
• İş parçasını daha önce işlenen 1 numaralı yüzeyinden altlık kullanarak mengene oturtunuz, diğer yüzeylere paralel ve 90° dik olacak şekilde mengene bağlayınız.
• Yüzeyi önce kaba olarak frezeleyiniz.
• Frezelenen yüzeyin, diğer yüzeylere paralel ve 90° dikliğini gönye ve ölçü aletleri ile kontrol ediniz.
• İnce talas vererek iş parçasını ölçüsüne getiriniz.
• İş parçasını mengeneden sökünüz.
• İş parçasının bütün yüzeylerinin birbirleriyle 90° dik olup olmadığını kontrol ediniz.
• Bütün kenarların ölçülerinde olup olmadığını kumpas veya mikrometre ile kontrol ediniz.

2.4.4. Transfer Kalıp Elemanlarının Öpüşme Yüzeylerinin Taşlanması

Öpüşme yüzeyi: Özellikle kalıp plakalarının kalıp montajında birbirinin üzerine gelen (birbirine temas eden) yüzeylerine denir (Şekil.2.23).

Öpüşme yüzeylerinden bazıları

![Şekil 2.23: Kalıp elemanlarının öpüşme yüzeyleri](image)

Kalıbın düzgün çalışabilmesi için öpüşme yüzeylerinin hassas ve pürüzsüz bir şekilde işlenmesi yani taşlanması gerekir. Resim 2.61’de bir düzlem yüzey taşlama tezgâhı görülmektedir.
Resim 2.61: Düzlem yüzey taşlama tezgâhı

Resim 2.62'de bir kalıp plakasinin düzlem yüzeyinin taşlanmasi görülmektedir.

Resim 2.62: Düzlem yüzey taşlama işlemi

Eğer işleenecek kalıp elemanlarında taşlanması gereken silindirik parçalar bulunuyorsa bunların iç ve dış yüzeyleri, delik ve silindirik taşlama tezgâhlarında taşlanır. Şekil 2.63'te silindirik taşlama işlemi görülmektedir.

Resim 2.63: Silindirik yüzey taşlama işlemi
Bu kalıp plakalarının öpüşme yüzeylerinin (düzlem yüzeylerin) taşlanmasında takip edilecek işlem basamakları aşağıda açıklanmıştır.

- **Zımpara taşı kontrol edilir, körse bilenir.**
- İş parçası tezgâhın tablasına dayama parçalarıyla desteklenerek bağlanır.
- Zımpara taşının, iş parçasının her iki ucundan 5 cm çıkacak şekilde kurs boyu ayarlanır.
- Kesme hızı ve talas derinliği ayarlanır.
- Tezgâh tablası el ile hareket ettirilerek, mıknatıslı tabla üzerine bağlanmış olan iş parçası zımpara atasının altında getirilir.
- Tezgâh çalıştırılır ve otomatik ilerleme koluna basılır.
- Dönen zımpara taş, iş parçası yüzeyine yaklaşıkıca kadar indirilir.
- Soğutma sıvısı açılır.
- Zımpara taş 0.04 – 0.05 mm daha indirilerek kaba taşlama başlanır.
- İlerleme yönü değişirken tabla, zımpara taşı genişliğinin 1 / 4’ü kadar enine ilerletilir.
- İş parçasının diğer geniş yüzeyi için de taşlama payı hesabı katılarak kaba taşlama işlemi yapılır.
- 0.01 mm talas verilerek hassas taşlama yapılır.
- Hassas taşlama işlemi bittikten sonra, taş iş parcasının dışındayken otomatik ilerleme kapatılır.
- Soğutma suyu kapatılır.
- Taşın dönmesi durdurulur.
- Mıknatıs kapatılarak iş parçası, tezgâhın tablasından sökülür.
- Tezgâhın tablası temizlenir.
- İş parçası ters çevrilerek, hassas olarak taşlanmış olan yüzeyden tezgâhın tablasına dayama parçalarıyla desteklenerek bağlanır.
- Yükardaki maddelerdeki gibi işlem basamakları tekrarlanarak yüzey kaba olarak taşlanır.
- İş parçasının ölçü kontrolü yapılarak ince taşlama için gereklı talas payı bırakılarak kaba taşlama işlemi yapılır.
- 0.01 mm talas verilerek hassas taşlama yapılarak istenen ölçü sağlanır.
- Makine durdurularak iş parçası sökülür ve ölçü kontrolü yapılır.

