T.C. MİLLÎ EĞİTİM BAKANLIĞI

METALÜRJİ TEKNOLOJİSİ

TEKNİK YABANCI DİL (İNGİLİZCE) 2 222YDK020

- Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.
- Millî Eğitim Bakanlığınca ücretsiz olarak verilmiştir.
- PARA İLE SATILMAZ.

CONTENTS

EXPLANATION	iii
INTRODUCTION	1
LEARNING ACTIVITY-1	3
1. MAIN TERMS OF FOUNDRY	3
1.1. Casting	3
1.2. Alloy	4
1.3. Element	4
1.4. Melting	4
1.5. Mould	5
1.6. Core	5
APPLICATION ACTIVITY	7
MEASURING AND EVALUATION	
LEARNING ACTIVITY-2	10
2. THE TOOLS AND EQUIPMENT USED IN THE FOUNDRY	10
2.1. Moulding Box	10
2.2. The Sand	
2.2.1. Moulding Sand	
2.2.2. The Facing Sand	12
2.2.3. The Backing Sand	
2.2.4. The Core Sand	
2.3. The Feeding System	
2.4. The Gating System	
2.4.1. Downgate	
2.4.2. Sprue Base	
2.4.3. Pouring Basin	
2.4.4. Top Trench	
2.4.5. Ingate	
2.5. Pattern	
2.6. The ladle	
2.7. Melting Furnaces	
2.7.1. Crucible Furnaces	
2.7.2. Cupola Furnace	
2.7.3. Induction Furnaces.	
2.8. Hand Tools And Equipment	
2.8.1. Gate knife	
2.8.2. Trowels	
2.8.3. Vent Tools	
2.8.4. Cleaner And Boss Tool	
2.8.5. Shovels And Spades	
2.8.6. Sieves And Riddles	
2.9. The Riser	
2.10. Melting Metals	
2.10.1. Cast İron	
2.10.2. Steel	
2.10.3. SG (Spheroidal-Graphite) Cast İron	
· · · · · · · · · · · · · · · · · · ·	

2.10.4. Malleable Cast İron	36
2.10.5. Aluminum	
2.10.6. Copper Based Alloys	37
2.10.7. Zinc	
2.10.8. Magnesium	38
2.11. The Machines Used İn Foundry	
2.11.1. Sand Mill Or Muller	
2.11.2. Sand Mixer	
2.11.2. Moulding Machines	41
2.11.3. Cranes	
2.11.4. Compressor	46
2.11.5. Ventilator	
2.11.6. Drilling Application	47
APPLICATION ACTIVITY	
MEASURING AND EVALUATION	52
MODULE EVALUATION	
ANSWER KEY	
TECHNICAL DICTIONARY	
SOURCES	

EXPLANATION

KOD	222YDK020
ALAN	Metalürji
DAL/MESLEK	Döküm
MODÜLÜN ADI	Teknik Yabancı Dil -2 (İngilizce)
MODÜLÜN TANIMI	Dökümcülükle ilgili İngilizce kelime ve kavramların tanınmasını, okunmasını ve yazılmasını hedefleyen öğrenme materyalidir.
SÜRE	40/32
ÖN KOŞUL	
YETERLİK	Dökümcülükle ilgili temel kavram ve araç-gereçleri İngilizce ifade etmek
MODÜLÜN AMACI	Genel Amaç: Gerekli ortam sağlandığında, dökümcülükle ilgili temel kavram ve araç-gereçlerin İngilizcelerini dilbilgisi kurallarına uygun olarak okuyup ifade edebileceksiniz. Amaçlar: 1. Dökümcülükle ilgili temel kavramların İngilizcelerini doğru olarak okuyabileceksiniz. 2. Dökümcülükte kullanılan araç ve gereçlerin İngilizcelerini doğru olarak okuyabileceksiniz
EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI	Dil laboratuarı; Kulaklık, bilgisayar ve donanımları, kütüphane, projeksiyon vb. Bireysel öğrenme ortamları; İngilizce sözlük, yardımcı teknik kitaplar. İnternet ortamı, bilgi teknolojileri vb. İşletmeler ve üniversiteler
ÖLÇME VE DEĞERLENDİRME	Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçme araçları ile kendinizi değerlendireceksiniz. Öğretmen modül sonunda ölçme aracı (çoktan seçmeli test, doğru-yanlış testi, boşluk doldurma, eşleştirme vb.) kullanarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek sizi değerlendirecektir.

INTRODUCTION

Dear Student,

One of the most considerable reasons why the humanity advances is the production and "Research and Development". The countries which are paying more money from their incomes are getting an easier and more comfortable life style because the countries which don't renew their technology become underdeveloped day by day.

New technology develops thanks to foreign language and the one who knows foreign language. Hardworking people can read the magazines, books and internet documents in English so can follow the recent technology on their own branches or jobs by learning foreign languages and technical foreign languages. They broad their mind. So they can be more effective and useful people for their country. Lazy people can't follow the recent technology since they don't have enough foreign language. So they are blocked in their factories or workshops.

We have aimed to improve your occupational English in to a higher level with the "Technical English 2". In this case, you can learn the technical words and terms in English and follow the recent technology in the world more closely.

We wish you success in your job and life...

LEARNING ACTIVITY-1

AIM

By the end of this learning activity you will be able to acquire the equivalents of the basic terms about foundry.

SEARCH

Search the topics given below on internet and in university libraries from English sources.

1. MAIN TERMS OF FOUNDRY

1.1. Casting

An artifact process of introducing molten metal into a cavity of the required shape, using gravity, pressure or centrifugal force.

Picture 1.1: A typical steel casting picture

Picture 1.2: A typical aluminum casting

1.2. Alloy

A substance having metallic properties, composed of a metal and one or more elements, usually possesses qualities different from those of the constituents.

Picture 1.3: A car's rim made of aluminum alloy

1.3. Element

It's such a pure material that cannot be decomposed into materials by chemical methods. Iron, nickel, chrome, carbon, aluminum, copper are all elements.

Table 1.1: Periodic Table of Elements

1.4. Melting

Metal melting is the process of producing a liquid metal of the required composition at the required rate, and with the required amount of superheat while incurring the minimum cost.

Picture 1.4: A typical molten steel casting into a ladle

1.5. Mould

The form, usually made of sand, which contains the cavity into which is poured to make a casting.

Figure 1.1: A mould with cored

1.6. Core

A shape made in *core sand* and baked hard in a *core oven*, which is inserted into the mould before pouring to form an internal cavity of some part of the casting which cannot be shaped by the pattern. After the casting has cooled, the core is broken up and removed.

Figure 1.2: A vertical core in a mould

Touch print

- The use of a touch print eliminates the top print in the cop box.
- More suitable for block cores as illustrated in the section with a simple flat back pattern with a 'touch' print core. (See, Figure 1.2)

Figure 1.3: A hanging or cover core

Cover / hanging print

- Useful where it is needed to eliminate the use of a top (cope) box.
- Eliminates a hanging section (cod) of sand. (See, Figure 1.3)

Balance print

- Eliminates the need for other core holding techniques (i.e. studs, chaplets).
- Extended print provides additional support to lock and secure the core in position. (See, Figure. 1.4)

Figure 1.4: A balanced core

APPLICATION ACTIVITY

Read the basic concepts in English about foundry correctly.

Steps of Process	Suggestions
 Write the English Words those are used in the Main Terms of Foundry. Learn the words correctly that you determined by writing repeatedly. 	 Repeat the terms that you have just learnt. Prepare a pocket dictionary with these terms. You can follow the foundry and different foundry methods on the internet.

CHECKLIST

If you have behaviors listed below, evaluate yourself putting (X) in "Yes" box for your earned skills within the scope of this activity otherwise put (X) in "No" box.

