T.C.
MİLLİ EĞİTİM BAKANLIĞI

GEMİ YAPIMI

TEMEL KAYNAKLı BİRLEŞTİRMElER

Ankara, 2013
Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilerle rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

- Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.
- PARA İLE SATILMAZ.
AÇIKLAMALAR ........................................................................................................... iii
GİRİŞ .......................................................................................................................... 2
ÖĞRENME FAALİYETİ–1 ......................................................................................... 4
1. ELEKTRİK ARK KAYNAĞI ............................................................................... 4
   1.1. Kaynağın Tanımı ...................................................................................... 4
   1.2. Kaynak Elemanları ................................................................................ 5
      1.2.1. Kaynak Makineleri ........................................................................ 6
      1.2.2. Kaynak Pens ve Şasesi ................................................................ 7
      1.2.3. Kaynak Maskesi ve Camı ................................................................ 9
      1.2.4. Kaynak Kabloları .......................................................................... 11
      1.2.5. Kaynak Masası ............................................................................. 15
      1.2.6. Kaynak Elektrodları (Rutil 2,5 - 3,25 - 4,00) .................................. 17
      1.2.7. Kaynak Elektrodları (Rutil 2,5 - 3,25 - 4,00) .................................. 17
      1.2.8. Kaynağı Kıyafeti (Önlük, Eldiven, Ayakkabı) .............................. 19
      1.2.9. Kaynak Çekici .............................................................................. 20
      1.2.10. Tel Frıça ...................................................................................... 21
      1.2.11. Pens Sehpası .............................................................................. 21
      1.2.12. Kaynak Paravanları .................................................................... 22
      1.2.13. Havalandırma Sistemleri .............................................................. 22
   1.3. Elektrik Arki ............................................................................................... 23
      1.3.1. Elektrik Akımı Hakkında Genel Bilgi ............................................. 23
      1.3.2. Kaynak Akıımının Tanımı ............................................................. 25
      1.3.3. Kaynak Amper Ayarı .................................................................... 26
      1.3.4. Ark Oluşturma Çeşitleri ................................................................ 29
      1.3.5. Ark Oluşturma (Arkı Yaktıma) ....................................................... 32
      1.3.6. Kaynak Maskesini Kullanma .......................................................... 32
      1.3.7. Kaynak Sırasında Alınacak Güvenlik Önlemleri .......................... 32
   1.4. Yatay Konumda Düz Dikiş Çekmek .......................................................... 35
      1.4.1 Markalama ....................................................................................... 35
      1.4.2. Kaynak Başlangıç ve Bitiş Yerleri ............................................... 35
      1.4.3. Kaynak Bölgesi ........................................................................... 37
      1.4.4 Dikiş Çekme Teknikleri .................................................................. 37
   UYGULAMA FAALİYETİ ................................................................................. 41
   ÖLÇME VE DEĞERLENDİRME ....................................................................... 45
ÖĞRENME FAALİYETİ–2 ......................................................................................... 48
2. YATAYDA KÜTÜK EK VE BİNDİRME KAYNAĞI ........................................... 48
   2.1. Parçaların Kaynağa Hazırlanması ......................................................... 48
      2.1.1. Gereği ve Önemi ......................................................................... 48
      2.1.2. Kaynak Öncesi Temizliğinin Önemi ............................................ 49
      2.1.3. Kaynaklı Birleştirme Çeşitleri ..................................................... 50
      2.1.4. Kaynak Konumları .................................................................... 50
      2.1.5. Elektrodlar ............................................................................... 51
      2.1.6. Puntalamanın Gereği ve Önemi .................................................. 62
   2.2. Yatay Konumda Küt Ek Kaynağı Yapmak .............................................. 63
      2.2.1. Ark Üflemesinin Tanımı ............................................................. 63
<table>
<thead>
<tr>
<th>ALAN</th>
<th>Gemi Yapımı</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAL/MESLEK</td>
<td>Alan Ortak</td>
</tr>
<tr>
<td>MODÜLÜN ADI</td>
<td>Temel Kaynaklı Birleştirmeler</td>
</tr>
<tr>
<td>MODÜLÜN TANIMI</td>
<td>Temel kaynaklı birleştirmelere ait bilgi ve becerilerin kazandırıldığı bir öğrenme materyalidir.</td>
</tr>
<tr>
<td>SÜRE</td>
<td>40/32</td>
</tr>
<tr>
<td>ÖN KOŞUL</td>
<td>Bu modülün ön koşulu yoktur.</td>
</tr>
<tr>
<td>YETERLİK</td>
<td>Gemi yapımında kullanılan çelik malzemeleri kaynak yöntemi ile birleştirmek</td>
</tr>
<tr>
<td>MODÜLÜN AMACI</td>
<td>Genel Amaç</td>
</tr>
<tr>
<td></td>
<td>Gereklı ortam ve ekipman sağlandığında elektrik ark kaynağını ile dikiş çelikecek ve küt ek bindirme kaynağı yapabileceksiniz.</td>
</tr>
<tr>
<td></td>
<td>Amaçlar</td>
</tr>
<tr>
<td></td>
<td>1. Elektrik arkı oluşturarak yatay konumda düz dikiş çelikeceksiniz.</td>
</tr>
<tr>
<td></td>
<td>2. Uygun elektrod seçerek yatay konumda küt ek bindirme kaynağı yapabileceksiniz.</td>
</tr>
<tr>
<td>EĞİTİM ÖĞRETİM</td>
<td>Ortam: Kaynak atölyesi ve derslik</td>
</tr>
<tr>
<td>ORTAMLARI VE</td>
<td>Donanım: Kaynak makinesi, kaynak masası, kaynak yardımcı elemanları</td>
</tr>
<tr>
<td>DONANIMLARI</td>
<td></td>
</tr>
<tr>
<td>ÖLÇME VE</td>
<td>Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçme araçları ile kendinizi değerlendireceksiniz. Öğretmen modül sonunda ölçme aracı (çoktan seçmeli test, doğru-yanlıs testi, boşluk doldurma, eşleştirme vb.) kullanarak modül uygulamalarını ile kazandığınız bilgi ve becerileri ölcerek sizi değerlendirecektir.</td>
</tr>
<tr>
<td>DEĞERLENDİRME</td>
<td></td>
</tr>
</tbody>
</table>
Sevgili Öğrenci,

Tarihsel açıdan bakıldığında kaynakçılık özellikle elektrik ark kaynakçılığı gelişimini sürdürümektedir. Yapılan araştırmalar, kaynak aletleri ve kaynak dolgu metallerindeki satış grafiğinin son on yıl içinde önemli miktarlarda arttığını göstermektedir. Diğer yandan kaynakçılığın geleceği ile ilgili araştırmalar yapan uzmanlar, günümüzdeki yıllarda kaynakçılıkta metallerin kesim işlerinde çalışanlar ile kaynak makinesi operatörleri sayısının % 4,7 oranında artacağını savunanlardır. Bu artışlar, gelecek yıllarda kaynak ile ilgili alanlarda çalışanlara daha çok ihtiyaç duyulacağı anlamına gelir.

Bu modül, özel kaynak işlemleri gerektiren daha kuvvetli yeni gereçlerin ortaya çıkarılması, daha iyi kalitede kaynağına ihtiyaç duyulan yeni gereç standartlarının tanıtılmış, ilerde kaynakçılığın varacağı boyutla ilgili bilgileri sizlere sunmaktadır.
ÖĞRENME FAALİYETİ–1

AMAÇ

Elektrik arkı oluşturarak yatay konumda düz dikiş çekebileceksiniz.

ARAŞTIRMA

- Elektrik ark kaynağı bölümünde bulunan çizim ve tablolara bakınız. Bunlarla neler anlatılmaya çalışıldığını anlamaya çalışınız. Atölyenizde bulunan kaynak elemanlarıyla benzer yönleri keşfediniz.

1. ELEKTRİK ARK KAYNAĞI

1.1. Kaynağın Tanımı


Resim 1.1: Oksi-gaz kaynağı banyosu


Metalik özelliklere sahip iki ya da daha fazla metali ısı ya da basınç altında birleştirmeye kaynak denir. İki parçanın birleştirilmesinde ilave bir gereç kullanılmıştır. İki parçanın birleştirilmesinde ilave bir gereç kullanılıyorsa bu gerece ilave metal ya da ek kaynak teli adı verilir.

- Metal kaynağı da alt gruplara ayrılır. Genel olarak da;
  - Ergitme kaynağı (Resim 1.2),
  - Basınç kaynağı olarak sınıflanır.

Resim 1.2: Gemi omurgasının su altında ergitme kaynağıyla onarılması

1.2. Kaynak Elemanları

Kaynak işlerinde kullanılan başlıca elemanlar aşağıda açıklanmıştır.
1.2.1. Kaynak Makineleri


- Kaynak makineleri;
  - Doğru akım veren kaynak makineleri,
  - Alternatif akım veren kaynak makineleri olarak sınıflandırılır.

Resim 1.3: Jeneratör ark kaynak makinesi ve çalışma

Doğru akım veren kaynak makineleri olarak kaynak jeneratörleri ve kaynak redresörleri kullanılmaktadır. Alternatif akım veren makineler ise transformatör olarak anılır. Her iki grupta toplanan makinelerin birbirlerine göre üstünlükleri vardır. Satın alma maliyeti açısından alternatif akımla çalışan makinelerin tartışılmaz üstünlüklerinin olması bu tür makinelerin her metal işleri atölyesinde bulunmasına neden olmaktadır.

- Doğru akım veren makinelerin genel üstünlükleri şunlardır:
  - Düşük akım şiddetine ulaşmak mümkündür. Bunun anlamı, ince çaplı elektrodlar ile ince kesitli parçaların kaynağının başarıyla sonuçlanması demektir.
  - Doğru akım ile bütün elektrod türlerinin kullanılması mümkündür.
  - Doğru akımda arkı tutuşturulması daha kolaydır.
  - Kısa ark boyu ile sürekli çalışmak mümkündür.
  - Düşük akım şiddettelerinde kaynak yapmak mümkün olduğundan tavan ve dik kaynağı gibi zor konumlarda kaynak yapmak daha kolaydır.
  - Ark oluşumu sırasında meydana gelen sıçramalar daha azdır.
Bu sıralanan maddeler, bir bakıma doğru akımın üstünlükleri olarak kabul edilmelidir.

- Alternatif akımın üstünlükleri ise şunlardır:
  - Alternatif akım hâlinde ark üflemesi nadiren bir sorun oluşturur.
  - Alternatif akım ile kalın kesitli parçaların kalın çaplı elektrodlar ile kaynağı rahatlıkla yapılabilmektedir.

Resim 1.4: Transformatör kaynağı makinesi ve kaynağın donanımı

1.2.2. Kaynak Pens ve Şasesi

Resim 1.5: Kaynak pensiyle kavranmış elektrod ile aşağıdan yukarıya dik kaynak

Gerek elektrodun kavranması gerekse kaynak dikişinin istenilen şekilde biçimlendirilmesi için kaynak pensi adı verilen aparatlara ihtiyaç vardır (Resim 1.6.). Pensler değişik biçimlerde üretilmektedir. Kaynak pensleri, özellikle elle yapılan elektrik ark kaynağında, kaynakçının el ile kavrayabileceği biçimde sahiptir (Resim 1.6.). Kaynak pensine elektrod, çıplak olan ucundan takılır. Bir mandal prensibiyle çalışan pensin ağzı, elektrodu
istenilen açıda sıkıça tutabilecek biçimde tasarımlıtır. Pensler yüksek bir iletkenliğe sahip, aynı zamanda kaynak sırasında oluşan yüksek sıcaklığa dayanıklı, metalik özelliklere sahip gereçler kullanılarak üretilir. Pensin kaynakçısı tarafından el ile tutulan kısımları iyi derecede yalıtılmıştır.

Kaynak penslerinin dengeli ve hafif olması, kaynakçının kavrayacağı kısmının el yapısına uygun olması ilk başta sayılabilecek özellikler olarak ele alınmaktadır.

Resim 1.6: Kaynak pensinin tutulması

Kaynak arkının dengeli olması için kaynak makinesinde üretilen akımın pensten elektroda, buradan iş parçasına sonra da kaynak makinesine iletilmesi gerektmektedir. İş parçasıyla kaynak makinesi arasındaki akım iletimi kaynak kablolarıyla sağlanır. Bu kabloya toparlama kablusu adı verilmekte olup iş parçasına temasının sağlanmasında şase adı verilen parçaların aracılığıyla sağlanır. (Resim 1.7)

Değişik iş parçalarının kaynak edilmesi sırasında, çoğu kez şasenin yer değiştirilmesi gerektiğiinden şasenin portatif bir düzenekte olması tercih edilmektedir. Yer değiştirilmesi kolay olacak bir şase apparatıya ya mıknatslı ya da işkence türüne olabilir. Şasenin iş parçasına direkt olarak bağlanma gereği vardır. (Resim 1.7). Kesinlikle bir metal kullanılarak şasenin iletim yapmasına izin verilmemelidir.

Resim 1.7: Kaynak şasesi
1.2.3. Kaynak Maskesi ve Camı

Kaynak arkının ortaya çıkardığı enerjinin %85’i ısı, %15 ışık enerjisi olarak değerlendirilmektedir (Şekil 1.1). ışık enerjisinin %10’u ultraviyole, %30’u parlak veya görünen ışınlar, geri kalanı ise enfraruj ışınlardır. Parlak ve görünen ışınlar gözleri kamaştıracak geçici görme bozukluklarına neden olur. Bu olayın sürekli olması ise doğal olarak gözün görme kabalığının azalmasıyla sonuçlanır.

Şekil 1.1: Elektrik ark kaynağından enerjinin dağılımı

denilen bir göz hastalığının meydana gelmesine yol açar. İleri aşamalarında bu hastalık, ameliyat ile tedavi edilebilirse de kişide görme yeteneğinin azalmasına neden olmaktadır.