**2.4.5. Bağlantı ve Merkezleme Deliklerinin İşlenmesi**


\[\text{Resim 2.64: Kazancı mengenesi}\]
Kalıp plakalarının bağlantı ve merkezleme deliklerinin delinmesinde dikkat edilecek noktalar aşağıda açıklanmıştır.

- Deliklerin plaka üzerinde markalanması gerekmektedir.
- Kalıp yarımlarını oluşturan elemanların montajında kullanılan, merkezleme (pimler) ve bağlantı (cıvatalar) elemanları, plakalara bağımsız olarak delinir. Kalıp yarımlarını oluşturan plakalar aynı anda delinir.
- Kalıp yarımlarını oluşturan elemanlar sabitledirilerek, çapraz iki ya da dört köşeden, kullanılabilecek olan civatalar uygun diş dibi çapında delinir.
- Yapım resmine göre havşa açılacak deliklere havşa açılır (Havşa açılmasının sebebi, plakalar beraber bağlandığı zaman öpüşme yüzeylerindeki deliklerde çapak kalmamasıdır.).
- Bağlama sırasında kullanılan civataların, bütün plakalardan boşluklu olarak geçerken sadece bir plakadan bağlama işlevini yerine getireceği unutulmamalıdır.
- Eğer varsa merkezleme için gerekli olan sayıda pim delikleri, toleranslara uygun olarak çapraz şekilde delinir.
- Böylece bir kalıp yarımanın merkezleme ve bağlama deliklerinin işlenmesi tamamlanmış olur.
- Plakalar birleştirme elemanından sökülmeden önce, her seferinde kalıbın aynı yönde montaj edilmiş için numaratör ile plakaların yanda kalan yüzeylerine aynı hizada numara vurulur.
- Civatanın serbest geçeceği delikler diş üstü çapında ve uygun boşluklarda genişletilir.
- Civata başının gömülceği kalıp plakasındaki delikler, civata başının çapından 0.5 mm büyük matkapla civata başına yüksekliğinde, civata başına plakaya gömülceği derinlikte delinir.
- Vida açılacak deliklerin kılavuzları çekilir.
- Raybalama payı bırakılan deliklerin, raybalama işlemlerini gerçekleştirir.
- Diğer kalıp yarımları için aynı işlem tekrarlanır.
- İki kalıp yarımları merkezlenip bağlandktan sonra, bu kez iki kalıp yarımda beraber işlenecek (özellikle dalıcı zımba ve dişi kalıp boşluğu merkezleri ve kolon merkezleri) plakalar tekrar sabitlenip, gerekli olan diğer delikler aynı merkezde olacak şekilde işlenir.

_resim 2.65: Kalıpçı frezesinde merkez deliklerin delinmesi_
Plastik transfer kalıbı plaka ve takozlarını (8 num. dalıcı plakası hariç) ana ölçüsünde işleyerek öpüşme yüzeylerini taşayınız, bağlantı ve merkezleme deliklerini istenen yüzey kalitesinde deliniz.