	Evaluation Criteria	Yes	No
1.	Have you written the English Terms about foundry?		
2.	Have you learnt the terms correctly by writing them correctly?		

EVALUATION

Please review your"No" answers in the form at the end of the evaluation. If you do not find yourself enough, repeat learning activity. If you give all your answers "Yes" to all questions, pass to the "Measuring and Evaluation".

MEASURING AND EVALUATION

Answer these questions as Yes or No

	Evaluation Criteria	Yes	No
1.	Can a Foundry man draw a technical drawing?		
2.	Can a Foundry man work on the various machines?		
3.	Can a Foundry man use the program "Auto cad"?		
4.	A Foundry man <u>can not</u> cast a mechanical part which is used in Space Technologies.		
5.	A person who works on Industrial Casting can cast a statue from tinned bronze		
6.	A person who works on Industrial Casting can not work in Investment Casting.		

EVALUATION

Please compare the answers with the answer key. If you have wrong answers, you need to review the Learning Activity. If you give right answers to all questions, pass to the next learning activity.

LEARNING ACTIVITY-2

AIM

You will be able to learn the equivalents of the tools and equipment used in the foundry when the necessary equipment is obtained

SEARCH

Search the tools and equipment used in the foundry from the factories around, maintain a catalogue and find the English equivalents.

2. THE TOOLS AND EQUIPMENT USED IN THE FOUNDRY

2.1. Moulding Box

The moulding box is used for making a mould material.

Figure 2.1: A couple of moulding boxes

- > Select two boxes the chosen boxes should have enough space for the runner and riser system around the pattern
- > Check condition of box location holes
- Locate top box onto bottom box to round the hole
- Round hole
- Check clamp slides for dovetail arrangement

2.2. The Sand

2.2.1. Moulding Sand

- Advantages:
 - Comparatively cheap.
 - Readily available.
 - Suitable for short run and jobbing work.
 - Withstands casting temperatures of high melting point metals.
 - Has flexibility to take up almost any shape for casting.
 - Sands and additives can be used *to* create special properties for particular purposes.
 - In certain instances it can be re-cycled; i.e., reclaimed for re-use.
- Disadvantages:
 - Longer production time.
 - New mould has to be made from pattern for each casting.
 - Waste sand must be disposed of.
 - Castings are generally not as dimensionally accurate as those produced by die casting.
 - Additional processes may be needed to deal with problems like 'burn on' and metal penetration.
- Sand may be classified into three broad categories:
 - Natural sands.
 - Synthetic sands.
 - Special purpose sands.

Figure 2.2: Types of Sand Grains in common use

2.2.2. The Facing Sand

- Using a 3mm (1/8 ") sieve, shake facing sand over the pattern.
- Carefully pack sand around the pattern until it is about 25mm (1") thick.

Excessive thickness of facing sand is unnecessary and increases costs. It is only necessary to cover the surface of the pattern (See, Fig.2.3.)

Figure 2.3: Using the facing sand.

2.2.3. The Backing Sand

Sand generally used for moulds, for filling in the mould behind the facings and layers (See, Fig. 2.4.).

Figure 2.4: The Backing Sand

2.2.4. The Core Sand

Silica sand to which a binding material has been added in order to obtain good cohesion and porosity after drying for purpose of making cores.

2.3. The Feeding System

Supply hot metal to the feeder head of an ingot mould or to the riser of feeding head in a casting to prevent the formation of shrinkage cavities as the metal contracts on cooling

Figure 2.5: A typical feeder

2.4. The Gating System

That part of the running system through which molten metal enters the casting cavity. Sometimes it is used as a general term for the whole running or gating system. (See, Fig. 2.6.)

Figure 2.6: A Gating System

2.4.1. Downgate

A vertical channel is used for conveying molten metal from the top of the mould to the ingates of the casting. (Look at Figure 2.6)

2.4.2. Sprue Base

Figure 2.7 : Sprue Base

It is appearing a simple Gating System without top trench in figure. 2.7. Back part of the ingate was deepened. Under this part of sprue is called Sprue Base.

Sprue base is a place in which its speed is dimming of the molten metal that is falling down through the down sprue while it is changing its direction. Besides, solidifying metal drops are kept in the sprue base while the molten metal's being poured down for the first time.

2.4.3. Pouring Basin

A basin in the cope which the molten metal is poured and from where it passes down the gate. (Look at figure 2.6)

2.4.4. Top Trench

A channel through which molten metal or slag is passed from one receptacle to another. In a casting mould that portion of the gate assembly which connects the downgate or sprue to the casting. (Look at figure 2.6)

2.4.5. Ingate

The opening through which metal is poured into the mould. Then it passes along runners to the spaces made vacant by the withdrawal of the patterns. (Look at figure 2.6)

2.5. Pattern

A model of wood, metal, plaster, resin or other suitable material, around which the mould cavity is formed. (See, Picture.2.1.)

Picture. 2.1. A Typical Pattern

2.6. The ladle

Figure. 2.8. Crucible and Bale out Ladle

In some furnaces, the metal is melted in a crucible, which can be lifted out of the furnace using crucible tongs and carried, using a shank.

There are two basic types of ladle: Bale-out, and refractory lined steel shell, plus carbon based crucibles. (See, Fig.2.8.)

➤ Bale-out ladle

These are usually in the size range 40 to 80cm (16-32in) diameter and are almost always carried by hand. They are mainly used for the hand pouring of light metals. (See, Fig.2.8.)

➤ Refractory lined steel shell

This type ranges in size from 10cm (4in) diameter x 20cm (8in) deep, which can be carried by one man, through the intermediate sizes which are fitted to a shank and carried by two men, to the largest sizes mounted on bogies, and those which can only be manipulated and carried by the help of a crane. This type is usually used for the eavier metals. (See, Fig.2.9)

Figure. 2.9. Refractory lined steel shell

➤ Ladle securing straps

This is a simple latching device made of mild steel rod to suit the ladle. Formed to retain ladle in place in handle or shank. (See, Fig.2.10.)

Figure. 2.10. Ladle securing straps

> Shanks

- Single-ended shank; also used for crucibles. (See, Fig.2.11.)
- Double-ended shank; also used for crucibles. (See, Fig.2.11.)

Figure. 2.11. Shanks

Reducing collar

This fits into standard shank to enable a smaller ladle or crucible pot to be used. (See, Fig.2.12.)

Figure. 2.12: Reducing collar

2.7. Melting Furnaces

A wide range of furnaces are used for melting metals, the type is used being determined by the metal to be melted. A foundry establishment will normally have a melting facility to suit its needs, whereas a foundry training centre will have a melting facility to cater for a range of casting alloys.

2.7.1. Crucible Furnaces

- Crucible furnaces utilize a refractory pot which can be fixed as a semi permanent feature, or removed from the furnace after each melt. (See, Fig.2.13.)
- There are several types of crucible furnace units in use:
 - Lift-out/Push out.
 - Bale-out.
 - Tilting.

Figure. 2.13. A Crucible Furnace

➤ A lift-out Crucible Furnace

The lift-out crucible is sited either above floor or in a pit below floor level.

Fuel is coke, oil or gas burned with natural or forced draught/air supply for combustion.

Metals are all non-ferrous. (See, Fig.2.14.)

Push-out crucible furnaces provide an alternative method of removing the crucible from the furnace. Metals are all non-ferrous. (See, Fig.2.14.)

Figure. 2.14: A lift-out Crucible Furnace

➤ Automatic Bale-Out Furnace

The automatic bale-out furnace is ideally suited for melting small amounts of metal at frequent intervals, i.e., for gravity die casting or aluminum jobbing work. (See, Fig.2.15.)

Figure. 2.15: An Automatic Bale-Out Furnace

Manually Controlled Bale-Out Furnace

The manually controlled bale-out furnace has features similar to automatic control furnaces. (See, Fig.2.16.)