Resim 1.8: Kaynak maskesi

Camların korunması ve kullanılmasının kolaylaştırılması için maske adı verilen kaynak temel elemanlarına ihtiyaç vardır.

Koruyucu camlar ile gözleri koruduğu gibi zararlı ışınların kaynakçının yüzünde olumsuz etkiler birakmasına da engel olan maskeler, ışınların yüz derisini yakmasını da önler. Maskeler el ya da kask türünde olabilir.

Kaynak esnasında arık sürekli olmaması, kaynak başlangıcında puntalama olarak adlandırılan kısa kaynak işlemlerinin yapılması gereği, el ve kask türü maske kullanımını
zorlaştırmaktadır. Klâsik kaynak koruyucu camları, normal aydınlik şartlarında görmeyi zorlaştırmaktadır.

Elektrik ark kaynağında kullanılacak en ideal maske ve camlar ark ışığında kararan, normal ışıkta ise aksi davranış kaynak koruyucu camları, normal aydınlık şartlarında görmeyi zorlaştırmaktadır. Bu türdeki maskeler diğerlerine nazaran daha pahalı olmasına rağmen kaynak işleminin rahat bir şekilde ve kaynakçının gözünü yormadan işlemi gerçekleştirmesine olanak tanımladır (bk. Resim 1.9).

Resim 1.9: Aşırı dumanlı kaynak işlemleri için önerilen kaynak maskelerinin içinde kaynakçıyı temiz hava solumasını sağlayacak düzenekli maskeler

1.2.4. Kaynak Kabloları

Resim 1.10: Kaynak kablo


10 metreyi geçmemek kaydıyla kaynak işlerinde kullanılan kabloların izin verilen kesit ölçüleri şunlardır:

- 250 ampere kadar, 50 mm² kesitli bakır kablo, çıplak tel çapı yaklaşık 9,6 mm.
- 400 ampere kadar, 70 mm² kesitli bakır kablo, çıplak tel çapı yaklaşık 11,2 mm.
- 550 ampere kadar, 95 mm² kesitli bakır kablo çıplak tel çapı yaklaşık 13 mm.


\[ K = \frac{2 \cdot L \cdot I}{a \cdot U} \]

Bu formülde ifade edilen simgelerin anlamı aşağıda açıklanmıştır.

K: Uygun kablo kesitini mm² cinsinden verir.
L: Pens ya da şase ile kullanılan kaynak kablosu boyunun metre cinsinden değerdir.
I: Kaynak akım şiddetidir ve birimi amperdir (A).
U: Kaynak devresinde izin verilen gerilim kaydır ve volt ile ifade edilir. Bu değer 2 voltu geçmemesi gerekir.
a: Kablo gereciyle ilgili bir katsayıdır. Bu değer bakır için 60, alüminyum için 30, çinko için 15 ve demir için 8 olarak alır.

Örneğin 120 A ile yapılan bir kaynak işleminde 22 metre uzunlukta bakır bir kablo kullanacağımızı düşünelim. Bu kablunun kesiti şu şekilde bulunabilir:

\[ K = \frac{2 \cdot 22 \cdot 120}{60 \cdot 2} = 44 \text{ mm}^2 \]

<table>
<thead>
<tr>
<th>Kaynak Akım Şiddeti (A)</th>
<th>Kaynak Kablosu Uzunluğu (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>150</td>
<td>35</td>
</tr>
<tr>
<td>200</td>
<td>35</td>
</tr>
<tr>
<td>250</td>
<td>50</td>
</tr>
<tr>
<td>300</td>
<td>70</td>
</tr>
</tbody>
</table>

Tablo 1.1: Bakır kablo kesitleri

Bunun yanında kablolardan üzerine iyi bir yalıtım sağlanmış olmalıdır. Yalıtım değerleri konusunda fikir edinebilmek için kablo dış çapı ölçülebilir. Buna göre yalıtılmış kablo dış çapları aşağıdaki tablodan belirlenir.

<table>
<thead>
<tr>
<th>Bakır kesit alanı mm²</th>
<th>25</th>
<th>35</th>
<th>50</th>
<th>70</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaklaşık dış çap mm</td>
<td>13,5</td>
<td>14,5</td>
<td>16</td>
<td>18,5</td>
<td>20,5</td>
</tr>
</tbody>
</table>

Tablo 1.2: Kaynak kablosu dış çap ölçüleri

Kaynak kablolari her uzunlukta kullanılacak diye bir kural yoktur. Bunun yerine uzun kaynak kablolarnın ve yüksek kaynak akımının büyük bakır kesit alanı gerektirdiği, kısa kaynak kablolarnın ve düşük kaynak akımının küçük bakır kesitı gerektirdiği unutulmamalıdır. Zorunlu olmajıkça kaynak kablolarnın çok uzun tutulması önerilmez.

Ancak birçok uygulamada uzun kaynak kablolarnına ihtiyaç duyulduğu da bir gerçekten. Kablolarnın uzatmak “”bağlantı parçalarının kullanılması gereklidir. Uzatma işleminin de hesaplara dayandığı unutulamamalıdır. Bu gibi durumlar için geliştirilmiş bir çizgeden yararlanmak başarılı kaynak çalışmalarını için gereklidir (Şekil 1.2.). Yanda bu amaçla hazırlananmış bir çizge bulunmaktadır. Çizgede aynı uzunlukta şase ve pens kablolarnın % 6 verim kayıbüla çalıştıklarında ne kadar uzunluga sahip olmaları gerektiği verilmektedir.
Şekil 1.3: Kabloların birbirine bağlanmasında özel bağlantı elemanları

Şekil 1.4: Kabloların yol gibi geçilen yerlerde kullanılması gerektirirken ihracının koruyucu bir sac ile kapatılmasına

Şekil 1.2: Kaynak sırasında kullanılan akım şiddetine kablo uzunluğu arasındaki bağlantı

devre terli koltuk altlarından kaynakçıyı etkilemekte ve ölümle sonuçlanabilen kazalara neden olmaktadır.

1.2.5 Kaynak Makinesini Kayınağa Hazırlama

Kaynak başlamadan önce kaynak makinesi bağlantılılarının (şase, pens, elektrik vb.) kurallara uygun olarak yapılması, kaynak kablolarının iyi yalıtılmış ve yeterli kesitte bulunması, amper arayının malzemeye göre ayarlanması gerekir.

1.2.6 Kaynak Masası


Resim 1.11: Kaynak masası

Kaynak yapılacak iş parçalarının üzerinde konumlardırıldığı ve kaynakçının rahat çalışmasına olanak tanıyan şekildeki düzenekleri masa ve pozisyonerler olarak gruplamak yerinde olur. Masalar kaynakçının çalışma sırasında tüm gereksinimlerini karşılayabilecek niteliklerinin yanında, kaynatılacak iş parçasının boyutlarına da uygun olmalıdır.

Ayrıca boruların kaynağı da özel düzenekleri gerektirir. Boruların eksenlerinde birleştirilmesi ve tam ağızlanmanın sağlanması, bu tür araçları zorunlu hâle getirmiştir.

Resim 1.13: Pozisyoner ve kısımları
1.2.7. Kaynak Elektrodları (Rutil 2,5 - 3,25 - 4,00)


Kesitin çapı, elektrodun anma çapına karşılık gelmekte, elektrodlar bu çapa göre de anılmaktadır. Piyasada en çok kullanılan örtülü elektrod çekerde kapılar 2 / 2,5 / 3,25 / 4 / 5 / 6 mm; boyları ise 250-350-450 mm’dir.

Elektrodların çekirdek çapına göre anılmasının temel nedeni, örtü kalınlıklarının ihtiyaça göre değişiyor olmasıdır. Örtülü elektrodların örtü kalınlıkları ince, orta ve kalın olmak üzere üç çeşittir. Her çekirdek çapına göre üretim değişik örtü kalınlığına sahip elektrod bulunur.

Diğer yandan bazı örtü cinsleri belli örtü kalınlığına uygun elektrodun üretimesine yol açmıştır. Biraz sonra örtü cinslerine göre elektrodları sınıflandırarak bu konu daha iyi bir şekilde açığa çıkacaktır.

Kaynaklı birleştirmede oluşturulan kaynak dikişinin tüm özellikleri, elektrod örtü mağarasını yapısıyla derinden ilgilidir. Buna göre elektrod örtü maddesinin bileşimiyle kaynak dikişinin biçimi, yüzey düzgünliği, bir dereceye kadar bileşimi ayarlanabilir. Dolayısıyla ark kaynağında örtü maddesinin önemli büyüktür.

Elektrod örtüsünün kaynak işleme sağladığı yararlar şu şekilde sıralanabilir:
- Arken tutuşmasını ve oluşumunu kolaylaştırmak,
- Kaynağın doğru ya da dalgalı (alternatif) akımda yapılabilmesini sağlamak,
- Ark oluşumunda meydana gelen sıçramaların az düzeyde olmasını sağlamak,
- Ark oluşumunda eriyen metal damlaların yüzey gerilimlerini ve akışkanlıklarını, etkileyerek değişik pozisyonlarda kaynak yapılabilmesini sağlamak,
- Koruyucu bir gaz atmosferi sağlayarak kaynak dikişini havanın olumsuz etkilerinden korumak,
- Kaynak işleminin sonunda dikişin yüzeyini bir çüruf tabakasıyla örterek dikişin yavaş soğumasını sağlamak,
- Gerektiği hallerde kaynak dikişinin olumu yönden oluşumunu sağlamaktır.

Yukarıda sıralanan her maddenin kaynak işleminde ayrı bir önemi vardır. Elektrod örtü maddesinin tüm bunları gerçekleştirebilmesi için yapılarla değişik maddeler konur. Bu maddelerin her birinin ayrı görevi vardır.

Örtülü elektrodlar, örtülerinin içerdikleri ana bileşenlerinin türüne ve çürüflerin asitlik ya da bazlık durumu göre çeşitlenir. Buna göre yapılacak sınıflandırma sonucunda aşağıdaki gruplar elde edilir.

- Örtülü elektrodlar
  - Rutil elektrodlar
  - Asit elektrodlar
- Oksit elektrodlar
- Bazik elektrodlar
- Selülozik elektrodlar
- Demir tozlu elektrodlar
- Derin nüfuziyet elektroları

Rutil elektrodlar örtü ağırlığının yaklaşık %35’ini titandioksidin oluşturduğu ve değişik örtü kalınlıklarında üretilen elektrolardır. Eriyen kaynak metali, örtü kalınlığını artıracak incelen damlalar hâlinde iş parçasına geçer (Şekil 1.6.). Örtü kalınlığının fazla olması kaynak dikişinin mekanik özelliklerini de olumlu yönden etkilemekte, aralık doldurma kabiliyetini artırmaktadır. Rutil türdeki örtüye sahip elektrodlar, dikiş tamamnamak örten, oldukça kalın, rengi kahverengiden siyaha kadar değişen, çabuk katılma bir cıvruf oluşturur. Meydana gelen cıvrufun özellikleri, örtüyü oluşturan maddelerin miktar ve türüne bağlıdır.

Şekil 1.6: Küçük damlalar hâlinde rutil tip elektrodun kaynak metali geçışı


1.2.8. Kaynakçı Kıyafeti (Önlük, Eldiven, Ayakkabı)


Resim 1.15: Kaynakçı kıyafeti

Bazı durumlarda birden fazla kaynakçı sırt sırtta vererek çalışır. Bu tür çalışma yapan kaynakçılarnın enselerinde yanmalar görülür. Önlem olarak bu tür çalışma yapan kaynakçılara mışger giyimesi önerilir.

Kaynak işlemiyle uğraşan kişilerde koruyucu önlemler alınmasının önemi büyütür. Aynı atölyede bulunan da kaynakla uğraşmayan kişilerin de kaynağı ortaya çıkardığı ışınlardan etkilenebileceği unutulmamalıdır. Bunun için çevrede çalışanların çıplak kollarla ve eldivensiz çalışmasına izin verilmemelidir.

1.2.9. Kaynak Çekici

Kaynak dikisi üzerinde oluşan cürufun temizlenmesinde kullanılan özel yapıdaki çekicilere kaynak çekici denir (bk. Resim 1.16.).
1.2.10. Tel Fırça

Dikiş, kaynak çekiciyle cürüflardan temizlendikten sonra özel fırçalar ile sıçramalardan meydana gelişen metal parçalarından da arındırılır. Böylece kaynak dikişi temizlenmiş olur. Bu işlem için üretilen fırçalar, elle kullanılabilecek bir yapıya sahiptir (Resim 1.16.).

1.2.11. Pens Sehpası

Kaynağa ara verildiğinde kaynak pensinin konulduğu sehpalardır. Sehpanın pens konulan kısımanın elektrik enerjisine karşı yalıtılmış olması, ark oluşumunu önlemek bakımından önemlidir. Pens sehpa sıraları kullanılıacak yerin elektrik akımını iletmeyecek nitelikte olması, ön koşul olarak algılanabilir. Bu nedenle birçok olumsuzlığa meydan vermemek için pensin duvara denk gelen bir yere özel aparatlar kullanılarak asılması, daha doğru bir uygulama olacaktır (Şekil 1.7.).
1.2.12. Kaynak Paravanları

Kaynak arkının oluşumunda kullanılan elektrik enerjisinin ısı ve ışık enerjisine dönüştüğünü biliyoruz. Kaynak yapan kişi, bu ışınlardan korunmak için iç yapısında özel camlari bulunan maskeler kullanır.


Bir bakıma kaynak yapılan alanlar, paravan ya da perdele aracılığıyla kabin hâline döner (Resim 1.17)

Resim 1.17: Kaynak paravanı

1.2.13. Havalandırma Sistemleri

Kaynak işlemi sırasında kaynakçının etkilendiği olumsuzluklardan biri de gazlardır. Elektrod oluşturan maddeler kaynak sırasında yanarak önemli miktarlara varan gazların oluşmasına neden olur. Elektrod üreticiler firmalar, elektrodların yanması sırasında ortaya çıkan gazların kaynakçıyı zarar vermemesi için elektrod bileşimlerini dikkatlice hazırlar. Bunun için de elektrod örtü maddelerine zararlı etki bırakacak maddeler koymaz. Tüm
bunlara rağmen kaynak esnasında açığa çıkan gazların solunabilir temiz bir hava olmadığı da bir gerçektir.