Şekil 2.25: Transfer kalıbı elemanları
<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Referans düzlem yüzeylerini işleyiniz.</td>
<td>➢ Çalışma ortamınızı hazırlayınız.</td>
</tr>
<tr>
<td>➢ Çalışma ortamınızı hazırlayınız.</td>
<td>➢ İş önliğinde giyiniz.</td>
</tr>
<tr>
<td>➢ İş önliğinde giyiniz.</td>
<td>➢ İş ile ilgili güvenlik tedbirlerini alınız.</td>
</tr>
<tr>
<td>➢ İş ile ilgili güvenlik tedbirlerini alınız.</td>
<td>➢ Referans yüzeylerini doğru belirleyiniz.</td>
</tr>
<tr>
<td>➢ Referans yüzeylerini doğru belirleyiniz.</td>
<td>➢ Referans yüzeylerini işleme için uygun tezgâh seçiniz.</td>
</tr>
<tr>
<td>➢ Referans yüzeylerini işleme için uygun tezgâh seçiniz.</td>
<td>➢ Referans yüzeylerini işleme için kullanacağınız kesici takımları hazırlayınız.</td>
</tr>
<tr>
<td>➢ Referans yüzeylerini işleme için kullanacağınız kesici takımları hazırlayınız.</td>
<td>➢ İş parçasını kurallara uygun şekilde makineye bağlayıniz.</td>
</tr>
<tr>
<td>➢ İş parçasını kurallara uygun şekilde makineye bağlayıniz.</td>
<td>➢ Makine ayarlarını iş parçası malzemesi, yüzey kalitesi ve makine kapasitesini dikkate alarak yapınız.</td>
</tr>
<tr>
<td>➢ İş parçasını kurallara uygun şekilde makineye bağlayıniz.</td>
<td>➢ Ana ölçüleri markalayınız.</td>
</tr>
<tr>
<td>➢ Ana ölçüleri markalayınız.</td>
<td>➢ Uygun markalama aletlerini temin ediniz.</td>
</tr>
<tr>
<td>➢ Uygun markalama aletlerini temin ediniz.</td>
<td>➢ İşlediğiniz referans yüzeylerini temel olarak iş parçalarını ana ölçülerinde markalayınız.</td>
</tr>
<tr>
<td>➢ İşlediğiniz referans yüzeylerini temel olarak iş parçalarını ana ölçülerinde markalayınız.</td>
<td>➢ Çizgilerin net bir şekilde görünmesine özen gösteriniz.</td>
</tr>
<tr>
<td>➢ Çizgilerin net bir şekilde görünmesine özen gösteriniz.</td>
<td>➢ Çizgilerin daha iyi görünmesi için nokta veniniz.</td>
</tr>
<tr>
<td>➢ Çizgilerin daha iyi görünmesi için nokta veniniz.</td>
<td>➢ Ana ölçüleri işleyiniz.</td>
</tr>
<tr>
<td>➢ Ana ölçüleri işleyiniz.</td>
<td>➢ Markalama çizgilerini dikkate almınız.</td>
</tr>
<tr>
<td>➢ Markalama çizgilerini dikkate almınız.</td>
<td>➢ Markalama çizgilerine yaklaştıktan sonra, uygun ölçüme aleti ile iş parçalarını ölçünüz.</td>
</tr>
<tr>
<td>➢ Markalama çizgilerine yaklaştıktan sonra, uygun ölçüme aleti ile iş parçalarını ölçünüz.</td>
<td>➢ Son pasoyu verirken uygun yüzey kalitesinde olmasına dikkat ediniz.</td>
</tr>
<tr>
<td>➢ Son pasoyu verirken uygun yüzey kalitesinde olmasına dikkat ediniz.</td>
<td>➢ Taşlanacak yüzeylerde uygun taşlama payı bırakınız.</td>
</tr>
<tr>
<td>➢ Taşlanacak yüzeylerde uygun taşlama payı bırakınız.</td>
<td>➢ Öpüşme yüzeylerini taşayınız.</td>
</tr>
<tr>
<td>➢ Öpüşme yüzeylerini taşayınız.</td>
<td>➢ İşe uygun taşlama tezgâhını seçiniz.</td>
</tr>
<tr>
<td>➢ İşe uygun taşlama tezgâhını seçiniz.</td>
<td>➢ Uygun taşlama taşını seçiniz ve taşın bilenmiş olup olmadığına dikkat ediniz.</td>
</tr>
<tr>
<td>➢ Uygun taşlama taşını seçiniz ve taşın bilenmiş olup olmadığına dikkat ediniz.</td>
<td>➢ İş parçasını taşlama tezgâhına emniyetli şekilde bağlayıniz.</td>
</tr>
<tr>
<td>➢ İş parçasını taşlama tezgâhına emniyetli şekilde bağlayıniz.</td>
<td>➢ Merkezleme ve bağlantı noktalarını markalayınız.</td>
</tr>
<tr>
<td>➢ Merkezleme ve bağlantı noktalarını markalayınız.</td>
<td>➢ Kalipta birçok eleman birbiriyle aynı eksende hareket ettiği için merkezleme ve bağlantı noktalarını hassas bir şekilde</td>
</tr>
<tr>
<td>➢ Kalipta birçok eleman birbiriyle aynı eksende hareket ettiği için merkezleme ve bağlantı noktalarını hassas bir şekilde</td>
<td></td>
</tr>
</tbody>
</table>
1. Markalayınız.
2. Beraber delinecek elemanlardan bir tanesini markalamınız yeterli olacaktır.
   - Merkezlere matkabın ağızlayacağı büyüklükte nokta vurunuz.
3. Merkezleme ve bağlantı deliklerini deliniz.
4. Uygunsuz delici takım hazırlayınız.
5. İş parçasını uygun bir şekilde tezgâha bağlayıniz.
6. Raybalanacak deliklerde uygun raybalama payı bırakınız.
7. Gerekiyorsa soğutma sıvısı kullanınız.
8. Raybalanması gereken delikleri raybalayınız.
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri Evet ve Hayır kutucuklarına ( X ) işaret koyarak kontrol ediniz.