Figure. 2.16: A Manually Controlled Bale-Out Furnace

- The tilting crucible is suitable for larger quantities of metal.
- **>** Batch production is made of different alloys by melting them.
- The furnace tilts about a central axis.
- ➤ Ideal metals are aluminum and copper based

Figure. 2.17: A Tilting Crucible Furnace

- Alloys. Iron can be melted but other furnaces are more suitable.
- For removal of molten metal, the furnace is shut down and the tilting mechanism is operated. (See, Fig.2.17.)
- Reverberatory Furnace

This is a long horizontal furnace which uses either oil or gas for its source of heat. The floor, or hearth of the furnace is gently sloped and a tapping hole is located at the lowest point. (See, Fig.2.18.)

Figure. 2.18: A Reverberatory furnace

2.7.2. Cupola Furnace

Figure. 2.19. A Cupola Furnace

Reverberatory Furnace

This is a vertical shaft furnace consisting of a shell lined with refractory material in which the charge is fed in through a door at the top and molten metal is 'tapped-out' at the bottom.

The charge consists of metal (pig iron, steel scrap, cast iron scrap, foundry scrap) coke and limestone.

The cupola is a simple, uncomplicated furnace with the lowest capital cost per unit of output. It is easy to maintain and very versatile. The fuel is used efficiently because the charge is pre-heated by the hot waste gases.

Unfortunately, there is a high emission of fumes, smoke and grit and exhaust cleaning equipment is required to conform to present day environmental legislation. The most commonly used fume cleaning equipment is the 'wet arrester' as shown at the top of the furnace in the illustration.

The capacity of a cupola furnace is measured by the output rate of molten metal and can be from 1 to 35 tons per hour, dependent *on* the internal diameter of the shaft. Shaft diameters range from 1 to 9 feet (30 to 270cm) and shaft height from 10 to 80 feet (3 to 24m). (See, Fig.2.19.)

2.7.3. Induction Furnaces

Figure.2.20. A Channel Induction Furnace

A high voltage electrical source from a primary coil induces a low voltage, high current in the metal (secondary coil) to be melted. The high induced current in the charge metal provides the necessary heat for melting. A crucible of high resistivity is used for preventing induced currents and therefore melting being produced in the crucible itself. The crucible is made of material with a high thermal conductivity to aid heat transfer.

Induction furnace arcs are ideal for melting and alloying with minimum metal loss, but little refining of the metal is possible. Therefore, these furnaces are not normally used with a slag, although a protective flux covering may be used. There are two main types of induction furnace: channel and coreless.

The channel induction furnace (See, Figure 2.20) has an iron core in the form of a ring. A primary induction coil is wound round this at some convenient positions. The current from this induction coil produces a changing magnetic flux in the core. The core and furnace are so designed that channels, carrying the molten metal, form a loop which passes close to, and through the core. The changing magnetic flux in the core induces a secondary current in the loop of molten metal generating heat which is then circulated into the main well of the furnace, which is situated above the channels.

The rapid circulation of molten metal, due to electrical and thermal effects, provides a useful mixing action. It is essential to maintain the furnace at least one third full of metal; solid charge being added above the heel of molten metal. Occasionally, the metal core and associated channel are positioned on the side of the main furnace well, but this design takes up more floor space. Other types of channel furnaces have two separate chambers; one for melting, and the other for holding the metal prior for casting. The latter type is particularly useful for die-casting operations. Channel induction furnaces are normally used for melting lower melting point alloys, e.g., aluminum, copper-based alloys of low melting point, or as a holding for the higher melting point metals e.g., cast iron.

Coreless Induction Furnace

Coreless induction furnaces (See, Figure 2.22.) normally have a cylindrical steel shell and do not employ internal iron cores and therefore no internal molten metal channel. Basic or acidic linings can be used and capacities vary from less than a kilogram for precious metals and laboratory work to more than 15 tones for large steel casting requirements. A helical coil of flattened copper tubing is wound round the lining. This coil carries the electric current which induces a current in the metal charged to the furnace. The induced current produces the heat required to melt the charge and also provides a vigorous stirring action of the metal once molten. The induction coil is normally protected with insulating varnish and asbestos tape. To prevent heating of the steel shell due to the effect of stray currents and the fact that the steel shell will have magnetic properties, magnetic shielding, using packets of silicon steel laminations is employed. These laminations take the form of a yolk around the shell. Alternatively, the shell can be made from non-magnetic materials. The furnaces usually have tilting facilities and the frequencies vary from 500 cycles per second (medium frequency) to in excess of 1,000 cycles per second (high frequencies) while a few furnaces operate from a medium frequency supply on as low as 15 cycles per second.

The coreless induction furnace has largely replaced the crucible furnace, especially for melting high melting point metals and alloys; the higher the melting point the higher the frequency required. Hence this furnace is used for melting steels, high alloy steels, stainless and magnetic steels, nickel chromium heat resisting alloys and alloys containing expensive alloying elements, e.g., cobalt, tungsten, vanadium, nickel and chromium, and applications in which low carbon content and the avoidance of carbon pickup is a necessity. Recently, the coreless induction furnace has replaced some cupola melting operations due to the improved pollution control.

The coreless induction furnace is ideal for straight remelting and alloying, since a high degree of control over temperature, furnace atmosphere and metals can be achieved while the induction current provides good circulation of the melt. However, it is of little use where metal-slag refining is required, since the slag is not effectively heated by the induced current. (See, Figure 2.22.)

Figure. 2.22. A Coreless Induction Furnace

2.8. Hand Tools And Equipment

Rammers

The hand rammer, or peg, pin or peen rammer, is used for packing sand into the moulding box.

The flat or floor rammer is used for consolidating the final layer of sand. Usually has a steel shaft with a cast-on bottom section. (See, Figure. 2.23.).

Figure 2.23: Rammers

2.8.1. Gate knife

- Similar to heart and square, it is used for cutting ingates and feeders and for repairing moulds. Made of spring steel, it is used in two different ways:
- The tool is held in the same way like a pencil, with fingers positioned towards the end being used. The thumb and second finger support and position the tool. The first finger is held on top. The end of the tool not in use rests in the 'V' between the thumb and first finger.

Figure.2.24. Gate Knife

The tool is held with the first finger—extended on top of the end being used, with the thumb resting along one side of the centre portion with the second, third and little fingers are folded under to support the tool between themselves and the palm of the hand, the end of the tool not in use passing up the centre of the hand to rest at the junction of the base of the thumb and wrist. (See, Figure 2.24.)

Heart and square

This tool is used for finishing mould surfaces and shaping joints. It is usually made of steel and is useful if the areas to be sleeked are too small to allow a trowel blade to be used. It is normally held in the same way like a trowel.

Figure.2.25. Heart and square

Corner sleekers

Used to sleek internal and external 90° corners. The action is to draw the sleeker along the corner, holding it up at the leading edges so that the smoothing action is achieved with the back edge

Figure.2.26. Corner sleekers

2.8.2. Trowels

The trowel is the most widely used moulder's tool. It is used for finishing and repairing moulds, cutting ingates and making joints. It is made of steel with a wooden handle. It can be moved in any direction provided the leading edge is always tilted slightly upwards to clear the sand surface, the smoothing action is achieved with the back edge.

The trowel is also used for cutting and finishing ingates and runners. It needs a sharp edge for these tasks since it will be used as a knife to make vertical cuts in the sand. It is used in the repair of damaged areas and parts that have broken away. Fresh sand is built up on the part that has broken away; it is then shaped to the required profile.

Figure.2.27. Trowels

2.8.3. Vent Tools

The simplest one is made of stiff wire 1/16 in diameter, pointed at one end and may have a wooden handle fitted to larger diameter types. It's used for making holes in the mould after ramming up to permit the escape of gasses generated during pouring.

Flexible venting material may be used where complex shapes have to be vented. It is put in position during ramming up operation.