Kaynak yapılan alanda ergimenin oluşması, ilave metal (elektrod) ile iş parçasını meydana getiren metalin ergimesi anlamını taşımaktadır. Her iki metalde değişik oranlardaki metal ve alaşmlardan oluşur. Bu metal ve alaşmlar ile elektrod örtüsünün iç yapısında bulunan bazı metaller, ergiyik ortamında gazların oluşmasına neden olmaktadır. Ortaya çıkan tüm gazların kaynakçiya zarar vermesini engellemek için kaynak yapılan ortamdan uzaklaştırılacak yerinde kaynakçının soluyabileceğine temiz havanın gönderilmesi gerekiyor.


Resim 1.18: Kaynak

1.3. Elektrik Arkı

Elektrik bir enerji dönüşümü sonucunda ortaya çıkar. Bu konu ile ilgili genel bilgi aşağıda verilmiştir.

1.3.1. Elektrik Akımı Hakkında Genel Bilgi

Kömür, petrol ve nükleer tepkimelerden elde edilen ısı ya da akarsuların kinetik enerjisinin harekete dönüşmesi, elektrik sağlayan kaynakları oluşturmaktadır. Elektrik, bir birincil
enerji kaynağı değildir. Başka bir deyişle ışık, ısı ve harekete çevrilmesi için bazı auytlar kullanmak gerekir. Uzak mesafelerle taşınabilmesi, değişik enerji biçimlerine rahatlıkla dönüştürilebilmesi, temiz ve kolay elde edilebilmesi nedeniyle öteki enerji biçimlerinden üstündür.


Elektronlar, bütün atomlarda çekirdeğin yani proton ve nötronların çevresindeki yörüngede bulunur. Protonlar ile elektronlar arasındaki elektrostatik çekim, atomun dağılmasını önler. En dış yörüngedeki değerli elektronlarını (kimyasal bağ oluşturan elektronlar), çekirdeğe çok zayıf bir biçimde bağlıdır. Özellikle bakır, gümüş ve sodyum gibi metal elementlerde bu durum daha bariz olarak açığa çıkar. Çekimin zayıflığına, elektronun iki bin katı kadar olan proton ve nötronun ağırlığı eklenince dış ortamda kolayca koparılabilir hâle gelir.

Metal atomları, kafes sistemleri içerisinde bir arada bulunur. Metal elementlerin kafesleri, dış yörüngelerdeki elektronların yükler derecede serbestlik sağlar. Bu nedenle söz konusu elementler iyileşikendir. Öte yanda yalıtkanlar, atom ve kafeslerinin dış yörüngelerindeki sınırlı hareketlilikte nitelenir.

Elektronlar, katı iletkenler boyunca rastgele ilerler ve bir amperlık akım sağlamak için bir saniyede altı milyon kez milyonun üstünde elektronun geçmesi gerekir. Elektrik akımı nedeniyle ortaya çıkan elektriksel büyüklükler yayılır fakat her elektron saniyede ancak 25 mm kadar yol alabilir.

Elektron akışı, elektrik akımı olarak adlandırılır. Birimi amperdir (Kısaca A ile gösterilir). Bir amper, verilen bir noktadan bir saniyede 6,24x10^{18} (6240000 trilyon) elektronun geçmesi demektir. Her elektron küçük bir eksi yük taşındaki akım, bir yük niceliği olarak da tanımlanabilir. Yük, klonlu (simgesi C) ölçülür. Bir amper, bir klon/saniye olarak tanımlanır. (1A=1C/sn.) yani bir elektronun yükü 1,6 201x10^{-19} klondur.
Elektrik şebekesinde bulunan elektrik akımının türü, alternatif akım diğer bir adıyla dalgaltırak akımdır. Kaynak makineleriyle ilgili bilgilerimiz hatırlanacak olursa makinelerin hem şebekeden alınan dalgaltırak akıma hem de doğrultmaçlar yardımcıyla dalgaltırak akımın doğru akına çevrilidğinden söz etmiştik.

Şekil 1.8: Dalgaltırak akım çizgesi

Ülkemizin de içinde bulunduğu birçok ülke elektrik şebekeleri 50 Hertzlik dalgaltırak akım kullanmaktadır. Bunun anlamı şebekeden alınan elektrik enerjisinin saniyede 50 defa (-) kutuba, 50 defa da (+) kutuba doğru yol aldığıdır. Akımın özelliğine bağlı olarak bu çevrimler her iki kutuplamada düzgün bir şekilde gerçekleşir. Doğrultmaç olarak adlandırılan ve dalgaltırak akım veren kaynak makineleri, şebekeden aldıkları bu dalgaltırak akımı sürekli olarak aynı kutupta hareket etmelerini sağlar. Bir bakıma doğru akım üreticileri sürekli olarak (-) ya da (+) kutuba doğru yol alan kaynak akımı üretir.

1.3.2. Kaynak Akımının Tanımı

Şekil 1.9: Kaynak akımı yardımyla oluşturuldu arık ve kısımlar


1.3.3. Kaynak Amper Ayarı


Kaynak akımının elektrod çapında her bir milimetresi için 40 amperlik değer herkes tarafından kabul görmüştür. Buna göre 3,25 mm çapındaki bir elektrodun kaynaklı birleştirildiğinde kullanılan akımın 0x3,25= 130 amper olması önerilir. Ancak bu değerlerin ortu gerecine göre farklılıklar gösterdiği aksi belirtmedikçe bu formül sadık kalınması gerektiğini göz ardı edilmemelidir.

İnce örtülü elektrodlarda  \( I=dx(40-45) \)  
Kalın örtülü elektrodlarda  \( I=dx(45-50) \)
Demir tozlu kalınp örtülü elektrodarda I=dx(50-60)A’dır.

Yatay oluk konumunda verilen sınırların üst değerleri, dik ve tavan kaynağından ise alt değerler kullanılıabilir.

Şekil 1.10: Gereğinden fazla kaynak akımının yol açtığı düzensiz kaynak dikişi


Başta belirttiğimiz üzere iyi şekilde belirlenmiş kaynak akımı, değişirebileceğimiz kaynak değerlerinden biri olarak büyük önem taşımaktadır. Gerektiğinden fazla olan kaynak akımı aşağıdaki kaynak sorunlarıyla karşılaşılamazsa yol açar.

➢ Kaynak akımının fazlağı olabileceğini sorunlar:
  • Sıçramaların çoğalmasına yol açar.
  • Yanma olukların oluşmasına neden olur.
  • Düzgün olmayan bir kaynak dikişinin meydana gelmesine neden olur.
  • Dikişte çatlamalar görülebilir.
  • Özellikle ince ortonlu elektrodarda elektrodun sıçnarımı kizarmasına, dolayısıyla da örtünün ark bölgesine gelmeden yanarak, işlevini yerine getirememesine neden olur.

Kaynak akımının gereğinden düşük tutulmasının yol açabileceği sorunlar:
- Eriyen metal miktarının azalmasına neden olur.
- Nüfuziyet azalır.
- Çok düşük akım değerlerinde esas parçada ergime meydana gelmez. Bu nedenle de kaynak metaliyle bir birleşme yapamaz.

![Şekil 1.11: Düşük kaynak akımının yol açtığı düzensiz dikiş görüntüsü](image)

![Şekil 1.12: Uygun kaynak akımına yapılmış kaynak dikişinin görüntüsü](image)


Alüminyum, magnezyum ve berilyumlu bakır alemaları dışında kalan metallerin birçoğu bu tarz katılmalar ile kaynak edilir. Üzerinde devamlı oksit tabakası bulunan ve yukarıda saydığımız metaller de ise daha az nüfuziyet, geniş kaynak dikişi yüzeyi istenir.
Bunların yerine getirilebilmesi için ise elektrod (+) kutupta, şase ise (-) kutupta (DATK) olur.

1.3.4. Ark Oluşturma Çeşitleri


![Şekil 1.13: Elektrodun yakılma aşamaları](image)

1.3.4.1. Vurarak Ark Oluşturma

Bu yöntem, elektrodun iş parçasına vurulmasıdır. Kaynak işleminin yapılacağı yerden yaklaşık 5 mm uzaklığı, elektrodun ucu ile vurulur. Vurma şiddetini, elektrod örtüsünün kıvrılması neden olmayacak biçimde olmalıdır.

1.3.4.2. Sürterek Ark Oluşturma

İlk etapta kaynak ile kapanacak bir alana elektrodun ucu sürtülmür ve aradaki havanın ısması ve arık oluşması sağlanır. Bu iki yöntemin uygulanışı, iş parçasının cinsine göre
farklılık gösterebilir. Her cins metalin kaynağı ile ilgili bilgilerde kaynak başlangıcının sürtülerek mi yoksa vurularak mı yapılacağı belirlenmiştir.

Elektrodun yakılışı çok kısa bir süreç içerisinde gerçekleştirilir. Elde edilen ark, sonrasında kaynağı başlangıç kısmına taşınır.

1.3.4.3. Ark Boyu Mesafesi


Direnç, değme kısmının ve çevresindeki havanın isınmasına yol açar. Bu durumdaki hava, elektrik akımını iletebilecek niteliğindedir. Tam bu sırada elektrod bir miktar geri çektiriyor olursa iki parçası arasında kalan havanın iletenliği sayesinde elektron hareketi devam edecek ve ortaya bünüleni belirtisi olan bir ark meydana çıkacaktır.


Elektrodun ayrılan elektronlar, şasenin bağlı olduğu iş parçasına çok şiddetli bir şekilde geçiş yapar. Olay, bir bombardımanı andırır. Bir amperlik elektrik akımında \(6,24\times10^{18}\) adet elektron hareketi söz konusu olduğu dikkate alınırsa sıradan değerlerle yapılan elektrik ark kaynağı şiddetindeki elektron sayısının sayısı ifade edileme güçlüğü ve büyükliği daha kolay anlaşılabılır. Bu oranda büyük elektron geçişi kaynak alanını sıcaklığının yüksek değerlerle karşıması için yeterlidir.
Şekil 1.14: Normal ark boyunun elektrod çekirdek çapına eşit olması (L=D)

Şekil 1.15: Kısa ark boyu aralığının elektrod çekirdek çapından küçük olması

Şekil 1.16: Uzun ark boyu aralığının elektrod çekirdek çapından büyük olması

1.3.5 Ark Oluşturma (Arkı Yakma)

Elektrodun iş parçasına kısaca sürtülmesi ya da noktalama yaparak dokundurulup çekilmesi suretiyle sağlanır. Elektrodan iş parçasından uzaklaştırılması ile ark meydana gelir ve devam eder.

1.3.6. Kaynak Maskesini Kullanma

Elektrik ark kaynağını sırasında arktan dolayı ortaya çıkan ışın oldukça kuvvetli olup kaynak yapanların gözlerini ve yüz kısmını etkiler (Resim 1.19). Bu ışığın etkisinden korunmak için yannaz plastik veya sıkıştırılmış karışım malzemeden yapılan maskeler veya koruyucu başlıklar kullanılır. Maskelerde bulunan özel camlar ışığın şiddetini azaltarak kaynakçının gözlerini zararlı ışınlardan korur. Kaynak maskelerine takılan özel camların kırılmaya ve kaynak kıvılcımının sıçramasını karşı ön kısımlarına normal bir cam takarak korunması gerekir.

Resim 1.19: Kaynak maskesi

1.3.7. Kaynak Sirasında Alınacak Güvenlik Önlemleri

Elektrik ark kaynağı yapılan yerlerde çalışan kişiler için sağlık ve güvenlik konusunda bazı tehlike olduğu bir geçektir ancak doğru koruma koşulları sağlanğıda herhangi bir tehlike söz konusu değildir. Kaynak işlemleri artık herhangi bir metal işleme grubundan daha fazla riskli ya da sağlık konusunda tehlikeli bir iş değildir.

Elektrik ark kaynağı yapılan yerlerde;

1. Elektrik şoku,
2. Ark radyasyonu,
3. Kırli hava,
4. Yangın ve patlama tehlikeleri,
5. Sıkıştırılmış gaz tehlikesi,

Bunlara karşı özel korunma yöntemlerine başvurulur. Bütün bunların tam anlamıyla yerine getirilebilmesi için kaynak işleriyle uğraşan teknik elemanların aşağıdaki sıralanan maddelere özen göstermesi gerekir:

- Kaynak dumanlarının kaynakçı tarafından solunması sakıncalıdır.
- Kaynakçılar, güvenlik uygulamalarını takip etmek için talimatlar almalı ve güvenlik şartlarına uymalıdır.
- Kullanıdıkları tehlikeli gereçleri tanımalı, elektrik ile ilgili tehlikeleri ve koruyucu gereçleri kullanmayı bilmelidir.
- Kaynakçılar, özel göz koruma kaskını ve ark radyasyona karşı korunmak için özel giysilerini giymelidir.

Resim 1.20: Duvara monte edilmiş emeç ile kaynak alanındaki zararlı gazların emilmesi

- Hava kirliliğine karşı korunmalı ve kapalı alanlarda çalışırken dikkatli olmalıdır.
- Kaynak işlemi sırasında ısı kullanıldığından kaynakçılar aynı zamanda yangın ve patlamalara karşı dikkatli olmalıdır. Yanıcı ya da sıkıştırılmış hava ile dolu taşıtlara ergitme kaynağı işlemi uygulanmamalıdır.
- Radyoaktif bölgelerde gürültülü ya da yüksek yerlerde çalışan buralardaki tehlikelere karşı dikkatli olmalı ve üzerlerine düşebilecek bir şey olan yerlerde çalışmamalıdır.
- Hareket edebilen ve yaralanmalara neden olabilecek otomatik kaynak makineleriyle robotlar hakkında bilgi sahibi olmalıdır.
- Kaynakçılar belirgin tehlikelere sahip olan làzer ışıını, termal spreyleme ya da ark kesme gibi diğer işlemler hakkında da bilgi sahibi olmak zorundadır.
- Kaynakçı çalışma yerinin şartlarını her zaman dikkate almalıdır.
Bu koşullar uygun şekilde kontrol edildiği ve güvenlik talimatlarına uyulduğu takdirde kaynak işlemleri diğer endüstri ya da konstrüksiyon işlerinden daha fazla tehlikeli değildir.

