KIMYA TEKNOLOJİSİ

SOY METALLER
524KI0337

Ankara, 2012
• Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.
• Milli Eğitim Bakanlığında ücretsiz olarak verilmiştir.
• PARA İLE SATILMAZ.
İÇİNDEKİLER

AÇIKLAMALAR ... ii

ÖĞRENME FAALİYETİ–1 ... 3

1. BAKIR .. 3
 1.1. Doğada Bulunuşu ... 4
 1.2. Elde Edilme Yöntemleri .. 4
 1.3. Özellikleri .. 6
 1.4. Kullanıldığı Yerler ... 7
 1.5. Bakır Bileşikleri ... 9
 1.5.1. Oksijenli Bileşikleri ... 9
 1.5.2. Bakır Halojenürleri ... 10
 1.5.3. Bakır Sülfürleri .. 12

UYGULAMA FAALİYETİ ... 14

ÖLÇME VE DEĞERLENDİRME ... 20

2.1. Doğada Bulunuşu .. 22

2.2. Elde Edilme Yöntemleri ... 22

2.3. Özellikleri ... 24

2.4. Kullanıldığı Yerler ... 25

2.5. Gümüş Bileşikleri ... 26

2.5.1. Oksijenli Bileşik, Gümüş Oksit (Ag2O) .. 26

2.5.2. Halojenürleri ... 26

2.5.3. Sülfürleri .. 27

2.6. Cıva ve Bileşikleri ... 28

2.6.1. Cıva'nın özellikleri ve kullanım alanları .. 29

2.6.2. Oksijenli bileşikleri ... 30

2.6.2.3.1. Cıva(I) halojenürleri ... 30

2.6.2.3.2. Cıva(II) halojenürleri ... 30

2.6.2.4.1. Cıva(II) sülfür (HgS) ... 31

UYGULAMA FAALİYETİ ... 32

ÖLÇME VE DEĞERLENDİRME ... 36

CEVAP ANAHTARLARI ... 38

KAYNAKÇA .. 39
AÇIKLAMALAR

<table>
<thead>
<tr>
<th>KOD</th>
<th>524KI0337</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAN</td>
<td>Kimya Teknolojisi</td>
</tr>
<tr>
<td>DAL/MESLEK</td>
<td>Kimya Laboratuvarı</td>
</tr>
<tr>
<td>MODÜLÜN ADI</td>
<td>Soy Metaller</td>
</tr>
<tr>
<td>MODÜLÜN TANIMI</td>
<td>Bu modül; bakır, gümüş ve bileşiklerinin özelliklerini inceleyebilme ile ilgili bilgi ve becerilerin kazandırıldığı bir öğrenme materyalidir.</td>
</tr>
<tr>
<td>SÜRE</td>
<td>40/8</td>
</tr>
</tbody>
</table>

ÖNKOŞUL

YETERLİK

Soy metallerin özelliklerini incelemek

MODÜLÜN AMACI

Genel Amaç

Bu modül ile gerekli ortam sağlandığında, soy metallerin özelliklerini inceleyebileceksiniz.

Amaçlar

1. Bakır ve bileşiklerinin özelliklerini inceleyebileceksiniz.
2. Gümüş ve bileşiklerinin özelliklerini inceleyebileceksiniz.

EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI

Ortam: Temel kimyasal işlemlerini yapmak için gerekli donanım ve tüm donanımın bulunduğunu laboratuvar, kütüphane, *Internet*, bireysel öğrenme ortamları vb.

Donanım: Atölyede; teknoloji sınıfı, internet, ilk yardım malzemeleri, sabun, personel dolabı, laboratuvar önlüğü, koruyucu malzemeler, deney tüpü, spatül, bakır tozu, nitrik asit, CuSO₄, NH₃, H₂SO₄, gümüş nitrat çözeltisi, amonyak, doymuş glikoz çözeltisi, Cu tel

ÖLÇME VE DEĞERLENDİRME

Modülün içinde yer alan herhangi bir öğrenme faaliyetinden sonra, verilen ölçme araçları ile kendi kendinizi değerlendirmeeksiniz.

Modül sonunda öğretmeniniz tarafından teorik ve pratik performansınızı ölçme teknikleri uygulayarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek değerlendirmeeksiniz.
Sevgili Öğrenciler,

Bu modül, soymeteller hakkında bilmeniz gereken bilgileri içermektedir. Çevrenizdeki bakır, gümüş ve çevadan yapılmış eşyaların yapısını, oluşumunu daha iyi kavrayacaksınız.