Figure.2.28. Vent tools

2.8.4. Cleaner And Boss Tool

Cleaner

This tool is used for lifting dirt or loose sand out of the mould, and for finishing the bottom and sides of deep, narrow, openings. It is made of spring steel. It is held in a similar way to a pencil, with fingers around the flat surfaces. Both ends of the cleaner, foot and flat, are used for finishing moulds. The foot end is used for lifting out dirt from the bottom of deep sections and cut sections of sand from narrow ingates. The cleaner is used for sleeking surfaces where no other tools can reach.

Figure.2.29. Cleaner

Boss tool This tool is used for sleeking around a boss and making up prints around a core.

Figure.2.30. Boss tool

Quick make gate knife tools

Figure.2.31. Quick make gate knife tools.

Spoon tools

These are double ended tools in various shapes and sizes, having a spoon or scoop shape at each end. They are used for scooping and finishing curved surfaces for which flat tools would be unsuitable.

Figure.2.32. Spoon tools

► Hand bellows

These are used for removing waste sand from the mould cavity, after withdrawal of the pattern. Air lines may be used, but bellows are useful as a standby.

Figure.2.33. Hand bellows

Moulding Box

A container, generally made of metal, into which sand is rammed around a pattern, to produce a mould.

The topmost section is known as the 'cope'.

The middle section (if used) is known as the cheek or mid-part.

The bottom section is known as the 'drag'.

Lugs are fixed to each end of the boxes to take locating or box pins to ensure proper registration of the parts of the mould.

Clamping slides are provided on the sides of the boxes to enable them to be securely clamped together using dovetail clamps.

Figure.2.34. Moulding Box

Rapping/lifting plate

A metal plate having one plain and one tapped hole, to accept rapping or lifting irons.

Figure.2.35. Rapping/lifting plate

Rapping bar and spike

A metal rod inserted into the plain hole of the rapping plate is then struck sharply to loosen the pattern from the mould.

➤ Lifting screw

An iron or steel rod used for lifting or drawing the pattern from the moulding sand. One end screws into the threaded hole in the lifting plate, the other end is eye-shaped to facilitate ease of handling.

Figure.2.36. Rapping bar and spike

2.8.5. Shovels And Spades

These are necessary for handling sand and other materials, like a wheelbarrow.

The fork is used for coke and stone handling.

The rake is used for removing foreign objects from sand piles, and for leveling moulding beds.

Figure.2.37. Shovels and spades

2.8.6. Sieves And Riddles

A sieve is necessary for preparing fine sand for facings and other purposes. Riddles are coarse, having mesh sizes from 3-13mm ('/8" to 1/2") or more. Sieves are fine, having mesh sizes from six to twenty holes per inch.

Figure.2.38. Sieves and riddles

2.9. The Riser

The opening leading from the mould cavity which, among other things, indicates when the mould has been filled. This function should not be confused with that of feeding.

2.10. Melting Metals

2.10.1. Cast İron

Grey cast iron is widely used general purpose Cl.

- ➤ SG (spheroidal-graphite) cast iron also known as nodular iron.
- Malleable cast iron is produced in three types:
- Blackheart, after the colour of a fractured section after heat treatment.
- White heart, after the steely white colour of a fractured section after heat treatment.
- Pearlitic, produced from fettled white Cl castings are similar in composition to that used for blackheart.
- Wear resistant for special applications.

Figure.2.40.Cast iron

2.10.2. Steel

An alloy of iron and carbon that may contain other elements, and in which the carbon does not exceed 1.7%. (See also BS 3100.)

Only the more commonly used steels are described, due to the great variety and metallurgical complexity of the steels available.

- Mild steel has a low carbon content.(0.1%C).
- Medium carbon steel is harder than mild steel, (0.35%C).
- \triangleright High carbon steel is hard (0.6%C).

2.10.3. SG (Spheroidal-Graphite) Cast İron

Cast iron containing graphite in the form of substantially spheroidal particles, produced by suitable molten metal treatment and not by heat treatment.

Figure.2.41. Steel

2.10.4. Malleable Cast İron

Malleable cast iron is produced in three types:

Blackheart, after the colour of a fractured section after heat treatment. White heart, after the steely white colour of a fractured section after heat treatment.

Pearlitic, produced from fettled white Cl castings, similar in composition to that used for blackheart.

2.10.5. Aluminum

This is a light metal, white in color, with a melting point of approximately 660° C.

- The principal aluminum casting alloys are:
 - Aluminum/silicon alloys.
 - Aluminum/magnesium alloys.
 - Aluminum/copper alloys.
 - Aluminum/copper/nickel/magnesium alloys.

These alloys are usually referred to by a British standards number, e.g., LM6, LM24, which are specified in BS 1490.

Figure.2.42. Aluminum Alloy

2.10.6. Copper Based Alloys

This is a heavy metal with a melting point of 1083° C.

It is the major metal used in the group of alloys known as brasses, bronzes and gunmetal.

- **>** Brass, an alloy of copper and zinc. It casts well and is easily machined.
- Pronze, an alloy of copper and tin, with phosphor makes excellent bearing/bushing material.
- Gun-metal, an alloy of copper, tin and zinc.

Figure.2.43. Copper based alloys

2.10.7. Zinc

This is a heavy, with low melting point metal, usually alloyed with aluminum for die casting.

2.10.8. Magnesium

This is a very light, strong metal with a melting point of 659°C.

2.11. The Machines Used İn Foundry

2.11.1. Sand Mill Or Muller

- A mechanical mixer used in the preparation of facing sand.
- Fresh sand is mixed with recycled sand and other additives. It is then milled to distribute the bonding agent and any other additives uniformly throughout the mix.

Figure.2.44. Sand mill or muller

Figure.2.45.A kind of sand mil

It can be identified by the heavy roller/s necessary for the energy requirements needed to ensure dispersion of the bonding agent.

2.11.2. Sand Mixer

- A mechanical mixer having rotating paddles and static spiral ribs which roll (turn) the sand to evenly disperse additives throughout the sand mass.
- Commonly used for mixing core sands (oil sand).

Figure.2.46. Sand mixer

2.11.2. Moulding Machines

Picture.2.2. Moulding machine

Picture.2.3. A kind of moulding machine

2.11.3. Cranes

Nearly all foundries have a crane to lift and move heavy objects.

Types of crane are:

- **Rope pulley blocks:** These are light and easily mounted, but are generally only suitable for light loads.
- **Chain pulley blocks:** These are normally portable, and are used for heavier loads than rope blocks.

Figure.2.47. Rope pulley block

Powered chain pulley blocks.

Figure.2.48. Powered chain pulley block

These may be powered by either electricity or compressed air. They are faster and can carry much heavier loads than hand operated blocks.

- Full mechanized overhead: These are usually large, heavy duty cranes which move on steel tracks mounted in the roof of the foundry, along its length. A gantry spans the width of the foundry. Thus loads can be lifted from most parts of the foundry floor.
- **Jib cranes:** These are marked to show safe working loads at any point on the beam.

Figure.2.49. Jib cranes

- **Hydraulic lifts:** Look for load figures or marks on the telescopic beam
- **Slings:** Types of sling in common use are:
 - Chain slings: These are used for lifting loads, having sharp edges such as rolled steel joists, or for lifting hot materials.
 - Wire rope slings: These are the most widely used.
 - **Fibre rope slings:** These are generally used for lifting light articles.
 - **Belt slings:** These give a breadth of bearing, reducing the risk of damage to the load.

Figure.2.50: Types of sling in common use

> Leg chains

These consist of a lifting ring to which is attached two or more chains, each with a hook at the end.

Figure.2.51. Leg chains

> Belts

These are usually made of canvas in widths varying from 30mm to 150mm ($1\frac{1}{4}$ 6in). They are used where damage to a sand surface must be avoided.