Resim 1.21: Hareketli emeç ile kaynak anında oluşan zararlı gazların emilmesi

Resim 1.22: Kaynak masasında çalışan kaynakçının zararlı gazlardan etkilenmemesi için duvara monte edilmiş emeç

Şekil 1.17: Kaynak elemanlarıyla güvenli çalışma
1.4. Yatay Konumda Düz Dikiş Çekmek

Yatay konumda düz dikiş çekme işlemlerini gerçekleştirebilmek için şu işlem basamaklarını uygulamak gerekmektedir.

1.4.1 Markalama


Kaynağa hazırlık işlemi başarılı bir şekilde tamamlanırsa kaynak için diğer işlem basamakları da başarılı bir şekilde sonuçlanacaktır.

Şekil 1.18: Kaynak dikiş yerlerinin markalanması

1.4.2 Kaynak Başlangıç ve Bitiş Yerleri

Her iki uygulamada da yakılma işlemi, dikiş başlangıç noktası üzerinde gerçekleştirilmek. Genellikle başlangıç noktasının 5-10 mm uzaklığı, sonradan kaynak dikişi ile örtülecek bir alan bu işlem için uygundur. Bu kısımda ark meydana getirildikten sonra dikişin başlangıcına taşınır. Bu işlem yapılan elektrod ile iş parçası arasındaki aralığın gereğinden bir miktar fazla tutulması sağlanmalıdır.


Aslında değişik amaçlar ile istenen bir biçimde krater oluşturmanın belli kurallar takip edildiğiinde bir sorun yaratmadığı bir gerçektir. Bunun için kaynak hızının yavaşlatılması, elektrod eğiminin azaltılması ve ark boyunun uzatılması yeterlidir. Krater oluşturulduktan sonra kaynak dikişine yeni bir elektrod ile devam edilmesi gerekiyor bu elektrod tutuşurma işleminin krater üzerinde yapılmaması şartı vardır. Bu olumsuz davranış...
da kraterde çatlamaları yol açar. Bu nedenle başta krater üzerinde bulunabilecek cüruflar kaynak çekiciyle temizlenir. Daha sonra da kraterden 5-10 mm uzaklıktaki bir kısmında, elektrod tutuşturulur ve ark krater üzerine getirilir.

Elektrodun kaynak dikishişlerinin bitiminde de ani olarak ve dik bir biçimde çekilmesi, krater boşluklarına yol açar. Ani elektrod çekmenin kaynak dikisi bitimlerinde yol açtığı bir başka sorun, dikişin bitim yerlerinde diğer bölgelere göre daha az şişkinliğe sahip olmasıdır. Dikişin her yanında aynı biçim arzu edilen bir özellik olduğuna göre bu tür sorunların ortaya çıkmasına engel olunmalıdır. Kaynak dikişinin sonuna doğru ilerleme hızı yavaşlatılıp elektrod bir miktar bekletilirse boşluğun oluşmasına engellenir.

1.4.3. Kaynak Bölgesi

Kaynak yapımı sırasında ortaya çıkan yüksek sıcaklık değerleri, kaynak metalinin eriyik hâline gelmesine neden olurken eriyik bölgesinde yakının yerleri etkisi altında bırakır. Bu nedenle kaynak metalinin komşu alanları, Isı Tesiri Altındaki Bölge (ITAB) olarak anılır (Resim 1.22). Kaynak metalinin iş parçasının nüfuziyetten etkilenen bölgesiyle elektrod çekirdeğinin ergimesinden meydana gelen ve birleşmede etkin olarak görev alan bölge olduğunu biliyoruz. Isı tesiri altındaki bölge, kaynak metali, dikiş bölgesi, iş parçasını içine alan bölgeye “Kaynak bölgesi” adı verilir.

Şekil 1.22: Kaynak bölgeleri

1.4.4 Dikiş Çekme Teknikleri

Kaynak dikişinin en rahat ve düzgün olarak biçimlendirildiği konum, iş parçasının yere paralel yatırılan yapılmış konum olup yatay kaynak adıyla anılır.
1.4.4.1. Elektrod Açıları

elektroda verilen bir açı daha bulunmaktadır. Çalışma açısı, elektrodun kaynak dikişinin kenarlarına göre açısı olarak tanımlanabilir. Bu açılar iş parçasının konumuna göre değişir.

**Şekil 1.2: Elektroda verilen çalışma ve hareket açıları**

### 1.4.4.2. İlereme Hızı


**Şekil 1.25: Yatay konumda elektrod hareketi**

1.4.4.3. Elektroda Hareket Yaptırmadan Dikiş Çekme

Yatay konumda kaynak yapılırken iş parçasının kalınlığı az dolayışıyla da aralık fazla değilse elektrod hareket yaptırılmadan çekilir (Şekil 1.27). Kastedilen hareket elektrodun belirlenen bir hızda kaynak yönünde ilerletilmesidir. Böylece dar genişliğe sahip dikişler elde edilir. Bu uygulama, kök dikişi olarak adlandırılan ve üzerine esas birleştirme (kapak) dikişinin çekileceği kaynaklar için de geçerlidir.

Şekil 1.27: Yatayda iç köşe kaynağının kök dikişi, elektroda hareket yaptırılmadan ikinci ve üçüncü dikişlere hareket yaptırılmasıyla elde edilmesi

1.4.4.4. Elektroda Hareket Yapıtrarak Dikiş Çekme

UYGULAMA FAALİYETİ

Aşağıdaki uygulamaları verilen öneriler doğrultusunda yapınız.

1. Yatay pozisyonda 5 mm kalınlıktaki iş parçasıyla “arkı tutuşurma ve denetleme” işlemini gerçekleştiriniz. İşlem esnasında 3,25 mm elektrod kullanınız. Akım 100 ile 140 amper arasında olmalıdır.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaynak makinesinin kablolarını açınız.</td>
<td>İş parçasının çapaklarını bir ege yardımıyla temizleyiniz.</td>
</tr>
<tr>
<td></td>
<td>İş parçasını kaynak masası üzerine koyunuz.</td>
</tr>
<tr>
<td></td>
<td>Kaynak makinesini açınız.</td>
</tr>
<tr>
<td></td>
<td>Elektrodu dik tutunuz.</td>
</tr>
<tr>
<td></td>
<td>Elektrodu belli bir açıda tutunuz.</td>
</tr>
<tr>
<td></td>
<td>Şaseyi kaynak masasına veya kaynak edilecek gerece bağlayıniz.</td>
</tr>
</tbody>
</table>
Kaynak pensine elektrod takınız.

Kaynak makinesini çalıştırınız.

Elektrod çapına uygun amper ayarını yapınız.

Kaynak yardımcı elemanlarını hazırlayınız (Kaynak çekici, kaynak maskesi, paravan, kaynak giyisi vb.).

Elektrodun ucunu iş parçasının üstüne kibrit çakar gibi sürtünüz. İş parçasına sürter sürtmez elektrod hızlıca yukarı çekiniz.

Elektrod iş parçasına yapışacak olursa elektrodu sağa sola bükerek kopartınız. Olmuyorsa elektrodu pensten çıkartıp parça soğuduktan sonra elektrodu yavaşça kırınız.

Kaynak işlemi esnasında kaynak maskesi, eldiven, deri tozluk ve önlik kullanınız.

Maskesiz kaynak yapmayınız.

Kaynak esnasında çıkan gazların önlemini almınız.

İşe uygun elektrod kullanınız.

Kaynaktan sonra iş parçasını eliyle tutmayınız.

Kaynaktan sonra iş parçasının yavaş soğumasını sağlayıniz.

Yangın ve güvenlik önlemlerini alınız.
2. 200 mm x 150 mm ebatlarında 9,5 mm kalınlığında çelik iş parçasına aşağıdaki çizimde görüldüğü gibi yatayda sağa kaynak çekiniz.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Uygun iş parçasını seçiniz.</td>
<td>➢ Malzemenin cinsi, kullanıldığı yer ve nasıl bir etki altında kaldığini tespit ederek kaynak şeklini doğru belirleyiniz.</td>
</tr>
<tr>
<td>➢ İş parçasını ve gereçleri kaynağa hazır hâle getiriniz.</td>
<td>➢ İş parçasının çapaklarını bir ege yardımıyla temizleyiniz.</td>
</tr>
<tr>
<td>➢ 3,25 mm rutil elektrod kullanınız.</td>
<td>➢ Kaynak dikişini çekeceğiniz alana çizecek ya da kaynak kalemi ve cetvel aracılığıyla düz çizgiler çiziniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Çizgiler arasındaki boşluk elektrod çapının 3-4 katı olmalıdır.</td>
</tr>
<tr>
<td></td>
<td>➢ Kaynak işlemi esnasında kaynak maskesi, eldiven, deri tozluk ve önlük kullanınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Çizdiğiniz çizgileri takip ederek dikişleri tamamlayınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Her dikiş sonunda örtü maddesi ve suçramadan meydana gelen artıkları kaynak çekici ve tel fıçası yardımıyla temizleyiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Düz dikişlerinizi tamamladuktan sonra dikiş aralarında kalan boşluğu</td>
</tr>
</tbody>
</table>
- Makineyi çalıştırarak kaynak akımı olarak 110-125 amperi seçiniz.


- Elektroda uygun açı ve yükseklik sağlayıniz.


- Elektrodun ucunu kaynak yönünün aksi yöne doğru yönlerek dikiş çekiniz.


- İş parçası üzerinde oluşan cürufları temizleyiniz.


- Kaynak sonrası parçada çarpılma eğilme varsa düzeltiliniz.


- Doldurarak dolgu kaynağını tamamlayınız.


- Dolgu kaynağı tamamlandıktan sonra yüzeyde kalan örtü maddesi artıklarını temizleyip dikişi gözle kontrol ediniz.


- Parçanın çarpılmasını ve bozulmasını önleyici tedbir alınız.


- Maskesiz kayak yapmayınız.


- Kaynak esnasında çıkan gazların önlenmesini sağlayın.


- İşe uygun elektrod kullanınız.


- Kaynaktan sonra iş parçasını eliyle tutmayın.


- Kaynaktan sonra iş parçasının yavaş soyunmasını sağlayın.


- Yangın ve güvenlik önlemlerini alınız.
Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Metal ve alaşımının ergime derecelerinin üzerindeki sıcaklıklarda ergitilere birleşirilmesi aşağıdakilerden hangisidir?
   A) Delme
   B) Kesme
   C) Kaynak
   D) Tornalama

2. Elektrik ark kaynağında ısı enerjisi aşağıdakilerden hangisiyle sağlanır?
   A) İşı enerjisi
   B) Elektrik akımıyla
   C) Kaynak akımıyla
   D) Elektrod pensiyle

3. Aşağıdakilerden hangisi doğru akım veren kaynak makinelerinden biridir?
   A) Kaynak kapasitörü
   B) Kaynak aspiratörü
   C) Kaynak redresörü
   D) Kaynak transformatörü

4. Kaynak kabloları aşağıdaki gereçlerden hangisi kullanılarak üretilmiştir?
   A) Pirinç
   B) Çelik
   C) Alüminyum
   D) Bakır

5. Bütün iş parçalarının masalarda kaynatılması boyutları ve kaynak konumları nedeniyle mümkün olmaz. Bu takdirde aşağıdaki aparatlardan hangisindenden yararlanılır?
   A) Masa
   B) Pozisyoner
   C) Opsiyonel
   D) Tezgâh

6. Elektrik ark kaynağında en çok kullanılan elektrodlar, aşağıdakilerden hangisidir?
   A) Çıplak elektrod
   B) Örtülü elektrod
   C) Kapalı elektrod
   D) Açık elektrod
7. Gerektiği hallerde kaynak dikişinin olumlu yönden alaşımlanmasını sağlamak aşağıdakilerden hangisinin görevidir?
   A) Elektrod pensi
   B) Elektrod örtüsü
   C) Kaynak makinesi
   D) Kaynakçı

8. Dikişi tamamen örten, oldukça kalın, rengi kahverengiden siyaha kadar değişen, çabuk katılaşan cürüf oluşturan elektrod örtü maddesi aşağıdakilerden hangisidir?
   A) Oksit elektrod
   B) Bazik elektrod
   C) Rutil elektrod
   D) Asit elektrod

9. Elektrik akınının birimi aşağıdakilerden hangisidir?
   A) Volt
   B) Amper
   C) Ohm
   D) Wath

10. Kaynak akımında gerilim aşağıdakilerden hangisidir?
    A) 15-35 volt
    B) 25-55 volt
    C) 35-45 volt
    D) 65-75 volt

Aşağıdaki cümlelerin başında boş bırakılan parantezlerle, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

11. (   ) Oksi-gaz kaynağından ısı kaynağı, yanıcı ve yakıcı iki gazın birleşiminden ve yakılmamasından sağlanır.


13. (   ) Doğru akım ile bütün elektrod türlerinin kullanılması mümkündür.

14. (   ) Doğru akımda arık tutuşтурulması daha kolaydır.

15. (   ) Doğru akım veren makinelerele kısa arık boyu ile sürekli çalışmak mümkündür.

16. (   ) Doğru akım veren makinelere délünk akım şiddetlerinde kaynak yapmak mümkün olduğundan tavan ve dik kaynağı gibi zor konumlarda kaynak yapmak daha kolaydır.
17. (  ) Doğru akım veren makineleriyle ark oluşumu sırasında meydana gelen sıçramalar daha fazladır.