<table>
<thead>
<tr>
<th>DEĞERLENDİRME ÖLÇÜTLERİ</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Çalışma ortamını hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. İş güvenliği ile ilgili tedbirleri aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Referans yüzeylerini doğru olarak belirlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Uygun kesici takımları hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. İş parçasını kurallara uygun şekilde makineye bağladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Referans düzlem yüzeylerini 90° dik olarak işlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Ana ölçüleri uygun şekilde markaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Ana ölçüleri uygun ölçü ve yüzey kalitesinde işlediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Öpüşme yüzeylerini uygun ölçü ve yüzey kalitesinde taşladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Merkezleme ve bağlantılı noktalarını markaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Beraber delinecek elemanları uygun şekilde birleştirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Merkezleme ve bağlantılı deliklerini deldiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Raybalanacak deliklerde uygun raybalama payı bırakınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Raybalanacak delikleri uygun yüzey kalitesinde raybaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Teknolojik kurallara uygun bir çalışma gerçekleştirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Süreyi iyi kullanınız mı? (10 saat)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Aşağıdakilerden hangisi freze tezgâhı asıl kesici takımıdır?
   A) Taş  
   B) Kalem  
   C) Çakı  
   D) Matkap

2. Aşağıdakilerden hangisi freze tezgâhı kısımlarından biri değildir?
   A) Tabla  
   B) Konsol  
   C) Araba  
   D) Kalemlık

3. Dişli çark üretiminde kullanılan freze çakısı aşağıdakilerden hangisidir?
   A) Modül freze çakışı  
   B) Parmak freze çakışı  
   C) Kanal freze çakışı  
   D) Kanal freze çakışı

4. Freze tezgâhına mengenenin paralel veya dik olarak bağlanmasını kontrol eden cihaz aşağıdakilerden hangisidir?
   A) Kumpas  
   B) Komparatör  
   C) Mikrometre  
   D) Malafa

5. Freze tezgâhında talaş derinliği vermek için aşağıdakilerden hangisi kullanılır?
   A) Malafa  
   B) Divizör  
   C) Tabla  
   D) Konsol
6. Aşağıdakilerden hangisi bir taşlama tezgâhı çeşidi **değildir**?
   A) Yatay milli düzlem yüzey taşlama tezgâhı  
   B) İç yüzey taşlama tezgâhları  
   C) Puntasız taşlama tezgâhları  
   D) Radyal taşlama tezgâhı

7. Aşağıdakilerden hangisi bir silindirik taşlama tezgâhının kısımlarından **değildir**?
   A) Kalemlık  
   B) Zımpara taşı başlığı  
   C) Kumanda panosu  
   D) Gezer punta

8. Aşağıdakilerden hangisi zımpara taşı asındırıcı tane cinslerinden biridir?
   A) Şellak  
   B) Silikat  
   C) Kuvars  
   D) Kauçuk

9. Aşağıdakilerden hangisi taş bileme araçlarından biri **değildir**?
   A) Elmas bileyici  
   B) Bileme taşı  
   C) Bileme topacı  
   D) Bileme diski