Figure.2.52. Belts

Lifting beams

These consist of a horizontal bar with a central lifting ring or shackle which is placed over the crane hook. The beam has notches equally spaced at each end, into which the lifting rings or slings or leg chains are placed.

Figure.2.53.Lifting beams

2.11.4. Compressor

Figure.2.54. The details of a compressor

Picture .2.4. A two stages compressor

2.11.5. Ventilator

Picture .2.5. Ventilator

Picture .2.6. A kind of ventilator

2.11.6. Drilling Application

There are two types of machine drill, the bench drill and the pillar drill. The bench drill is used for drilling holes through materials including a range of woods, plastics and metals. It is normally bolted to a bench so that it cannot be pushed over and that larger pieces of material can be drilled safely.

The larger version of the machine drill is called the pillar drill. This has a long column which stands on the floor. This can do exactly the same work as the bench drill but because of its larger size it is capable of being used for drilling larger pieces of materials and produce larger holes

Picture. 2.7. Pillar Drill

Picture .2.8. Bench Drill

> Application:

Picture .2.9: Drilling Machine

Figure .2.53. The drill is making a hole by twisting helically on a work piece.

This machine is designed for drilling, counter-boring, reaming, taping, spot-facing, etc. It's widely used in machine works.

> Parts of A Drilling Machine

- Spindle Speed
- Power
- Spindle
- Feed lever
- Drill Chuck
- Vise
- Table
- Dept Gage

Picture .2.10. Parts of A Drilling Machine

APPLICATION ACTIVITY

Read the English equivalents of the tools and equipment in the Foundry correctly.

Steps of Pocess	Suggestions
 Write the English Words those are used on the subject of the tools and equipment in the Foundry. Pronounce the industrial molding terms in English. Write various of the sand which is used for making a Green Sand Mould. Write the part of the Gating System. Write the name of the Melting Furnaces that you know. 	 Repeat the terms that you have just learnt. Prepare a pocket dictionary with these terms. You can follow the foundry and different foundry methods on the internet. Following the terms from internet you learnt before you can acquire actual and updated knowledge.

CHECKLIST

If you have behaviors listed below, evaluate yourself putting (X) in "Yes" box for your earned skills within the scope of this activity otherwise put (X) in "No" box.

Evaluation Criteria		Yes	No
1.	Have you written the English terms of the tools and equipment in the Foundry?		
2.	Have you learnt the correct forms of the terms by writing ythem repeatedly?		
3.	Have you written the types of the sand in order to make a sand mould?		
4.	Have you written the parts of the gating system in English?		
5.	Have you written the English equivalents of the melting furnaces that you know?		

EVALUATION

Please review your"No" answers in the form at the end of the evaluation. If you do not find yourself enough, repeat learning activity. If you give all your answers "Yes" to all questions, pass to the "Measuring and Evaluation".

MEASURING AND EVALUATION

Match the figures below:

1. Moulding Box

2. A Facing Sand

3. Feeder

4. A Gating System

5. A Pattern

6. A Ladle

F

7. A Vent Tool

 \mathbf{G}

8. Induction Furnace

H

9. **A sand Mill**

MODULE EVALUATION

PERFORMANCE TEST

Check your knowledge that you acquire from the module. Is it true or false?

Evaluation Criteria		True	False
1.	Mould: The form, usually made of sand, which contains the cavity into which is poured to make a casting		
2.	Element: It's a pure material that cannot be decomposed into materials by chemical methods. Iron, nickel, chrome, carbon, aluminum, copper are all elements.		
3.	The moulding box is used for making a mould.		
4.	A Tilting Crucible furnace tilts about a central axis.		
5.	The Riser: The opening leading from the mould cavity, which is among other things, indicates when the mould has been filled.		
6.	Cast Iron: This is a light metal, white in color, with a melting point of approximately 660° C.		
7.	Rope pulley blocks: These are normally portable, and are used for heavier loads than rope blocks		

EVALUATION

Please compare the answers with the answer key. If you have wrong answers, you need to review the Learning Activity. If you give right answers to all questions, consulting your instructor proceed to the next learning activity.

ANSWER KEY

LEARNING ACTIVITY-1

1.	Yes
2.	Yes
3.	Yes
4.	No
5.	Yes
6.	No

LEARNING ACTIVITY-2

1	${f E}$
2	В
3	I
4	A
5	С
6	D
7	G
8	F
9	Н

MODULE EVALUATION

1	True
2	True
3	True
4	True
5	True
6	False
7	False

TECHNICAL DICTIONARY

abrasive disk zımpara taşı

abrasive machining aşındırma ile talaş kaldırma acceptance sampling kabul için örnek alma accessory aksesuar, yardımcı teçhizat accuracy hassasiyet, doğruluk

acetylene gas asetilen gazı

acorn nut tırtıllı somun, taçlı somun

actuator uyarıcı

adapter adaptör (ara rakor; birbirinden ayrı cins

iki dişli ucu birleştiren ara parça)

addendum diş ucu (dişlide) adhesion tutma, adezyon

adhesive joining yapıştırma yolu ile birleştirme

adjustment ayarlama

age hardening yaşlandırarak sertleştirme

air furnace hava fırını

allen screw alyen vida; altı köşeli gömme başlı vida allen wrench alyen anahtar, gömme anahtar, altı-köşe

"L" şeklinde anahtar

allotropic changes allotropik değişme, eşözdek değişimi

allowance pay, tolerans alloy alaşım

anchor bolt tesbit civatası, ankraj bulonu

angle köşebent demiri, köşebent, korniye; açı

angle milling cutter açı frezesi, konik freze bıçağı annealing normalleştirme tavı, menevişleme

annular gear içten dişli

anodizing anotlama, anotsal işlem, anotlama usulü ile oksitleme

anvil örs

apparatus cihaz, aygıt, alet
apron araba önlüğü
arbor malafa
arch press kemerli pres
arc spot welding arklı nokta kaynağı
artificial aging suni yaşlanma

assemble monte etmek
assembly takım; birkaç parçadan meydana gelen

parça grubu; komple, montaj

attachment yardımcı teçhizat, ataşman

austempering ösmenevişleme austenite östenit automatic screw machine index tezgahı axial eksenel B bainite bainit, alçak derecede sulanmış çelik bakalite bakalit serit testere band sawing machine barrel finishing dolaplama base taban, kaide, temel base circle diş dibi dairesi (dişlide) küme üretimi batch production batch size küme büyüklüğü batch furnace yığım firini beam kiriş I-beam I profilli demir, I-kirişi U-beam U profilli demir, U-kirişi bearing yatak, rulman ball-bearing bilyalı rulman needle bearing iğneli rulman roller bearing makaralı yatak tapered roller bearing konik makaralı yatak bearing cone yatak göbeği, iç yatak bearing cup rulmanların dış çemberi, yatak kabı bellows körük, körük biçiminde belt kayış belt polishing kayışlı parlatma bench lathe masa tornası, saatçi tornası bench molding tezgah kalıplaması bending bükme, eğme bentonite yumuşak balçık bessemer converter bessemer potasi bevel gear konik dişli bevel protractor dereceli gönye bilateral çift yönlü billet bilet, ham demir çubuk bit uç, matkap ucu, kalem ucu

yüksek firin

blast furnace

blind riser kör oluk blister copper saf bakır bloom demir kütüğü

blow molding hava basınçlı kalıplama

bluing menevişleme board hammer tahtalı şahmerdan

bolt civata

bonding yapıştırma, bağlama

boring machine oyma tezgahı, delik işleme tezgahı

boring mill delik tezgahı bottom board faraş tahtası brace el matkabı

bracket konsol, çıkma, destekli raf, dirsek

brass pirinç

brazing sert lehim, pirinç kaynağı

break corner kırma ağız brittle gevrek, kırılgan

broaching broşlama, tığ çekme, boşaltma

broaching machine boşaltma tezgahı

broaching tools boşaltma kalemleri, boşaltma tığları

bronze bronz, tunç
buffing perdahlama
built-up edge yığma ağız
burnishing çapak temizleme