Aşağıdaki cümlelerde boş bırakılan yerlere doğru sözcükleri yazınız.


20. Piyasada en çok kullanılan ortülü elektrod çekirdek çapları ......................... mm, boyları ise ......................... mm’dir.

DEĞERLENDİRME

AMAÇ

Elektrik arık oluşturarak yatay konumda düz dikiş çekebileceksiniz.

ARAŞTIRMA

- Piyasada çalışan kaynak operatörleri ile görüşüp tecrübe ile geliştirerek küt-ek birleştirmede uyguladıkları teknikleri öğreniniz. Öğrendiklerinizi rapor şeklinde sınıfa sununuz.
- Değişik amper değerlerinde çalışma yapılıp gözlemlerinizi sınıfa sununuz

2. YATAYDA KÜT EK VE BİNDİRME KAYNAĞI

2.1. Parçaların Kaynağa Hazırlanması

Parçaların kaynak yapabilmek için bir takım hazırlık işlemlerinden geçirilmektedir. Bu işlemlerin neden yapılması gerektiği ile ilgili açıklamalar şu şekilde yapılabılır.

2.1.1. Gereği ve Önemi

Elektrik arık kaynağı, üretilimin değişik amaçlarına hizmet etmek için kullanılır. Kaynaklı birleştirilmeler ile birçok iş parçasını diğer birleştirme türlerine oranla daha kısa sürede ve daha ekonomik bir şekilde gerçekleştirmek mümkündür. Diğer yandan kaynak ile onarım yapılarak aşınmış büyük makine ve iş parçalarının geri kazanımları da faydalı sonuçlar vermektedir. Amaçlar belirlendiğten sonra kaynaklı birleştiriminin istenilenler doğrultusunda olabildiği, tasarından başlayarak bir dizi işlem basamağının kurallarına uygun bir şekilde yerine getirilmesiyle sağlanır.


2.1.2. Kaynak Öncesi Temizliğin Önemi

2.1.3. Kaynaklı Birleştirme Çeşitleri

Bu bölümde ele alınan birleştirme türleri, yatay konumda gerçekleştirilmen kaynaklar için geçerli bilgileri kapsamaktadır. Aynı birleştirme çeşitlerinin diğer kaynak konumlarında uygulanması, verilen bilgilerde değişikliğe gidilmek kaydıyla sağlanabilir çünkü yatay kaynağın diğer kaynak konumlarından ayrılan önemli farkları vardır. Boyle olunca yatayda yapılan iç köşe kaynağıyla dik olarak yapılan iç köşe kaynağı kullanılan elektrod, çalışma ve elektrod hareket açısı gibi değerlerin değişmesine neden olur.

- Kaynaklı birleştirme çeşitleri şunlardır:
  - Küt-ek kaynağı
  - Bindirme kaynağı
  - İç ve dış köşe kaynağı
  - Flanş kaynağı

2.1.4. Kaynak Konumları

Şekil 2.1: Dik kaynak konumunda parçaların duruşları
Kaynak dikişinin en rahat ve düzgün olarak biçimlendirildiği konum, iş parçasının yere paralel yatırlarak yapılan konum olup yatay kaynak adıyla anılır. Eğitimli bir kaynakçının her zaman yatay konumındaki iş parçalarına kaynak yapabiliyör olması yeterli değildir. Üretimde karşılaşılan iş parçalarının her zaman bu şekilde konumlandırılması beklenemeyiz. Bu yüzden kaynakçının değişik konumlarda da kaynak dikisi çekebiliyör olması ve bunların nasıl yapıldığını bilme olması şartı vardır (Şekil 2.1). Genel olarak kaynak konumları Resim 2.2’de sıralanan şekilde olmakta ve TSEK tarafından harfler ile ifade edilmektedir.

- Yatay (düz), w
- Dik (yukarıdan aşağıya f, aşağıdan yukarıya s),
- Yan (duvar) q,
- Tavan (baş üstü) ü,
- Tavan
- iç köşe ve dış köşe (h).

Şekil 2.2: Yan (duvar) ve tavan kaynağı

2.1.5. Elektrodlar

Elektrik ark kaynağında elektrodlar kesme, birleştirme ya da dolgu amacıyla kullanılmaktadır.

2.1.5.1. Tanım

Elektrodları sınıflandırdığımız takdirde kaynağın sonucunda beklenen amacı belirlemiş ve elektrodları bu doğrultuda sınıflandırılmış oluruz. Birleştirme işleminde kullanılan elektrodların oluşturduğu kaynak metalinin yüksek dayanım değerine sahip, tok ve sünük olması istenir. Dolgu kaynağında kullanılan elektrod kaynak metalinin ise sert ve aşınmaya karşı dayanıklı olması beklenir. Çünkü dolgu kaynağı, aşınan yüzeylerin eski hâline getirilmesinde kullanılmaktadır.

Elektrik ark kaynağında en çok kullanılan elektrodlar, örtülü elektrod olarak adlandırılan gruptur. Örtülü elektrodlar çubuk şeklinde olup ark sırasında eriyip kaynak metalinin meydana getirecek bir tel üzerine örtü maddesinin ekstrüzyon yöntemiyle kaplanmasıyla üretilmektedir. Elektrodonun kaynak pensine takılan kısmı tamamen çıplaktır (bk. Resim 2.5). Diğer ucu ise arın kolaylıkla oluşmasını sağlayacak yapıdadır. Elektrodon
çekirdeğini oluşturan ve örtü maddesi dışında kalan kısmı, kaynağı gerektirecek gerecen özelliklere en yakın değerlerde olmalıdır. Bunun anlamı kaynatacak olan gereç örneğin nikle ise çekirdek metalinin de nikle metalinden seçilmesidir.

Örtülü elektrodların ortak özellikleri de bulunmaktadır. Bu özellikler bir bakıma elektrodun fiziki özellikleri olarak görülebilir. İlk bakışta ancak bir elektrodun kalın ya da ince olduğu bu özellikleriyle açığa çıkmaktadır. Elektrod çekirdeği silindirik kesitlidir. Kesitin çapı elektrodun anma çapına karşılık gelmektede, elektrodlar bu çapa göre de anılmaktadır. Piyasada en çok kullanılan örtülü elektrod çekirdek çapları 2,5mm, 3,25 mm, 4 mm, 5mm, 6 mm, boyları ise 250-350-450 mm’dır.

Elektrodların çekirdek çapına göre anılmasıın temel nedeni, örtü kalınlıklarının ihtiyaca göre değişiyor olmasıdır. Örtülü elektrodların örtü kalınlıklarını ince, orta ve kalın olmak üzere üç çeşittir. Her çekirdek çapına göre üretilmiş değişik örtü kalınlığına sahip elektrod bulunur.

Şekil 2.3: Elektrik ark kaynağından kullanılan örtülü elektrod kesiti
2.1.5.2. Elektrod Çeşitleri

Örtülü elektrolar, örtülerinin içerdikleri ana bileşenlerin türüne, cürufların asitlik ya da bazlık durumuna göre çeşitlenir. Buna göre yapılacak sınıflandırma sonucunda aşağıdaki gruplar elde edilir.

- Örtülü elektroların sınıflandırılması
  - Rutil elektrolar
  - Asit elektrolar
  - Oksit elektrolar
  - Bazik elektrolar
  - Selülozik elektrolar
  - Demir tozlu elektrolar
  - Derin nüfuziyelet elektrolar

- Rutil elektrolar

Örtü ağırlığının yaklaşık %35’ini titandioksidin oluşturduğu ve değişik örtü kalınlıklarında üretilen elektrolardır. Eriyen kaynak metali, örtü kalınlığını arttırmak için damlalar hâline düşerken asidik etkisini artırmaktadır. Rutil türdeki örtüye sahip elektrolar, dikişi tamamen örten, oldukça kalın, rengi kahvehrengiden siyaha kadar değişen, çabuk katılaşan bir cüruf oluşturur. Meydana gelen cürufun özelliği örtüyü oluşturan maddelerin miktar ve türüne bağlıdır.


- Asit elektrolar


- Oksit elektrolar

Asit tipli elektroların, aralı doldurma kabiliyetleri iyi değildir. Bu nedenle asit türde elektrode birleştireceek is parçalarının, birbirine iyi bir şekilde alıştırılma zorunluluğu vardır.
Güzel görünüşlü ve düzgün kaynak dikişlerinin elde edilmesinin, ön plâna çıktığı işlemlerde kullanılan bir elektrod türüdür. Ancak, kaynak metali ve cüruf çok akıcı olduğundan oksit tip elektroların sadece yatay ve oluk pozisyonlarında kullanılması önerilmektedir. Arık oluşturduğu yüksek sıcaklıklar nedeniyle aralık doldurma kabiliyeti düşüktür. Ark sıcaklığının fazla olması diğer bir sakıncası, dikiş üzerinde çatlama ihtimali olarak kendini gösterir.

 Bazik elektrodlar


Bazik elektrolar bütün kaynak konumlarında kullanılabilir. Aralık doldurma kâbiliyetleri fazladır. Kaynak metali, büyük damlalar hâlinde geçiş yapar (Şekil 2.4) Sonuçta elde edilen kaynak dikişinin mekaniksel özellikleri oldukça iyidir. Ayrıca bir çok elektrod türüyle sonuç alınmasına zor olduğu, 0°C sıcaklıklar altında çalışan makine parçalarında bile iyi sonuç almak mümkündür. Bazik elektrodun kullanma alanları şu şekilde sıralanabilir.

 Bazik elektrodun kullanma alanları:
- İç yapısı bilinmeyen, karbonlu ve az alaşımı çeliklerin kaynağından kullanılır.
- Yüksek miktarda karbon, kükürt, fosfor ve azot içeren çeliklerin kaynağından kullanılır.
- Farklı karbon içeren çeliklerin birleştirilmesinde kullanılır.
- 0°C sıcaklıkların altında çalışan makine donanım ve yapılarının kaynağından kullanılır.
- Dinamik zorlamalara karşı yüksek dayanım istenen kaynak dikişlerinde kullanılır.

 Bazik türdeki elektrolardan beklenen sonuçların alınabilmesi için:
- Elektroların kuru yerlerde depolanması gereği vardır. Her hangi bir nedenle rutubet kapmış elektroları 250°C’de 30 dakika kurutulmalıdır. Bu işlem için elektrod kurutma ﬁrınlarından yararlanılır (Şekil 2.7).
• Kaynak işlemi esnasında ark boyunun (kaynak esnasında elektrod ile iş parçası arasındaki mesafe) kısa tutulması önerili. Uygulamada en uygun ark boyu, yaklaşık elektrod çekirdek çapının yarısına kadarır.
• Arken tutuşturulması, özellikle daha önceden kaynak dikişi çekilmiş ve kaynak krateri oluşmuş dikişlerde özeni gerektirir. Bu türdeki dikişlerin devam etirilmesi gerektiğini durumlarda, ark kesinlikle krater üzerinden başlatılmaz (Şekil 2.8). Aksi takdirde bir önceki kaynak dikişi krateri, gözenekli bir yapıya sahip olur. Diğer uygulamalarda ise, elektrod iş parçasına sürtülerek ark oluşturulur. Her iki durumda da kaynak dikişinin başlaması noktasından 5-6 mm uzakta arkın başlatılması, daha sonra elde edilen arkın başlama noktasına getirilmesi doğru olur.


Şekil 2.4: Rutil tip elektrodun kaynak metali geçişi, küçük damlalar hâline

Şekil 2.5: Asit tipli elektroların kaynak metali geçişi, çok sayıda küçük damlalar hâline

Şekil 2.6: Bazik tip elektrod kaynak metali geçişi büyük damlalar hâline olması
Şekil 2.7: Elektrod kurutma firını

Şekil 2.8: Bazik elektrod ile kaynak işlemi yapılırken, arık başlatılması krater üzerinde yapılmaması

Şekil 2.9: Elektrod bitimlerinde yapılacak işlem basamakları

- Bazik elektrodların çürüfu kolay temizlenemez. Kaynak hızının bunda etkisi vardır.

- Selülozik elektrodlar


Yaklaşık %30 oranında selülozik maddelerden oluşan örtü maddesinin arkın etkisiyle gaz dönüşümüne, cürufun az olmasına, bu da sıçramaların fazlalasmasına neden olur. (Şekil 2.10) Buna rağmen elektrodun aralık doldurma kabiliyeti ve nüfuziyeti oldukça fazladır

- Demir tozlu elektrodlar

Örtü bileşimi olarak büyük oranlarda demir tozu kullanılan elektrodlar bu grup içerisinde ele alınmaktadır. Örtü maddesi olarak kullanılan demir tozu, elektroda ismini vermektedir. Demir tozu miktarı, bazı durumlarda örtü ağırlığının yarısına kadar ulaşabilmektedir. Bir çok elektrod türune önemli miktarlara ilave edilen demir tozu, bu türdeki elektrodarda daha fazla oranlara çıkılmaktadır. Demir tozu elektrod üzerinde olumlu etkiler yaratır. Bunlardan bazıları şunlardır:
• Örtüyü iletken hâle getirir.
• Dikişe geçerek ergime verimini yükseltir.
• Elektrodun yüksek verimli olmasını olanak tanır.

Bu sayılanlar, bir bakıma demir tozlu elektrodun üstünlüğü olarak, algılanmalıdır.

➢ Derin nüfuziyet elektrodları


Şekil 2.11: Derin nüfuziyetli elektrodların örtüsü

2.1.5.3. Elektrod Örtüsünün Görevleri

Kaynaklı birleştirime olusturulan kaynak dikışinin tüm özellikleri, elektrod örtü maddesinin yapısıyla deriden ilgilidir. Buna göre elektrod örtü maddesinin bileşimiyle kaynak dikisinin; biçimi, yüzey düzgünliği, bir dereceye kadar bileşimi ayarlanabilir. Dolayısıyla ark kaynağına örtü maddesinin önemi büyütür.