Bu metallerin ve bileşiklerinin kimyasal özelliklerini ve kullanım alanlarını öğrenerek genel kültürünüz artacaktır. Buradaki bilgileri başka ders ve modüllerde kullanabileceksiniz.
ÖĞRENME FAALİYETİ–1

AMAÇ

Gerekli ortam sağlandığında kuralına uygun olarak bakır ve bileşiklerinin özelliklerini inceleyebileceksiniz.

ARAŞTIRMA

- Çevrenizde bulunan bakır ve bileşiklerinin kullanım alanlarını araştıracak bir tablo hâline getiriniz ve sınıf ortamında tartışınız.

1.BAKIR

Tablo 1.1: Soy metallerin periyodik cetveldeki yerleşimi

Soy metaller olarak bilinen elementler, periyodik tablonun 1B, 2B ve 8B gruplarında bulunan Bakır (Cu), Gümüş (Ag), Altın (Au), Platin (Pt) ve Cıva (Hg)’dir. Bakır, gümüş ve cıva kuvvetli oksijenli asitlerle tepkime veriklerinden yarı soy, platin ile altın ise oksijenli kuvvetli asitlerle de tepkime vermediklerinden tam soy metaller olarak bilinir.

Resim 1.1: Metalik, işlenmiş bakır
<table>
<thead>
<tr>
<th>Element sembolü</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom numarası</td>
<td>29</td>
</tr>
<tr>
<td>Kütle numarası</td>
<td>63,54</td>
</tr>
<tr>
<td>Erime noktası °C</td>
<td>1083,4</td>
</tr>
<tr>
<td>Kaynama noktası °C</td>
<td>2567</td>
</tr>
<tr>
<td>Öz kütle gr/ml</td>
<td>8,96</td>
</tr>
<tr>
<td>Renk</td>
<td>Kırmızı</td>
</tr>
<tr>
<td>Elektron düzeni</td>
<td>[Ar]3d^{10}s^1</td>
</tr>
<tr>
<td>Yükseltgenme basamağı</td>
<td>+1, +2</td>
</tr>
</tbody>
</table>

Tablo1.2: Bakırın fiziksel özellikleri

1.1. Doğada Bulunuşu

Bakır çok kullanışlı bir metaldir, doğada serbest hâlde veya mineralleri hâlinde bulunur. Önemli minareleri:

- **Kalkosit** (Cu₂S)
- **Kalkoprit** (bakır piriti)(CuFeS₂)
- **Kovalit** (CuS)
- **Kuprit** (Cu₂O)
- **Malahit** [CuCO₃.Cu(OH)₂]
- **Tenorit** (CuO) dir.

Bu minarelerden malahit, güzel yeşil renktedir ve mücevher olarak doğrudan kullanılır. Bakır cevherleri dünyanın her tarafa dağılmış olarak bulunsa da %90 kadarı ABD, Şili, Peru, Kongo, Zambiya ve Kanada’dır. Türkiye’de ise Artvin, Trabzon, Giresun, Kastamonu, Rize, Elazığ ve Siirt’te bulunmaktadır.

1.2. Elde Edilme Yöntemleri

Kullanılmakta olan bakırın % 80 kadarı kükürtülü minarelerden elde edilmektedir. Bu minarel cevherlerindeki bakır, çoğunlukla % 0,3-5 oranında bulunmaktadır. Bu durumda cevher flotasyon yöntemiyle bakır oranı % 20-25 olacak şekilde zenginleştirilir. Daha sonra
bakır eldesi, pirometalurjik (kavurma) ve hidrometalurjik (sıyırma) yöntemlerinden biri veya her ikisiyle yapılır.

➤ **Pirometalurjik (kavurma) yöntem;**

Cevher (örneğin kalkoprit (CuFeS₂)) havada kavrular.

\[2\text{CuFeS}_2 + 4\text{O}_2 \rightarrow \text{Cu}_2\text{S} + 2\text{FeO} + 3\text{SO}_2\]

Kavrulan minarel alev firınında silisyum dioksitle (SiO₂) birlikte ısılır. Demir ve diğer safsızlıklar silikatları hâlindeannya cürufa geçer. Bakır(I) sülfür ve demir(II) sülfürden oluşan kütlesinde (mat) üzerinde toplanır.