burr çizik, kazıntı, torna taleminin bıraktığı iz, çapak

bushing burç

butterfly nut kelebek somun

button kontrol düğmesi, düğme butt welding düz ek kaynağı, alın kaynağı

C

calibration kalibrasyon, ayar

calliper kumpas

calorizing sementasyon ile aluminyum kaplama

cam kam, eksantrik, armutçuk, mil dirseği, boynuz cap screw civata başlı vida; altı köşe başlı somunsuz vida,

kapak vidası, başlık vidası

carbide karbür

carbide tools sert maden takımlar

course kaba, kalın
coating örtme, kaplama
coining press darp presi

cold heading soğuk baş yapma cold sawing soğuk kesme cold welding soğuk kaynak cold working soğuk işlem

collar bir parçanın etrafını saran blok bilezik, yaka, halka collet bilezik, esnek kovan, freze çakısı tutacağı (pens)

collet holder esnek kovan (pens) tutacağı

column sütun

combination die keser basar kalıp combination chuck üniversal ayna

combined cut birleşik kesim, kombine kesim

compass pergel, pusula compensation denkleştirme compound rest takım kızağı compression molding basınçlı döküm compressive strength sıkıştırma dayanımı

computer bilgisayar

Computer Numerical Control (CNC) bilgisayarlı sayısal denetim

concentric eş merkezli
continuous casting sürekli döküm
continuous chip akma talaş
contour çevre yolu

converter konverter, değiştirici

coolant soğutucu

cope örtme, üst döküm derecesi

copper (or cupper) bakır

core maça (dökümcülükte)

core diameter (drills) öz çapı

core print maça yatağı, maça yuvası

corrosion yenim, paslanma

cost maliyet

cotter pin maşalı pim, kopilya

cotton waste üstüpü

counter boring düz havşa açma counter sinking konik havşa açma coupling kavrama, kaplin

crest vida dişinin tepesi
cross-slide çapraz kızak
cross-wise enlemesine
crown gear akış dişlisi
crusible pota

cupola kupola, döküm ocağı
curling saç kıvırma, kenar kıvırma
cutting edge kesme yüzü, kesme ağzı

cutting fluid kesme sıvısı
cutting force kesme kuvveti
cutting speed kesme hızı

cyaniding siyanürle sertleştirme

\mathcal{D}

dedendum diş dibi (dişlide) deep drawing derin çekme

deep-hole drilling machine derin delik delme tezgahı deformation processes bozundurma süreçleri

depreciation amortisman, aşınma, kıymetten düşme

depth gage derinlik mastarı depth of cut kesme derinliği

dial kadran, kontrol saatlerinin yüzü

dial indicatorkomparatördiametral pitchkutur diş arasıdiamond toolselmas takımlar

die kalıp; pafta kalıbı (erkek diş açma aleti)

die casting pres döküm diffusion yayınım, difüzyon

direct arc furnace ark firini

disc disk, yuvarlak plaka, kurs

discontinuous chip kesme talaş disposable pattern harcanır model

distortion allowance çarpılma payı, bozulma payı dividing head bölüm aynası, divizör

dog fırdöndü, kanca, tornalamada kullanılan ara mesnet

double housing planer çift sütunlu planya double margin drill çift zırhlı matkap down milling eş yönlü frezeleme

draft allowance çekme payı

drag alt döküm derecesi
draw bar çekme çubuğu, çektirme
draw-cut shaper çeker keser vargel

drawing çekme drawing die çekme kalıbı

drill chuck matkap aynası, mandren

drill performance matkap verimi drill point matkap ucu

drilling machine delme tezgahı, matkap tezgahı

drive tahrik

drop forging şahmerdanda dövme

drop hammer serbest düşüşlü tokmak, şahmerdan

drug alt derece drum tambur

drum lathe kampana tornası
ductility yumuşaklık, süreklilik
duplicating machine kopye makinası

dye boya, boyamak dynamometer dinamometre

\mathcal{E}

eccentric eksantrik, dış merkezli; kam

elastic esnek, elastik
elastic limit esneklik sınırı
elasticity esneklik

electric discharge machining kıvılcımla malzeme işleme

electrode elektrot, elektrik kaynak çubuğu, elektrik kutup çubuğu

electromechanical grinding elektro mekanik taşlama electroforming elektrikle şekillendirme electrohydraulic forming elektrohidrolik şekillendirme

electroplating elektroliz yoluyla kaplama (galvanoplasti)

electroslag welding cürufaltı kaynağı electrotinning elektrikle kalaylama

element öğe, eleman
elongation uzama
embedding gömülme
embossing kabartma
emery zımpara
emery paper zımpara kağıdı

emulsion sütsü, sübye, emülsiyon

enamel emaye

end clearance angle uç boşluk açısı
end cutting edge angle yan ağız açısı
end-mill cutter parmak freze
endurance dayanım, sürme
engine lathe torna tezgahı

equipment aygıt, aparat, ekipman etching asitle aşındırma, dağlama

expansion genişleme

expansion reamer genişletme raybası

explosive forming patlama yoluyla şekillendirme, patlama kalıplaması

extract özüt extraction özütleme

extrusion ekstrüzyon, kalıptan basma, darçıkım

F

face alın, yüz face milling alın frezeleme

face milling cutter alın frezesi, alın işleme çıkısı

face plate firdöndü aynası facing alın tornalama işlemi fastening sıkıştırma, bağlama

fatique yorulma, hareket halindeki aksamın yorulması

feed ilerleme, besleme feedback geriye besleme

feedrate talaş kaldırma hızı, ilerleme hızı

feed rod talaş mili feeler gage hassas mastar

ferrous metal demirli, demirden oluşan metal

file eğe, törpü coarse file kaba eğe

bastard file orta kalın dişli eğe

needle file saatçi eğesi
slitting file oluk eğesi
square file dörtköşe eğe
superfine file ince perdah eğesi
triangular file üçköşe eğe
round file yuvarlak eğe

```
taper file
                                         konik eğe, fare kuyruğu eğe
    parallel file
                                         düz eğe
    flat file
                                         yassı eğe
    drill file
                                         delik tesviye eğesi
                                         törpüleme, eğeleme
filing
fillet
                                         pervaz
fillet weld
                                         pervaz kaynağı
fillister head screw
                                         yıldız başlı vida
                                         yıldız uçlu tornavida
fillister head screw driver
fine
                                         ince
finish allowance
                                         işleme payı
finishing
                                         son işleme
finishing cut
                                         ince işleme
finishing teeth
                                         kalibre ağızları
fit
                                         alıştırma, geçme
    transition fit
                                         ara geçme
    interference fit
                                         sıkı geçme, temaslı alıştırma
    clearance fit
                                         bol geçme
    medium fit
                                         orta sıkı alıştırma, tatlı alıştırma, tatlı geçme
    running fit
                                         döner alıştırma, oynar alıştırma
    sliding fit
                                         kayar alıştırma, kayar geçme
    shrink fit
                                         sıkı geçme, sıkma alıştırma
fixture
                                         bağlama aygıtı, bağlama düzeni
flame cutting
                                         oksijenle kesme
                                         alevle sertleştirme
flama hardening
                                          flanş; bağlantı, birleşme yüzü
flange
flank (gear)
                                         diş yanı
flank wear
                                         serbest yüzey aşınması
flash welding
                                         yakma alın kaynağı
flexibility
                                         esneklik
floor molding
                                         yer dökümü
flute
                                         yiv, oluk (matkapta)
fly-cutter
                                         yaprak çakı
                                         kelebek somun
fly nut
follower rest
                                         gezer yatak
forging
                                         dövme
form milling cutter
                                         modül freze bıçağı, profil frezesi
                                         sekillendirme
forming
foundary process
                                         dökümeülük
```