➢ Elektrod örtüsünün, kaynak işlemine sağladığı yararlar şu şekilde sıralanabilir:
➢ Arkan tutuşmasını ve oluşumunu kolaylaştırmak,
➢ Kaynağın doğru ya da dalgalı (alternatif) akımda yapılabilmesini sağlamak,
➢ Ark oluşumu sırasında meydana gelen sıçramaların az düzeyde olması sağlamak,
Ark sırasında eriyen metal damlalarının yüzey gerilimlerini ve akışkanlıklarını etkileyerek, değişik pozisyonlarda kaynak yapılabilmesini sağlamak,

Koruyucu bir gaz atmosferi sağlayarak, kaynak dikişini havanın olumsuz etkilerinden korumak,

Kaynak işleminin sonunda, dikişin yüzeyini bir cüruf tabakasyyla örterek, dikişin yavaş soğumasını sağlamak,

Gerektiği hâllerde kaynak dikişinin olumlu yönden alaşılmamasını sağlamaktır.

2.1.5.4. Elektrodların Depolanması

Elektrodlar paketler hâlinde kullanıcıya sunulur. Elektrod genellikle 100 adetlik olarak paketlenir. Elektrod çapı arttıkça paket içinde bulunan elektrod adedi düşer. Elektrod paketleri 6’lı koliler oluşturularak ambalajlanır.

Piyasadan alınan paket veya kolili elektrodlar üretim esnasında özenle muhafaza edilip depolanması gerekir. Elektrodlar nem gibi elektrodun yapısını bozacak olumsuzluklardan korunmalı. Rutubet ve nemden uzak kapalı dolaplarda bulundurulmalıdır.

Resim 2.3: Elektrod fırını içinde elektrodlar

Şekil 2.12: Elektrodlar paketler hâlinde kullanıcıya sunulması
2.1.5.5. Elektrod Paketlerinin Üzerindeki Bilgilerin İncelenmesi


<table>
<thead>
<tr>
<th>Kullanıldığı Yerler ve Özellikleri:</th>
<th>Dikisin Kimyasal Özellikleri %</th>
<th>Dikisin Mekanik Özellikleri:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Her türlü makine, vagon, gemi, tank ve 60-110</td>
<td>C: 0.07 Si: 0.3 Mn: 0.5</td>
<td>Akım Dayanımı: 380 N/mm² min</td>
</tr>
<tr>
<td>kazan yapımında, demir doğrama</td>
<td></td>
<td>Çekme Dayanımı: 510-550 N/mm²</td>
</tr>
<tr>
<td>işlerinde, karoseri şasi, çelik mobilya</td>
<td>kutupta veya</td>
<td>Çentik Dayanımı: 28 J min</td>
</tr>
<tr>
<td>ve çelik konstrüksiyon işleri ile buor</td>
<td></td>
<td>(ISO-V0°C'da)</td>
</tr>
<tr>
<td>kaynaklannadı kullanılır. Her pozisyonunda kaynak yapmaya elverişlidir.</td>
<td></td>
<td>Uzama (%Lo = 5 do) min % 24</td>
</tr>
<tr>
<td></td>
<td>Doğru akında</td>
<td></td>
</tr>
<tr>
<td>Kaynak Edilebilir Çelikler:</td>
<td>Elektrot negatif (−)</td>
<td>Türk Mali</td>
</tr>
<tr>
<td>St 37.2 St 44.2 St 37.3 St 44.3</td>
<td>kutupta veya</td>
<td>kullanılır. (wh hüsgü)</td>
</tr>
<tr>
<td>H 1, H II, WSIE 255 (H III)</td>
<td></td>
<td>Türk Mali</td>
</tr>
<tr>
<td>St 52.0, St 37.4, St 52.4, St 35.8, St 45.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>St E 210.7-St E 290.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-D, GS 38-GS 52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bu kısımda, fabrika adresi için kullanılmalıdır.

Resim 2.4. Elektrod paketinde etiket

<table>
<thead>
<tr>
<th>Örtü Tipi No</th>
<th>Örtü Tipi Sembolü</th>
<th>Örtü Tipi</th>
<th>Elektrod Çapı Kalınıguna Göre Örtü Kalınığı %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A2</td>
<td>Ince, Asit Örtülü</td>
<td>≤ 120</td>
</tr>
<tr>
<td>2</td>
<td>R2</td>
<td>Ince, Asit Örtülü</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R3</td>
<td>Orta Kalın, Rutil Örtülü</td>
<td>≥ 120 ≤ 155</td>
</tr>
<tr>
<td>2</td>
<td>R (C)3</td>
<td>Orta Kalın, Rutil-Selülozik Örtülü</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C4</td>
<td>Orta Kalın, Selülozik Örtülü</td>
<td>≥ 120 ≤ 155</td>
</tr>
<tr>
<td>4</td>
<td>RR5</td>
<td>Kalın, Rutil Örtülü</td>
<td>≥ 155 ≤ 165</td>
</tr>
<tr>
<td>4</td>
<td>RR (C)5</td>
<td>Kalın, Rutil-Selülozik Örtülü</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RR6</td>
<td>Kalın, Rutil Örtülü</td>
<td>≥ 165</td>
</tr>
<tr>
<td>5</td>
<td>RR (C)6</td>
<td>Kalın, Rutil-Selülozik Örtülü</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A7</td>
<td>Kalın, Asit Örtülü</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AR7</td>
<td>Kalın, Rutil-Asit Örtülü</td>
<td>≥ 155</td>
</tr>
<tr>
<td>6</td>
<td>RR (B)7</td>
<td>Kalın, Rutil, Bazik Örtülü</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>RR 8</td>
<td>Kalın, Rutil Örtülü</td>
<td>≥ 155</td>
</tr>
<tr>
<td>7</td>
<td>RR (B)8</td>
<td>Kalın, Rutil, Bazik Örtülü</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B 9</td>
<td>Kalın, Bazik Örtülü</td>
<td>≥ 155</td>
</tr>
<tr>
<td>8</td>
<td>B (R)9</td>
<td>Bazik Olmayan Elementler de İçerisinde Bulunduran Kalın, Bazik Örtülü</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B 10</td>
<td>Kalın, Bazik Örtülü</td>
<td>≥ 155</td>
</tr>
<tr>
<td>9</td>
<td>B (R)10</td>
<td>Bazik Olmayan Elementlerde İçerisinde Bulunduran Kalın, Bazik Örtülü</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>RR 11</td>
<td>Kalın, Rutil Örtülü</td>
<td>≥ 155</td>
</tr>
<tr>
<td>10</td>
<td>AR 11</td>
<td>Kalın, Rutil-Asit Örtülü</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>B 12</td>
<td>Kalın, Bazik Örtülü</td>
<td>≥ 155</td>
</tr>
<tr>
<td>11</td>
<td>B (R) 12</td>
<td>Bazik Olmayan Elementlerde İçerisinde Bulunduran Kalın, Bazik Örtülü</td>
<td></td>
</tr>
</tbody>
</table>

Tablo 2.1. Elektrod örtülerine ait veriler

Yukarıda belirttiğimiz üzere elektrod ile ilgili bilgiler, eğitimli her kaynakçının anlayacağı şekilde dönüştürmek için rakamsal hâle getirilmiştir. İlk bakışta elektrodun rutil tip,
yani örtü türünün rutil olduğu, TS 563 ve DIN 1913 ile AWS A 5.1’e uygun olduğu belirtilmektedir. Bu bilgiler sizlerin şu ana kadar bu ders kitabı içerisinde öğrendiğiniz ve anlayabileceğiniz bilgileri kapsamaktadır. Sadece TS numarasına bakarak, bu elektrodun örtü kalınlığını ve örtü cinsini de öğrendiniz mümkündür. Şimdi TS numarasının karşılığındaki verileri gözden geçirelim.

Örnek elektrodumuzun bu kısmındaki rakamsal ifade; E 51 22 RR 8'dir. E, elektrodun elle yapılan elektrik ark kaynağına uygulunluğunu, 51 ve 22 mekanik özelliklerini, RR 8 ise örtü cinsini ve kalınlığını ifade eder. Demek oluyor ki, bir elektrodun ne tür örtü maddesi kullanılarak üretildiğini ve bu örtü kalınlığının ne olduğunu elektrod paketinden öğrenmek mümkündür. Aynı rakamsal değerler, paket içindeki her elektrodun çıplak ucuna yakın kısmında da bulunmaktadır.

Elektrod ile bilgilerde karşılamanızı sağlayan harflerin anlamı şunlar:

A = Asit örtülü ince-kalin
AR = Asit-Rutil örtülü kalın
R = Rutil örtülü ince-orta
RR = Rutil örtülü. Kalın.
C = Selülozik Örtülü. Orta.
R (C) = Rutil-Selülozik. Orta.
RR (C) = Rutil-Selülozik. Kalın.
B (R) = Bazik örtülü bazık olmayan katkılar sahip. Kalın.
RR (B) = Rutil-Bazık örtülü kalın anlamına gelmektedir.

Yukarıdaki harflerin yanındaki rakamların anlamı ise, Tablo 57’den öğrenilebilir.

2.1.6. Puntalamanın Gereği ve Önemi

Kaynak işleminin başarılı bir şekilde sonuçlanabilmesi için, dikiş ilerledikçe iş parçası kenarlarının, birbirlerine göre durumlarında bir değişiklik meydana gelmesi gerekmemektedir. Diğer yandan birleştirilmesi yapılacak parçaların arasındaki mesafenin de hep aynı kalması, dikişin iyi bir birleştirme oluşturabilmesi için önemlidir.

İş parçasında biçim değişikliklerinin engellenmesinin pratik yollarından biri; puntalama olarak adlandırılan ve parçanın kısa, ama aralıklı dikişler ile sabitlenmesidir.

2.1.6.1. Puntalama Aralığı

Puntalama işlemi düzgün aralıklarla yapılan, oldukça kısa ve ince kaynak dikiş olarak algılanabilir. Puntaların ne kadar aralıklı olacağını tespiti, iş parçasının kalınlığına bağlı olarak belirlenebilir. Temel amaç kaynak dikişinin yapılması esnasında parçanın aralığının bozulmaması olduğuna göre, iş parçası puntalandıktan sonra, bu aralığı koruyacak şekilde puntalanabilir.
Kaynaklı birleştirme yapılacak iş parçasının kalınlığı;

- 5 mm’den az ise; punta aralığı, kalınlığın 30 katı,
- 5 mm’den fazla ise; punta aralığı, kalınlığın 20 katı olarak alınır.


2.2. Yatay Konumda Küt Ek Kaynağı Yapmak

Yatay konumda küt ek kaynağı yapmadan önce bir takım genel bilgiler edinmek gerekmektedir. Özellikle parçaya kaynak atma esnasında ark üflemesi ve bu durumun ısı etkisi, kimyasal etkisi ve manyetik etkisi ile ilgili bilgi sahibi olunması gerekir.

2.2.1. Ark Üflemesinin Tanımı

Elektrik akımının gözle görülür bir yanı yoktur. Yani elektrik akımını direkt olarak izleyemezsiniz. Ancak etkilerini gözlemlenmek mümkündür.

- **İsi Etkisi:** Elektrik akımının, dolayısıyla da elektrik enerjisinin diğer enerji türlerine dönüştürülme işlemi, oldukça kolaydır. Bunun sıkça karşılıştıları, ısı enerjisine dönüştürülmesidir. İştan cisimlerde ısın yayarlar ve bu ısınin şiddeti de, ısıma derecesiyle artar.
- **Kimyasal Etkisi:** Elektrik enerjisi ısı enerjisine dönüştürüldüğü gibi kimyasal enerji de dönüştürülebilir. Bunun en tipik uygulaması akümülatörler ve metallerin elektro kimyasal olarak yüzeylerinin kaplanmasıdır.
- **Manyetik Etkisi:** Elektrik akımı, herhangi bir iletkenden geçerken, bu iletkenin çevresinde, manyetik etkilerin görülüğü bir alan oluşturur. Manyetik alan da bir elektrik akımı gibi görülmez; sadece manyetik etkileriyle kendini gösterir. Manyetik etkinin oluşumuna örnek olarak, elektromiknatıslar gösterilebilir.

2.2.2. Ark Üflemesinin Zararlı Etkileri

Ark üflemesi istenmeyen bir olaydır. Çünkü bu üfleme, hatasız kaynak yapma olanağını kısıtlar. Kaynakçı cürufun akışına hakim olamaz ve sonucu cüruf kalıntısı içeren yetersiz bir birleşme, hatalı dikiş formu, nüfuziyetsiz zayıf bağlantılar elde edilir. Diğer yandan ark üflemesi, kaynak hızını azalttığı gibi birleşmenin kalitesini de, derinden etkiler. Ark üflemesi kaynağın başlangıç ve_bitim yerlerinde, iç ve dış köşe kaynaklarında, derin dolgu kaynaklarında ve yüksek akım ile yapılan kaynaklı birleştirmelerde, daha sık açığa çıkar.

2.2.3. Ark Üflemesine Karşı Alınacak Önlemler

Kaynak sırasında bir takım önlemler alınarak, ark üflemesi engellenebilir. Bunlardan bazılarına geçmeden önce, önlemlerin kaynak işleminin türüne göre değişebileceğini hatırlatırlar, önlemlerin size uyuyunu bulmak amacıyla denenmesi, önerilmektedir.

Arık üflemesine karşı alınacak önlemler şu şekilde sıralanır;

- Kaynak akımının değerini azaltmak,
- Kök dikişi ya da geniş punta yapmak,
- Uzun (derin) kaynaklarda alt destek parçası kullanmak
- Şasenin yerini değiştirmek,
- Üflemenin oluşturduğu yönün tersine şaseyi bağlamak,
- Şase kablosunu bakır tel ile sararak, manyetik akımı nötr hâle getirmek,
- Mükün olduğunca kısa ark ile kaynağı yapmak,
- Makinenin kutuplarını değiştirmek,
- Kaynatılan işin konumunu değiştirmek,
- Elektrodün konum açısını değiştirmek,
• Çift toprak hattı kullanmaktr.