Resim 1.2: Bessemer tipi fırın

Ergimiş mat, firının altında alınır ve Bessemer tipi bir firında silisyum dioksit eklenmesiyle hava üflenerek yakılır. Geride kalan demir sülfür, oksijenle demir(II) oksidi,

\[2\text{FeS} + 3\text{O}_2 \rightarrow 2\text{FeO} + 2\text{SO}_2\]

Bu da silisyum dioksitle demir silikati vererek cüruf hâlinde ayrılır. Kükürt, kükürt dioksit hâlinde yan ürün olarak uzaklaştırılır. Bakır(I) sülfür önce Bakır(I) okside dönüşür, daha sonra Bakır(I) sülfürle bakıra indirgenir.

\[2\text{Cu}_2\text{S} + 3\text{O}_2 \rightarrow 2\text{Cu}_2\text{O} + 2\text{SO}_2\]

\[2\text{Cu}_2\text{O} + \text{Cu}_2\text{S} \rightarrow 6\text{Cu} + \text{SO}_2\]

Bu şekilde elde edilen bakır % 97-99 saflıkta olup kalıplar hâlinde alınır. Ergimiş bakıra soğuması sırasında, çözünümüş gazların kabarcıklar hâlinde çıkması nedeniyle bu bakıra **blister bakır** denir.
İndirgeme yöntemi;
Bakırın oksit ve karbonatlı minarelerinden elde edilmesinde minaraller karbonla indirgenir.

\[
\text{CuCO}_3 \rightarrow \text{CuO} + \text{CO}_2 \\
2\text{CuO} + \text{C} \rightarrow 2\text{Cu} + \text{CO}_2
\]

Daha saf bakır elde etmek için elektroliz yönteminden yararlanılır. Burada elektrolit olarak bakır sülfat, katot olarak saf bakır, anot olarak saf olmayan bakır kullanılır. Devreden geçen akımın amperi veya gerilimin voltajı kontrol edilerek saf bakır elde edilir.

1.3. Özellikleri

Bakır, normal koşullarda veya kızıl derecede sudan ve kuru havadan etkilenmez. Nemli havada üzeri bazik bir bakır sülfat \([\text{CuSO}_4\cdot3\text{Cu(OH)}_2]\) tabakasıyla örtülür. Bu tabaka koruyucudur.

- Küükütle kolayca tepkime verir.

\[
2\text{Cu} + \text{S} \rightarrow \text{Cu}_2\text{S}
\]

- Sıcakta HCl hidrojen vererek etki eder.

\[
2\text{Cu} + 2\text{H}^+ + 4\text{Cl}^- \rightarrow 2(\text{CuCl}_2)^- + \text{H}_2
\]

- Bakır metali oksijensiz asitlerde çözünmez. Oksijenli asitlerden sıcak derişik \(\text{H}_2\text{SO}_4\), \(\text{HNO}_3\) ve kral suyunda (3 hacim HCl + 1 hacim HNO₃) çözünür.

Seyreltik \(\text{H}_2\text{SO}_4\) ile:

\[
2\text{Cu} + 2\text{H}_2\text{SO}_4 + \text{O}_2 \rightarrow 2\text{CuSO}_4 + 2\text{H}_2\text{O}
\]

Sıcak ve derişik \(\text{H}_2\text{SO}_4\) ile:

\[
\text{Cu} + 2\text{H}_2\text{SO}_4 \rightarrow \text{CuSO}_4 + \text{SO}_2 + 2\text{H}_2\text{O}
\]

Seyreltik \(\text{HNO}_3\) ile:
3Cu + 8HNO₃ → 3Cu(NO₃)₂ + 2NO + 4H₂O

Derişik HNO₃ ile:

Cu + 4HNO₃ → Cu(NO₃)₂ + 2NO₂ + 2H₂O

Kral suyunda:

3Cu + 6HCl + 2HNO₃ → 3CuCl₂ + 2NO + 4H₂O

Kuvvetli bazlar bakırı etki etmez.

- Bakır metali oksijenli ve nemli ortamda, amonyak (zayıf asit) ile tepkimeye girer.

2Cu + 8NH₃ + O₂ + 2H₂O → 2[Cu(NH₃)₄]²⁺ + 4OH⁻

- CuSO₄.5H₂O ısıtıldığında kristal suyunu kaybeder. Koyu mavi olan rengi, açık maviye dönüşür. Nemli ortamda kristal suyunu geri kazanır.