foundation temel

fracture kırılma, kopma fracture point kopma dayanımı

frame iskelet, çerçeve, şasi, gövde

friction disc sürtünme aynası

friction drive sürtünmeli tahrik, sürtünme mekanizması

front pilot (broaches) ön kılavuz furnace tav firini, ocak

fuse sigorta; madenin sıcaklık dolayısıyla sıvı

haline gelmesi; kaynayıp birleşme

 \mathcal{G}

gage (or gauge) mastar, ölçü, birim, gösterge, ölçü aleti

gage block johnson mastarı galvanizing galvanizleme

gang drilling machine çok milli delme tezgahı

gasket conta

gasket ring conta bileziği, salmastra bileziği

gate aralık, kapı gear dişli

gear-cutting machine çarklara diş açma makinası

gear train dişli düzeni; birbirine geçmiş müteaddit dişli tertibatı

girder kiriş, payanda, putrel, kuşak

goggles kaynakçı gözlüğü

grain tane

grain size tane büyüklüğü

graphite grafit; saf ve yumuşak karbon

gravity sintering ağdırmalı külçeleme gray cast iron kır dökme demir grease gres yağı

grease gres yağı
grease gun gres pompası
grinding taşlama
grinding machine taşlama tezgahı

grinding wheel zımpara taşı, taşlama taşı grinding wheel dresser zımpara taşı düzelticisi

grindstone bileyi taşı

grit maden talaşı, maden kırıntısı; iri taneli kum grub screw yarık başlı makina vidası, saplama vidası

gun drill namlu matkabı

\mathcal{H}

hacksaw blade el testere biçağı hacksaw machine kollu testere makinası

hammer çekiç

hand milling machine el freze tezgahı hardenability sertleşebilme

hardness sertlik

headstock tornada başlık tarafı, torna aynası,

torna feneri, tahrik tertibatı

heat treatment ısıl işlem
helical gear helis dişli
helical spring helezoni yay
helix angle helis açısı
herringbone gear çavuş dişli

high speed steel hava çeliği, yüksek hız çeliği

hobbing azdırma

honing honlama, ince taşlama, parlatma, bileme

horn press mahmuzlu pres
hot spinning sıcak sıvama
hot working sıcak işleme
hose hortum

hub göbek (kasnak, dişli vb. göbeği)

hydraulic press hidrolik pres hydraulic shaper hidrolik vargel hypoid gear hipoid dişli

I

idler gear avara dişli

impact çarpma, darbe, şok impurity pislik, kir, yabancı madde

inclined press eğik pres indentation çukuriz

independent chuck çeneleri ayrı sıkılır ayna, mengeneli ayna

index head bölümlü başlık indicator gösterge, sayaç

induction hardening endüksiyonla sertleştirme

ingot ingot, külçe

injection molding enjeksiyonlu kalıplama

lead kurşun

lead screw vida açma mili (tornada)

leather deri

lever levye, kol, manivela, kumanda kolu

linkage bağlantı, mekanizma, düzen

lip angle kenar açısı lock nut kontra somunu

longitudionalboyuna, uzunlamasınalubricantyağlama maddesilubricating gunyağ tabancasılubricationyağlama

lubricator yağdanlık, gresörlük

М

machinability işlenebilirlik
machine bed tezgah gövdesi
machine frame tezgah gövdesi
machine molding makinalı kalıplama

machine screw makina vidası, civata başlı vida, somunlu vida

machine shop atelye, işlik
machine tool takım tezgahı
machining time işleme zamanı
magnet mıknatıs

magnetic chuck mıknatıslı ayna

maintenance bakım
malleable dövülgen
malleable iron dövülgen demir

mandrel mandrel, malafa, torna punta veya matkap başlığı

manual elle işleyen, elle çalıştırılan; el kitabı

manufacturing processes imalat yöntemleri

margin (drills) faz, zırh martensite martensit

mash seam weld ezme dikiş kaynağı

masking maskeleme
mass production seri imalat
material gereç, malzeme
measurement ölçme, ölçü

measuring instruments ölçme aletleri, ölçme cihazları

mechanism mekanizma, tertibat

mesh tel örgü, örgü süzgeç; birbirine geçme,

dişlilerin temas halinde olması

metal metal

metal removing talaş kaldırma metal spinning sıvama

metal spraying metal püskürtme
metrology ölçme bilimi
mica mika
micrometer mikrometre
mild steel yumuşak çelik
milling cutter freze çakısı

milling cutter freze çakısı
milling machine freze tezgahı
monel metal monel pirinçi
morse taper mors konikliği

mould (or mold) döküm kalıbı, kalıp dökme

multiple cut çoklu kesme multipoint çok ağızlı takım

${\mathcal N}$

nail çivi
nail puller kerpeten
natural doğal, tabii
neck (drills) boyun
needle iğne, ibre

nipple nipel, boru rakoru, meme, meme ucu

nitriding nitritleme
nodular iron yumrulu demir
nominal size nominal ölçü

nonferrous metal demir içermeyen metal normalizing normalleştirme tavı

notching kertikleme numerical control sayısal denetim

nut somun

0

offset kaçıklık, sapma, yerinden kaçma

oil yağ

oil bath yağ banyosu oil screw gun vidalı yağ pompası oil tempered yağda tavlanmış
open-end wrench açık ağız anahtar
open-hearth furnace siemens-martin firini

operation işlem ore cevher

oxidation oksitlenme, paslanma oxy-acetylene welding oksijen kaynağı

${\cal P}$

panel pano, tablo, şalter veya kontrol

saatleri panosu; plaka

parkerizing parkerleme

pattern model (dökümcülükte)

pattern allowance kalıp payı pellet topak

penetration girinim, penetrasyon

percussion press vurgu presi perforating delikleme permeability geçirgenlik

piercing delme (Mannesman metodu)

pig iron pik demir

pin pim, perno, muylu, şiş, iğne pincers kerpeten, kıskaç, pense

pinion küçük dişli pipe boru

pipe wrench boru anahtarı pit molding kuyu dökümü

pitch hatve, vidanın her dişte ilerleme miktarı,

iki diş arasındaki uzaklık, adım

pitch circle diş açıklığı dairesi, bölme dairesi (dişlide)

plain milling cutter silindirik freze bıçağı plain milling machine düz freze tezgahı

planer planya

planetary gear gezegen dişli, gezer dişli, planet dişli

planetary milling machine gezegen başlı freze tezgahı

plant fabrika, tesis, atölye

plastic plastik
plate levha, plaka
plating kaplama

pliers pense

ploughing force sürtme kuvveti, kazma kuvveti

plug tapa, tıkaç, elektrik fişi

plug gage delik mastarı
plumber tesisatçı
pneumatic gage havalı mastar
pneumatic hammer havalı tokmak

pneumatic rammer havalı (pnömatik) şahmerdan; basınçlı hava tokmağı

point angle (drills) uç açısı

pointer gösterge, ibre
polishing parlatma, polisaj
porosity gözeneklilik
powder metallurgy toz metal bilimi

precipitation hardening çökelterek sertleştirme

precision hassasiyet

press pres, cendere, presle basma

pressing presle şekillendirme, presle basma işlemi

process süreç product ürün production üretim

profiling machine kopye tezgahı
protractor açı ölçer
puller çektirme
pulley kasnak, makara