Şekil 2.14. Yatay konumda kaynakçının duruşu

2.2.4. Küt ek Kaynağı


2.2.4.1. Küt Ek Kaynağı Elektrod Açıları


Şekil 2.15: Küt ek kaynağındaelektroda verilecek açılar
Şekil 2.16: Küt ek kaynağında elektroda verilecek açılar

2.2.4.2. Küt Ek Kaynağında Elektroda Verilecek Hareketler

Yatay küt ek kaynağında, kök paso parça arasındaki aralık az olduğu zaman düz olarak çekilir; aralığın geniş olması hâlinde ve kapak pasolarında ise zik zag şeklinde elektrod ucuna hareket vererek kaynak ağzı doldurulur.

2.2.4.3. Parça Kalınlığına Göre Elektrod Seçimi ve Amper Ayarı


Kaynak akımının elektrod çekirdek çapına göre belirlenmesi dışında, elektrod örtüsünün kalınlığına göre yapılan kaynak akım ayarı da kullanılmaktadır. Örtülü elektrolar için akım ayarı; d milimetre olarak elektrod çekirdek çapı olmak üzere;

İnçe örtülü elektrodlarda I=dx(40-45) A  
Kalin örtülü elektrodlarda I=dx(45-50) A  
Demir tozlu kalın örtülü elektrodlarda I=dx(50-60) A

2.2.4.4. Kaynak Dikişi Çekme


Kaynağa başlarken, elektrod dikişin tam başlama noktasından 5-10 mm kadar geride ateşlenir ve ark yandıktan sonra elektrod kaynak başlama noktasına kaydırılır ve bu şekilde arın başlanmış olduğu nokta tekrar eritilmiş olur. Dikişin sonuna yaklaştığında elektrod kaynak banyosunda dik doğrultudan aniden çekilmez. Elektrod, ilerlemenin yavaşlatılması eğimin azaması ve ark boyunun uzatılması ile söndürülmür.
Elektrod 50 mm kalincaya kadar eriyip yeni elektrod takılduktan sonra eski dikişin üç kısmındaki cüruf temizlenir ve kaynağa yeniden başlanır.

2.2.4.5. Kaynak Dikişini Temizleme


2.3. Yatay Konumda Bindirme Kaynağı Yapmak


Bindirme kaynağı, dikişin çekileceği bölge yönünden iç köşe kaynağa benzer. Çalışma açısı olarak elektrod 45°, hareket açısı olarak 5°-20° tutulur. Bindirme kaynağıyla kalin kesiti parçaların birleştirilmesi yapılacak ise kök dikişine gereksinim vardır. 10 mm’den daha fazla kalınlığa sahip parçalar, iki ya da daha fazla sayıdaki dikişler ile tamamlanır.

2.3.1. Bindirme Kaynağı Elektrod Açları

Bindirme kaynağı dikişin çekileceği bölge yönünden, üst üstte konulan parçalar köşe oluşturduğu için köşe kaynağına benzer. Çalışma açısı olarak elektrod 45o, hareket açısı olarak ise 60° açı ile tutulur.

Elektrod açıları kaynak arkının kontrolü ve dikişin tekniğine uygun olması için önemlidir. Bu açılar tecrübeli bir kaynakçı tarafından gözle ayarlanır ve ark oluşumundan açının doğru olup olmadığı anlaşılır. Özellikle bindirme kaynağı gibi köşelerin kaynatılmasında çalışma açısı önemlidir.
2.3.2. **Bindirme Kaynağında Elektroda Verilecek Hareketler**

Birleştirme şeklinin ve parçalarının konumuna göre arık ve ergiyik metalin kontrolü için teknigi ne uygun elektrod hareketi önem kazanır. Aşağıda bindirme kaynağından elektroda verilecek hareket görülmektedir (Şekil 2.18).

2.3.3. **Bindirme Payının Hesaplanması**

Bu birleştirme bir kenar ile bir yüzeyin birbirine kaynatılmasıdır. Bindirme kaynağı, birleştireceğiniz iş parçalarının kenar kısımlarında yeterli mesafe varsa uygulanır. Bindirme mesafesi en az parça kalınlığından 12 mm fazla olmalıdır (S+12 mm).

2.3.4. **Bindirme Kaynağı Yapmak**

2.4. Kalınlıkları Farklı Parçaların Kaynağını Yapmak

Kaynak edilecek parçalar her zaman aynı kalınlıktan olmayabilir. Kalınlıkları farklı parçaların kaynatılması parça kalınlığının farklı olması sebebi ile özel bazı uygulamalar gerektirir.

2.4.1. Farklı Kalınlıktaki Parçaların Kaynağında Elektrod Açıları

Kaynak edilecek parçaların kalınlıkları farklı olduğu için kaynak bölgesi köşe kaynağına benzer (Şekil 2.20). Bu sebeple elektroda verilecek açılar da bindirme kaynağına benzer. Kalınlıkları farklı parçaların kaynatılması elektrod açıları kalın parçaya göre ayarlanır.

![Şekil 2.20: Elektrod açıları](image)

Yukarıda parçalara uygulanan elektrod çalışma açıları görülmektedir. Çalışma açısı kalıns parçaya göre ayarlanarak, oluşan ark kalın parçaya yönlendirilir.

Hareket açısı kaynak arkının oluşumuna göre kaynakçı tarafından ayarlanır. Kaynak çürufenin arkın önüne geçmemesi için hareket açısı arkın oluşumuna göre 45º-60º arasında değiştirilebilir.

2.4.2. Elektrod Açısunu Kalın Parçaya Ayarlayarak İnce Parçayı Bozmadan Kaynatma

Kalınlikları farklı parçaların kaynatılması elektrod açılarının kalın parçaya göre ayarlanmasını nedeni, oluşturulan kaynak arkı ince parçaya doğru fazla yönlendirilirse ince parçaya bozulur. İsimin ince parçanın üzerinde yoğunlaşma sonucu parçanın kenarlarında oyuqlar olur, tam bir birleşme sağlanmaz. Bu gibi olumsuzlukları önlemek için elektrod çalışma açısının iyi ayarlanarak arkın ince parçaya zarar vermesi önlenir. Elektrod kalın parçaya doğru yönlendirerek iyi yoğunluğu ve ark kalın parçaya yönlendirilir.
Verilen iş resmine ve uyarılara göre uygulama faaliyetini yapınız.

1. 200 mm x 50 mm ebatlarında 5 mm kalınlığında 2 adet çelik iş parçasını aşağıdaki çizimde görüldüğü şekilde 3,25 mm rutil elektrod kullanarak 75-115 amper kaynak akımında küt ek kaynağıyla birleştiriniz.
<table>
<thead>
<tr>
<th>İş parçalarını puntalayınız.</th>
</tr>
</thead>
<tbody>
<tr>
<td>İş parçalarını yan yana kaynak masasının üzerine yatırınız.</td>
</tr>
<tr>
<td>2 mm çapında bir tel parçasını, yan yana duran iş parçalarının bir ucundan 12 mm kadar bir mesafede araya sıkıştırınız.</td>
</tr>
<tr>
<td>Punta kaynağını yapınız ve iş parçaları arasında koyduğuuz teli hemen çekiniz.</td>
</tr>
<tr>
<td>Aynı yöntemle ikinci punta kaynağını yapınız.</td>
</tr>
<tr>
<td>Bir uçtan başlayan. Birleşmenin bütün boyunca dikişi çekiniz.</td>
</tr>
<tr>
<td>Elektrodu dik tutunuz (sağa sola meyil vermeden). Elektrodu kaynağın banyosuna doğru 10º eğiniz.</td>
</tr>
<tr>
<td>Dikişin en az iş parçasının yarısına kadar nüfuz etmiş olduğundan emin olunuz.</td>
</tr>
<tr>
<td>Son çektiğiniz pasonun, kök pasonun köküne iyice nüfuz ettiğiinden emin olunuz.</td>
</tr>
<tr>
<td>Elektrodun ucunu kaynağın aksi yönüne doğru yönlerek dikiş çekiniz.</td>
</tr>
<tr>
<td>Kaynak banyosunu kontrol etmeye ve kök nüfuziyetini sağlamak yardımcı olmak üzere elektroduna, aşağıdaki şekilde hafif bir salıntı veriniz.</td>
</tr>
<tr>
<td>Yukarı gelince kısa süre durunuz.</td>
</tr>
<tr>
<td>Salıntı hareketinin üç noktalarında, birleşmeyi tam olarak doldurmaya yetecek kadar durunuz, sonra yine salıntı veriniz.</td>
</tr>
<tr>
<td>Salıntı hareketini daha iyi kontrol edebilmek için kol yerine bileğini zıplayınız.</td>
</tr>
</tbody>
</table>
| ![Image](image1.png) | ➢ Kök pasoyu çektiğten sonra is parçasını suda soğutunuz.  
➤ Dikişin bütün cürüfunu temizleyiniz.  
➤ Kaynak sonrası parçada çarpılma eğilme varsa düzeltiniz. |

| ![Image](image2.png) | ➢ İkinci dikişi birincisinin üstüne çekiniz. |
2. 200 mm x 50 mm ebatlarında 5 mm kalınlığında 2 adet çelik iş parçasını aşağıdaki çizimde görüldüğü şekilde 4 mm rutil elektrod kullanarak 115-160 amper kaynak akımında küt ek kaynağıyla birleştiriniz.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>İş parçasını ve gereçleri kaynağı hazır hale getiriniz.</td>
<td>İş parçalarını birbirinin üzerine binecek şekilde aşağıdaki çizimde olduğu gibi konumlandırınız.</td>
</tr>
<tr>
<td>Uygun elektrodu seçiniz.</td>
<td>Her iki birleşme yerinin iki ucuna punta atınız.</td>
</tr>
<tr>
<td>Makineyi çalıştırıp ve uygun amperi seçiniz.</td>
<td>Yaptığınız punta kaynaklarının çürüfunu temizleyiniz.</td>
</tr>
<tr>
<td>Elektrodu dikeyden 35-40º ve kaynak banyosu tarafına doğru 5 ile 10 º eğiniz.</td>
<td>Elektrodoyu dikeyden 35-40º ve kaynak banyosu tarafına doğru 5 ile 10 º eğiniz.</td>
</tr>
<tr>
<td>Kaynak banyosunu kontrol etmeye ve kök nüfuziyetini sağlamaya yardımcı olmak üzere elektroduna, aşağıdaki şekilde gibi hafif bir salıntı veriniz.</td>
<td>Kaynak banyosunu kontrol etmeye ve kök nüfuziyetini sağlamaya yardımcı olmak üzere elektroduna, aşağıdaki şekilde gibi hafif bir salıntı veriniz.</td>
</tr>
<tr>
<td>Yukarı gelince kısa süre durunuz.</td>
<td>Yukarı gelince kısa süre durunuz.</td>
</tr>
</tbody>
</table>
İş parçalarını puntalayınız.
Elektrodun ucunu kaynak yönünün aksi yönüne doğru yönlerek dikiş çekiniz.
Kaynak sonrası parçada çarpılma eğilme varsa düzeltiniz.

Salıntsı hareketinin uç noktalarında, birleşmeyi tam olarak doldurmaya yetecek kadar durunuz, sonra yine saıntı veriniz.
Salıntı hareketini daha iyi kontrol edebilmek için kol yerine bileğinizi oynatınız.
Dikişin en az iş parçasının yarısına kadar nüfuz etmiş olduğundan emin olunuz.
Birleşmeyi tamamen doldurmak üzere sürekli ilerleyiniz.

Dikişler düzgün, tırtılı yüzeyli ve deliksiz olacaktır.
Dikişin bütün cürufunu temizleyiniz.

Parçaları kaynakla birleştirdikten sonra şekildeki gibi iki parçayı birbirinden ayırarak, gözle kaynak dikişinizi kontrol ediniz.
Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Aşağıdakilerden hangisi kaynaklı birleştirme çeşitlerinden biri değildir?
   A) Küt-ek kaynağı
   B) Yatay kaynağı
   C) Bindirme kaynağı
   D) Flanş Kaynağı

2. Yatay kaynağı TSEK tarafından aşağıdaki harflerden hangisiyle ifade edilmektedir
   A) w
   B) f
   C) s
   D) q

3. TSEK tarafından q harfiyle ifade edilmekte olan kaynağı TSEK tarafından aşağıdaki hangisidir?
   A) Dış köşe kaynağı
   B) Tavan kaynağı
   C) Duvar kaynağı
   D) Yatay Kaynak

4. Bazik elektrodlar herhangi bir nedenle rutubet kapmış ise elektrod fırınlarında kaç derecede kurutulmalıdır?
   A) 150°C’de
   B) 250°C’de
   C) 550°C’de
   D) 750°C’de

5. Bazik elektrodlar herhangi bir nedenle rutubet kapmış ise elektrod fırınlarında kaç dakika kurutulmalıdır?
   A) 30 dakika
   B) 45 dakika
   C) 60 dakika
   D) 90 dakika

6. Kaynaklı birleştirme yapılacak iş parçasının kalınlığı; 5 mm’den az ise; punta aralığı, aşağıdakiakilerden hangisi olur?
   A) Kalınlığın 10 katı
   B) Kalınlığın 20 katı
   C) Kalınlığın 30 katı
   D) Kalınlığın 60 katı
7. Tek ya da tek taraflı kaynağı küt ek kaynağıyla birleştirilebilecek iş parçası kalınlıkları aşağıdaki hangisidir?
   A) 3 mm ile 5 mm arası
   B) 7 mm ile 9 mm arası
   C) 2 mm ile 6 mm arası
   D) 4 mm ile 8 mm arası

8. Kalınlığın 4 mm’den sonraki ölçülerindeki iş parçalarına küt kaynağı aşağıdaki hangisidir?
   A) Bir taraflı kaynak
   B) İki taraflı kaynak
   C) Üç taraflı kaynak
   D) Tek taraflı kaynak

9. Küt ek kaynağında elektroda verilen açı aşağıdaki hangisidir?
   A) 60º
   B) 80º
   C) 90º
   D) 120º

10. Bindirme kaynağında çalışma açısı aşağıdaki hangisidir?
    A) Elektrod 60º
    B) Elektrod 80º
    C) Elektrod 45º
    D) Elektrod 120º

Aşağıdaki cümlelerin sonunda boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

11. (   ) Temizleme işlemini takiben en kısa sürede kaynak被执行ilemelidir.