CuSO₄.5H₂O → CuSO₄ + 5H₂O

- CuSO₄.5H₂O çözeltisine NH₃ ilave edildiğinde, mavi renkte Cu(OH)₂ çöker.

Cu²⁺ + 2NH₄OH → Cu(OH)₂ + 2NH₄⁺

1.4. Kullanıldığı Yerler

Çok elektrikli araçların yapımında, elektrik kablolarında, buhar boruları ve kazanlarının yapımında, organik tepkimelerde katalizör olarak ve alaşımları hâlinde kullanılır. En önemli alaşımları bronz, pirinç ve devarda'dır.

Bronzun ana bileşen % 90 bakır ve % 10 kalaydır. Ancak bazen az miktarda başka bazı metallerin katılmasıyla ek bazı özellikler kazandırılabilir. Pirinç bir bakır-çinko ašlımdır. Çinko oranı % 18 ile % 30 arasında değişir, korozyona karşı saf bakırdan daha kullanışlı ve sağlamdır.

Devarda çok kırılmalıdır ve kolaylıkla toz hâline getirilebilir. Bu toz laboratuvarlarda çok kullanılır.
Resim1.3: Bronz madalya

Resim1.4: Pirinçten yapılmış ibrik

Table1.3: Çeşitli alaşımın bileşimi

<table>
<thead>
<tr>
<th>ALAŞIMIN ADI</th>
<th>BİLEŞİMİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronz</td>
<td>%90Cu-%10Sn</td>
</tr>
<tr>
<td>Pirinç</td>
<td>%18-30Zn-%82-70Cu</td>
</tr>
<tr>
<td>Devarda</td>
<td>%5Zn-%45Al-%50Cu</td>
</tr>
<tr>
<td>Monel metal</td>
<td>%60Ni-%33Cu-%7Fe</td>
</tr>
<tr>
<td>Gümüş para</td>
<td>%90Ag-%10Cu</td>
</tr>
<tr>
<td>Bakır para</td>
<td>%75Cu-%25Ni</td>
</tr>
<tr>
<td>Alman gümüşü</td>
<td>%50-60Cu-%20Zn-%20-25Ni</td>
</tr>
</tbody>
</table>
1.5. Bakır Bileşikleri

1.5.1. Oksijenli Bileşikleri

Bakırın en önemli bileşikleri bakır(I) ve bakır(II) oksitleridir.

1.5.1.1. Bakır(I) Oksit (Küproz Oksit) (Cu2O)

![Resim 1.5: Bakır (I) oksit](image)

Doğada küprit minareli hâlinde bulunur. Laboratuvara Bakır(I) klorür, sodyum hidroksitle kaynatılarak veya bakır(II) tuzlarının bazik ortamda herhangi bir indirgenle ısıtılarak (veya 1000 °C dolayında doğrudan ısıtılarak) kirmizi kahve renkli bakır(I) oksit elde edilir.

\[
\begin{align*}
2\text{CuCl} + 2\text{OH}^- & \rightarrow \text{Cu}_2\text{O} + 2\text{Cl}^- + \text{H}_2\text{O} \\
2\text{Cu}^{2+} + 2\text{OH}^- + 2e^- (\text{indirgen}) & \rightarrow \text{Cu}_2\text{O} + \text{H}_2\text{O} \\
4\text{CuO} & \rightarrow 2\text{Cu}_2\text{O} + \text{O}_2
\end{align*}
\]

Bakır(I) oksit, seyreltik nitrik asit ve sülfürik asitle bakır(II) tuzlarını ve elementel bakırı verir.

\[
\begin{align*}
\text{Cu}_2\text{O} + \text{H}_2\text{SO}_4 & \rightarrow \text{CuSO}_4 + \text{H}_2\text{O} + \text{Cu} \\
\text{Cu}_2\text{O} + 2\text{HNO}_3 & \rightarrow \text{Cu(NO}_3)_2 + \text{H}_2\text{O} + \text{Cu}
\end{align*}
\]

Bakır boyası (kirmizi bakır oksit) gemi tabanlarında yosun tutmasına karşı kullanılır.
1.5.1.2. Bakır(II) Oksit (Küprik Oksit) (CuO):