10. Zımpara taşı tanelerinin tane kümesinden koparılmasına karşı gösterdiği dirence ne denir?
    A) Taşın dönme hızı  
    B) Taşın rengi  
    C) Taşın sertliği  
    D) Taşın tane cinsi

11. İş parçalarının deliğini istenen yüzey kalitesi ve ölçü tamlığına getirmek için yapılan işlem aşağıdakilerden hangisidir?
    A) Delme  
    B) Frezeleme  
    C) Tornalama  
    D) Raybalama

12. Aşağıdakilerden hangisi bir rayba çeşidi **değildir**?
    A) Kanal raybalar  
    B) Ayarlı raybalar  
    C) Konik raybalar  
    D) Silindirik raybalar

117
13. Kalıp elemanlarının öncelikle işlenecek yüzeyleri aşağıdakilerden hangisidir?

A) Arka yüzeyler  
B) Ön yüzeyler  
C) Referans yüzeyleri  
D) Geniş yüzeyler

14. Kalıp elemanlarının beraber işlenmesinin asıl nedeni nedir?

A) Yüzey kalitesinin iyi olması  
B) İşlerin çabuk bitirilmesi  
C) Kolay işlenmesi  
D) Aynı eksende olmalarını sağlamak

15. Kalıp elemanları işlenirken taşlama payı yaklaşık ne kadar bırakılmalıdır?

A) 0.2 mm  
B) 0.1 mm  
C) 0.5 mm  
D) 0.05 mm

DEĞERLENDİRME

Aşağıda resmi verilen plastik transfer kalıbı dalıcı plakasının yapım resmini bilgisayar destekli çizim programında çiziniz.

Dalıcı plakasını ana ölçüsünde işleyerek öpüşme yüzeylerini taşıyınız, merkez deliklerini 9 nu.lı üst bağlama plakası ile beraber deliniz.

Şekil 2.26: Transfer kalıbı dalıcı plakası
KONTROL LİSTESİ

Bu modül kapsamında aşağıdaki listelenen davranışlardan kazandığınız becerileri **Evet** ve **Hayır** kutucuklarına (X) işareti koyarak kontrol ediniz.

<table>
<thead>
<tr>
<th>DEĞERLENDİRME ÖLÇÜTLERİ</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Çalışma ortamını hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. İş güvenliği ile ilgili tedbirleri aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Tespit edilen değerler göre çalışma sayfası limit ayarınızı yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Auto-cad komutlarını kullanarak yapım resimlerini bilgisayar ortamında çizdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Bilgisayar Destekli Çizim modulünden faydalanarak, tolerans ve yüzey işleme işaretlerini oluşturduğunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Antet oluşturduğunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Çıktı oranlarına ve çizgi kalınlıklarına dikkat ederek çıktınızı aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Referans yüzeylerini doğru olarak belirlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Uygun kesici takımları hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. İş parçaları kurallara uygun şekilde makineye bağlandınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Referans düzlem yüzeylerini işlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Ana ölçüleri uygun şekilde markaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Ana ölçüleri uygun ölçü ve yüzey kalitesinde işlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Öpüşme yüzeylerini uygun ölçü ve yüzey kalitesinde taşıdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Merkezleme ve bağlantı noktalarını markaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Beraber delinecek elemanları uygun şekilde birleştirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Merkezleme ve bağlantı deliklerini deldiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Raybalanacak deliklerde uygun raybalama payı bıraktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Raybalanacak deliklerde raybalama işlemini istenen yüzey kalitesinde ve ölçü tamlığında gerçekleştirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Teknolojik kurallara uygun bir çalışma gerçekleştirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Süreyi iyi kullanınız mı? (6 saat)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

**CEVAP ANAHTARI**

**ÖĞRENME FAALİYETİ -1'İN CEVAP ANAHTARI**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
</tr>
</tbody>
</table>

**ÖĞRENME FAALİYETİ- 2 CEVAP ANAHTARI**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
</tr>
<tr>
<td>14</td>
<td>D</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
</tr>
</tbody>
</table>
KAYNAKÇA