punch zimba

punching zımba ile delme, presle delme

Q

quality control kalite kontrolu quantity miktar, nicelik

quench hardening su verme sertleştirmesi

quenching su verme

quick return mechanism vargel mekanizması

R

rack kremayer dişli

ram şahmerdan tokmağı, pres kütüğü

rammer şahmerdan

raw ham, işlenmemiş, tabii

reamer rayba reaming raybalama

recess oluk, oyuk, girinti

red hardness kızıl sertlik refractory tuğlamsı

reinforce takviye etme, kuvvetlendirme, sağlamlaştırma

relief angle freze bıçağının arka yüzü ile kesilen parça arasındaki açı

remote control uzaktan kontrol
removable pattern sökülebilir model
residual stress artık gerilme
resin reçine, akındırık
resistance welding direnç kaynağı

retaining ring tesbit segmanı, tesbit bileziği revolver head döner kafa, döner başlık

rigid esnemez

ring bilezik, halka, piston segmanı

ring gage yüzük mastar

riser oluk
riveting perçinleme
rod çubuk, kol

roller merdane, rulo, silindir

roll forging dövmeli hadde roll forming haddeleme rolling haddeleme rolling mill hadde makinası

rotation dönme, bir eksen etrafında dönme, rotasyon

roughing cut kaba işleme

roughing teeth (for broach) kaba kesme ağızları

roughness pürüzlülük rubber lastik, kauçuk

run-out salgı

rupture strength kopma dayanımı rust pas, paslanma

S

saddle oturak, eyer, boyun safety pin emniyet pimi sampling örnek alma sand kum

saw milling cutter testere ağızlı freze çakısı

saw type cutter testere tipi çakı sawing machine testere tezgahı

scale ölçek makas scissors hurda scrap screw cutting vida acma screw driver tornavida screw machine civata makinası keçe, yağ keçesi seal seaming ekleme, dikiş seam welding dikiş kaynağı sensitivity duyarlık, hassasiyet set screw tesbit vidası, kontra vida

set-up time hazırlık zamanı shaft döner mil, şaft

shank kesici kalem sapı, şaft

shank cutter parmak freze shaper vargel shaving traşlama shear angle yarma açısı

shake allowance

shearing (preste, makasta) kesme

shear strength kesme dayanımı, kayma dayanımı

sheathing kaplama

sheave oluklu kasnak, makara

sheet levha
sheet metal screw saç vidası
sheet metal shears teneke makası

shell reamer takma rayba, kovan rayba

shearadizing toz çinko ile galvanizleme, çinko emdirme

shift vardiya; yerinden oynatma, yer değiştirme, vitese geçirme

tıklama payı

shim şim; dişliler veya hareketli yüzeyle arasındaki

açıklığı ayarlamak için kullanılan madeni levhalar

shock resistance sarsım direnci shot peening bilyalı yüzey dövme

shrinkage allowance çekilme payı

side milling cutter silindirik alın freze bıçağı

side rake angle yan talaş açısı

sieve elek
silicon silisyum
silver gümüş
sine bar sinüs çubuğu

sintering külçeleme, sinterleme

skilled kalifiye

slab slab, yassı kütük slab milling vals frezeleme slag cüruf, dışık sleeve gömlek, kovan,

mil üzerine bilezik gibi geçen parça; manşon (boruda)

slide kızak slideway kızak

slip plane kayma düzlemi slitting dilme, yarma slotter yarma frezesi snap gage çeneli mastar

snap ring tesbit segmanı, yaylı tutturma bileziği

soaking pit çelik demlendirme fırını

socket yuva, soket, priz
socket adapter cırcır anahtarı
socket wrench lokma anahtarı
soldering lehimleme
spanner civata anahtarı
spare yedek, fazla

specific özgül

specification specifikasyon; makina veya cihazın özellikleri,

kendine has ölçüleri

specimen numune, örnek spindle fener mili spindle support mil desteği spinning sıvama

spirit level düzeç, kabarcıklı düzeç, su terazisi, tesviye ruhu spline freze oluklu kayar geçme yapma; iç ve dış

dişlileri birbirine geçirmek suretiyle birleştirme

spot face pul yatağı spot welding punta kaynağı spraying püskürtme spring yay

spring lock washer yaylı rondela spring washer yaylı rondela spring winding yay sarma

sprocket zincir dişlisi, cer dişlisi

sprue döküm deliği spur gear düz dişli

square nut dörtköşe somun stainless steel paslanmaz çelik stability dengelilik

standard standart, tek biçim, ölçünlü standard deviation standart sapma, tek biçim sapması

stem sap, gövde step drill kademeli matkap

stiff bükülmez storage depolama strain gerinim

strain hardening uzama sertleşmesi, gerinim sertleşmesi

strength direnç, mukavemet, dayanım

stress gerilim

stretch forming uzatarak, gererek şekillendirme

strip şerit, lime, kuşak, band

stripping machine sıyırma makinası, soyma makinası

stroke kurs structure yapı

stud saplama, başlıksız civata

submerged are welding toz atı kaynağı super finishing hassas perdahlama surface finishing yüzey perdahlama

surface hardening yüzey sertleştirme, semente etmek

swaging tokaçlama sweep pattern silmeli model

synchronization senkronize etme; aynı anda ve beraber

çalışır duruma getirme, eşleme, eş zamanlı

$\boldsymbol{\tau}$

T-slot cutter yarık freze bıçağı, T-kanalı açma bıçağı

tailstock torna punta başlığı tang (drill) sökme ucu (konik şaftlı) torque burulma momenti, tork

torque wrench civata sıkma torkunu ölçen anahtar

torsion burulma, torsiyon torsional strength burulma dayanımı

toughness tokluk
tracing konye etme
transparent saydam, şeffaf
transverse enlemesine
trimming machine kordon makinası
T-slot T-kanalı, T-oluğu
tumbling mill döner değirmen

tungsten volfram turning machine torna tezgahı

turret lathe revolver torna, yarı-otomatik torna

twist drill helisel matkap

v

ultimate strength maksimum mukavemet

ultrasonic machining ses üstü dalgalarıyla talaş alma

uniform düzgün, tek biçimli

unilateral tek yönlü

upcut milling aksi yönlü frezeleme upright drill sütunlu matkap

upset forging şişirme

V

valve valf, vana, süpap, ventil

V-block (Vee-block) V-yatağı

vernier caliper sürgülü kumpas

vise mengene void boşluk volatile uçucu

W

washer pul, rondela waviness dalgalılık wear aşınma welded steel kaynaklı çelik

welding kaynak

electric arc welding elektrik ark kaynağı fusion welding erime kaynağı

oxy-acetylene welding oksijen kaynağı, asetilen kaynağı

spot welding nokta kaynağı thermit welding termit kaynağı

welding rod kaynak çubuğu, kaynak elektrodu

welding powder kaynak tozu
welding machine kaynak makinası
welding helmet kaynak başlığı
white cast iron beyaz pik

wind nut kelebekli somun

wire drawing tel çekme

wiring elektrik şebekesi tel düzeni

wood screw ağaç vidası

work hardening işleme sertleşmesi

work piece iş parçası work table iş tablası

worm gear sonsuz dişli, salyangoz dişli

wrench anahtar

wrought iron dövme demir, dörük demir

 $\boldsymbol{\varUpsilon}$

yield point akma dayanımı yoke çatal, mafsal çatalı

 \mathcal{Z}

zine çinko zone bölge

SOURCES

- EITB Engineering Industry Training Board, Foundry Tools And Terminology, ENGLAND.
- EITB Engineering Industry Training Board, **Moulding**, ENGLAND.
- OSBORNE, A. K, A. Met., M. J. WOLSTENHOLME, An Ancyclopædia Of The Iron & Steel Industry, The Technical Press LTD, LONDON / ENGLAND.
- > SALMON William H., Eric N. SIMONS, E.G. GARDNER, Foundry Practice, Pitman Publishing, Great Britain, 1951.
- ➤ WEBSTER P. D., M. Met, C.Eng., M.I.M., M.I.B.F., Fundamentals Of Foundry Technology, Portcullis Press, Redhill, Surrey RH1 1QS ENGLAND, 1980.