12. (   ) Elektrik ark kaynağında en çok kullanılan elektrodlar, çıplak (örtüsüz) elektrod olarak adlandırılan gruptur.

13. (   ) Elektrodun kaynak pensine takılan kısmını tamamen çıplaktır.

14. (   ) Elektrodlar paketler hâlinde kullanıcıya sunulur.

15. (   ) Ark üflemesine karşı alınacak önlemler biri kaynak akımının değerini yüksektmektir.

Aşağıdaki cümlelerde boş bırakılan yerlere doğru sözcükleri yazınız.

16. Yüzeyde kalan madensel yağ ve greslerin yapısında ………………. ve ……………. vardır.
17. Oksijen kaynağı yüzeyinde ....................., hidrojen ise .................. yapma özellikleriyle istenmemeyen elementlerdir.

18. Temizlik işlemi genelde ..................... olarak yapılabil princípio gibi ..................... yollarla da gerçekleştirilir.

19. Elektrik ark kaynağında elektrodlar ....................., ..................... ya da ..................... amacıyla kullanılmaktadır.


DEĞERLENDİRME

Aşağıdaki uygulamaları yapınız.

1. 300 mm x 50 mm ebatlarında 10 mm kalınlığında 2 adet çelik parçaya V kaynak ağzılı birleştirme yapınız. Kaynak işleminin başlamadan önce parçaları temizleyip yukarıdaki şekilde belirtilen ölçülerde kaynak ağzı açınız. Aralarında 2,5 mm kadar boşluk bırakarak 3 yerinden puntalayınız. Kök dikiş 3,25 mm diğer dikişler 4 mm rutil elektrodla yapılacaktır. Kaynak akımı kök dikiş için 110-120 A diğer dikişler 160-170 A’dırlar.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Parçaların birleştirme kenarlarına keski, eşe veya makine yardımı ile kaynak ağzı açınız.</td>
<td>- İş parçalarını yan yana kaynak masasının üzerine yatırınız.</td>
</tr>
<tr>
<td></td>
<td>- 2 mm çapında bir tel parçasını, yan yana duran iş parçalarının bir ucundan 12 mm kadar bir mesafede araya sıkıştırınız.</td>
</tr>
</tbody>
</table>
Kaynak makinesini çalıştırıp, kaynak amper ayarını yapınız.

Elektrodu kaynak pensine uygun biçimde bağlayınız.

Açılan kaynak ağzına göre aralık bırakarak uygun mesafelerde puntalama yapınız.

. punta Aralak teli Mesafe

Punta kaynağını yapınız ve iş parçaları arasına koyduğunuz teli hemen çekiniz.

. punta Aralak teli

Aynı yöntemle ikinci punta kaynağını yapınız.

Bir uçtan başlayınız. Birleşmenin bütün boyunca dikişi çekiniz.

Elektrodu dik tutunuz (sağa sola meyil vermeden). Elektrodu kaynak banyosuna doğru 10º eğiniz.

Dikişin en az iş parçasının yarısına kadar nüfuz etmiş olduğundan emin olunuz.

Son çektiğiniz pasonun, kök pasonun köküne iyi nüfuz ettiğiinden emin olunuz.

Kaynak banyosunu kontrol etmeye ve kök nüfuziyetini sağlamak yardımcı olmak üzere elektroduna, aşağıdaki şekilde gibi hafif bir salını veriniz.

Yukarı gelince kısa süre durunuz.
<table>
<thead>
<tr>
<th>Elektrod örtüsünün iş parçasına değdiğini hissetmelisiniz</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Ark boyunu, elektrod açışını ve ilerleme hızını ayarlayarak kök dikişini çekiniz.</td>
</tr>
<tr>
<td>➢ Çekilen kök dikişin cürufunu kırdıktan sonra tel fişça ile temizleyiniz.</td>
</tr>
<tr>
<td>➢ Ark boyu elektrod açısı ve hareketi vererek uygun kaynak hızı ile ikinci dikişi çekiniz.</td>
</tr>
<tr>
<td>➢ Kaynak sonrası kaynak cürufunu kırmız, dikişi tel fişça ile temizleyiniz.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>İlerleme</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Salıntı hareketinin üç noktalarında, birleşmeyi tam olarak doldurmaya yetercek kadar durunuz, sonra yine salıntı veriniz.</td>
</tr>
<tr>
<td>➢ Salıntı hareketini daha iyi kontrol edebilmek için kol yerine bileğinizi oynatınız.</td>
</tr>
<tr>
<td>➢ Kök pasoyu çektiğten sonra is parçasını suda soğutunuz.</td>
</tr>
<tr>
<td>➢ Dikişin bütün cürufunu temizleyiniz.</td>
</tr>
<tr>
<td>➢ İkinci dikişi birincisinin üstüne çekiniz.</td>
</tr>
</tbody>
</table>
Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Gerek elektrodun kavranması gerekse kaynak dikisinin istenen şekilde biçimlendirilmesi için aşağıdakiilerden hangisine ihtiyaç vardır?
   A) Kaynak pensi
   B) Kaynak aspiratörü
   C) Kaynak redresörü
   D) Kaynak transformatörü

2. Kaynak işleminin sonunda, dikisin yüzeyini bir cırf tabakasıyla örterek, dikisin yavaş soğumasını sağlamak aşağıdakiilerden hangisinin görevidir?
   A) Elektrod pensi
   B) Elektrod örtüsü
   C) Kaynak makinesi
   D) Kaynakçı

3. Arknın tutuşmasını ve oluşumunu kolaylaştırmak aşağıdakiilerden hangisinin görevidir?
   A) Elektrod pensi
   B) Elektrod örtüsü
   C) Kaynak makinesi
   D) Kaynakçı

4. Kaynağın doğru ya da dalgalı (alternatif) akımda yapılabilmesini sağlamak aşağıdakiilerden hangisinin görevidir?
   A) Elektrod pensi
   B) Elektrod örtüsü
   C) Kaynak makinesi
   D) Kaynakçı

5. Ark sırasında eriyen metal damlalarının yüzey gerilimlerini ve akışkanlıklarını etkileyerek, değişik pozisyonlarda kaynak yapılabilmesini sağlamak aşağıdakiilerden hangisinin görevidir?
   A) Elektrod pensi
   B) Elektrod örtüsü
   C) Kaynak makinesi
   D) Kaynakçı

6. Ark kaynağı yapabilmek için şebekeden alınan gerilim aşağıdakiilerden hangisidir?
   A) 220-380 volt
   B) 110-440 volt
   C) 350-380 volt
   D) 250-350 volt
7. Kaynak akımında akım şiddeti aşağıdakilerden hangisidir?
   A) 15-35 amper  
   B) 10-600 amper  
   C) 35-450 amper  
   D) 65-750 amper

8. 3,25 mm çapındaki bir elektrodun kaynaklı birleştirme medede kullanılması sırasında akım ayarının, aşağıdakilerden hangisi olması gerekir?
   A) 20x3,25= 65 Amper  
   B) 30x3,25= 98 Amper  
   C) 40x3,25= 130 Amper  
   D) 50x3,25= 163 Amper

9. Aşağıdakilerden hangisi kaynağı birleştirme çeşitlerinden biri değildir?
   A) Dış köşe kaynağı  
   B) Tavan kaynağı  
   C) İç köşe kaynağı  
   D) Flanş Kaynağı

10. Aşağıdakilerden hangisi kaynak konumlarından biri değildir?
    A) Dış köşe kaynağı  
    B) Tavan kaynağı  
    C) Duvar kaynağı  
    D) Yatay Kaynak

11. TSEK tarafından ü harfiyle ifade edilmekte olan kaynak konumu aşağıdaki harflerden hangisidir?
    A) Dış köşe kaynağı  
    B) Tavan kaynağı  
    C) Duvar kaynağı  
    D) Yatay Kaynak

12. Kaynaklı birleştirme yapılacak iş parçasının kalınlığı; 5 mm’den fazla ise; punta aralığı, aşağıdakilerden hangisi olur?
    A) Kalınlığın 10 katı  
    B) Kalınlığın 20 katı  
    C) Kalınlığın 30 katı  
    D) Kalınlığın 60 katı
13. Bindirme kaynağından hareket açısı olarak aşağıdaki kilerden hangisidir?
   A) 30° - 60°
   B) 50° - 80°
   C) 5° - 20°
   D) 110° - 20°

Aşağıdaki cümlelerin sonunda boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

14. ( ) Yalın olarak kaynak; metal ve alaşımların ergime derecelerinin üzerindeki sıcaklıklarda ergitilerek birleştirilmesi anlamını taşımaktadır.
15. ( ) Isı elde edilmesinde, mutlaka elektrik enerjisinden yararlanmak ve bununla kaynak yapmak zorunluluğu vardır.
16. ( ) Alternatif akım hâlinde, ark üflemesi bir sorun oluşturur.
17. ( ) Gerektiğinden fazla olan kaynak akımı, saçramaların çoğalmasına yol açar.
18. ( ) Gerektiğinden fazla olan kaynak akımı yanma oluklarının oluşmasını neden olur.
19. ( ) Gerektiğinden fazla olan kaynak akımı düzgün olmayan bir kaynak dikişinin meydana gelmesine neden olur.
20. ( ) Gerektiğinden fazla olan kaynak akımı dikişte çatlamaları yol açabilir.
21. ( ) Gereğinden düşük tutulmuş kaynak akımı eriyen metal miktarının azalmasına neden olur.
22. ( ) Gereğinden düşük tutulmuş kaynak akımı nüfuziyet azalır.
23. ( ) İlerleme hızı, kaynak dikişinin nüfuziyetini ve biçimini etkilemez.
24. ( ) Hızın gerektiğinden fazla olması, çok küçük kesitli ve kenarları düzgün olmayan, bir kaynak dikişinin oluşmasına neden olur.

Aşağıdaki cümlelerde boş bırakılan yerlere doğru sözcükleri yazınız.

15. Arıkın ilk başlangıcında meydana gelen kaynak metali, sıcaklığın etkisiyle ağışan bir hâldedir ve bua ............................................. adı verilir.
16. Elektrod ve iş parçasının ergimesi sonucunda dikiş üzerinde ...................... bir ............................................. oluşur.
17. Elektrod iş parçasının üzerinde tutuşturulup, sürekli aynı yerde ......................, kaynak banyosu gittikçe ................................ ve çevreye ...............................
18. Elektrodun kaynak dikişlerinin bitiminde de ...................... olarak ve ................................. bir biçimde çekilmesi, krater .......................... yol açar.


DEĞERLENDİRME

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
</tr>
<tr>
<td>12</td>
<td>D</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>D</td>
</tr>
<tr>
<td>15</td>
<td>D</td>
</tr>
<tr>
<td>16</td>
<td>D</td>
</tr>
<tr>
<td>17</td>
<td>Y</td>
</tr>
<tr>
<td>18</td>
<td>Kalm - kalm - rahatlıkla</td>
</tr>
<tr>
<td>19</td>
<td>%85'i - %15 - %10'u - %30'u</td>
</tr>
<tr>
<td>20</td>
<td>2-2,5-3,25-4-5-6 -250-350-450</td>
</tr>
</tbody>
</table>
**ÖĞRENME FAALİYETİ-2’NİN CEVAP ANAHTARI**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
</tr>
<tr>
<td>12</td>
<td>Yanlış</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>D</td>
</tr>
<tr>
<td>15</td>
<td>Yanlış</td>
</tr>
<tr>
<td>16</td>
<td>hidrojen - oksijen</td>
</tr>
<tr>
<td>17</td>
<td>köpüklemenme, - gözenek</td>
</tr>
<tr>
<td>18</td>
<td>kimyasal - mekanik</td>
</tr>
<tr>
<td>19</td>
<td>kesme, birleştirme - dolgu</td>
</tr>
<tr>
<td>20</td>
<td>dayanım - tok - sünek</td>
</tr>
</tbody>
</table>
MODÜL CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
</tr>
<tr>
<td>14</td>
<td>Doğru</td>
</tr>
<tr>
<td>15</td>
<td>Yanlış</td>
</tr>
<tr>
<td>16</td>
<td>Yanlış</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
</tr>
<tr>
<td>18</td>
<td>D</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
</tr>
<tr>
<td>21</td>
<td>D</td>
</tr>
<tr>
<td>22</td>
<td>D</td>
</tr>
<tr>
<td>23</td>
<td>Yanlış</td>
</tr>
<tr>
<td>24</td>
<td>D</td>
</tr>
<tr>
<td>25</td>
<td>10-600 amper</td>
</tr>
<tr>
<td>26</td>
<td>kaynak banyosu</td>
</tr>
<tr>
<td>27</td>
<td>eriyik - banyo</td>
</tr>
<tr>
<td>28</td>
<td>tutulursa, -büyür - yayılır</td>
</tr>
<tr>
<td>29</td>
<td>anî - dik - boşluklarına</td>
</tr>
<tr>
<td>30</td>
<td>çekirdeğini -gerecin - yakın</td>
</tr>
</tbody>
</table>
KAYNAKÇA

- ERSOY, Rüştü, Demircilik Meslek Teknolojisi, Millî Eğitim Basım Evi, İstanbul.
- JOHNSON, Spencer, Johnson, CONSTANCE, Bir Dakikalık Öğretmen, Epsilon Yayıncılık, İstanbul.
- SERFİÇELİ, Y. Saip, Metal işleri Meslek Teknolojisi 2, Ankara, 1996.