Doğada tenorit minareli hâlinde bulunur. Siyah renkte, suda çözünmeyen bazik bir oksittir. Bakır(II) hidroksit, bakır(II) nitrat veya bazik bakır(II) karbonatın ısıtılmasıyla elde edilir.

\[
\begin{align*}
\text{Cu(OH)}_2 + \text{I}_2 & \rightarrow \text{CuO} + \text{H}_2\text{O} \\
\text{Cu(NO}_3\text{)}_2 + \text{I}_2 & \rightarrow \text{CuO} + \text{N}_2\text{O}_5 \\
\text{CuCO}_3 \cdot \text{Cu(OH)}_2 + \text{I}_2 & \rightarrow \text{CuO} + \text{CO}_2 + \text{H}_2\text{O}
\end{align*}
\]

Asitlerde çözünerek bakır(II) tuzlarını verir.

\[
\text{CuO} + 2\text{HCl} + \text{I}_2 \rightarrow \text{CuCl}_2 + \text{H}_2\text{O}
\]

Kuvvetle ısıtıldığında oksijen vererek bakır(I) okside dönüştür. Hidrojen veya karbon monoksitle metalik bakıra indirgenir.

\[
\begin{align*}
\text{CuO} + \text{H}_2 & \rightarrow \text{Cu} + \text{H}_2\text{O} \\
\text{CuO} + \text{CO} & \rightarrow \text{Cu} + \text{CO}_2
\end{align*}
\]

1.5.2. Bakır Halojenürleri:

Bakır bütün halojenlerle birleşerek bakır(I) ve bakır(II) halojenürleri verir.
1.5.2.1. Bakır(I) Halogenürler, (CuX):

Bakır(I) florür ve bakır(II) iydürün bileşği bilinemektedir. Bakır(I) klorür ve bromür, bakır(II) tuzlarının asidik çözeltiinde aşırı orandaki bakırla kaynatılmasıyla önce kompleks iyonu hâlinde elde edilir, su eklenirse beyaz renkte bakır(I) klorür,

\[
\text{CuO} + \text{H}_2 \rightarrow \text{Cu} + \text{H}_2\text{O} \\
\text{CuO} + \text{CO} \rightarrow \text{Cu} + \text{CO}_2
\]

Ve açık sarı renkte bakır(I) bromür çöker.

\[
\text{Cu} + \text{Cu}^{2+} + 4\text{Br}^{-} \rightarrow 2[\text{CuBr}_2]^{-} \\
[\text{CuBr}_2]^{-} \rightarrow \text{CuBr} + \text{Br}^{-}
\]

Bakır(II) tuzlarına iydür eklenmesiyle önce bakır(II) iydür çöker. Ancak bu, hemen bakır(I) iydür ve iyoda ayrışır.

\[
2\text{CuI}_2 \rightarrow 2\text{CuI} + \text{I}_2
\]

1.5.2.2. Bakır(II) Halogenürler, (CuX2):

Bakır(II) florür: bakır ve florun doğrudan tepkimesiyle elde edilir. Renksiz iyonik bir bileşiktir.

\[
\text{Cu} + \text{F}_2 \rightarrow \text{CuF}_2
\]

Bakır(II) klorür: susuz bakır(II) klorür, elementlerinin doğrudan birleşmesiyle sarı renkte kristaller hâlinde elde edilir.

\[
\text{Cu} + \text{Cl}_2 \rightarrow \text{CuCl}_2
\]

Bakır(II) bromür: siyah renkte bir katıdır, doğrudan elementlerinden veya hidrobromik asitin bakır(II) oksit veya bakır(II) karbonatla tepkimesiyle elde edilir.
Bakır halejenürler endüstride çeşitli alanlarda, özellikle zirai ilaçlarının yapımında çok aranan ürünlerdir.

1.5.3. Bakır Sülfürleri

Bakır kükürtle birleşerek bakır(I) ve bakır(II) sülfürleri verir.

Resim 1.7: Bakır(I) sülfür

1.5.3.1. Bakır(I) Sülfür (Cu2S)

Doğada kalkosit minareli hâlinde bulunur. Bakırin kükürtle havasız bir ortamda ısıtılmasıyla veya bakır(II) sülfürünün havasız bir ortamda ısıtılmasıyla elde edilir. Bakır(I) sülfür yüksek sıcaklık sıcaklıkta kararlı bir bileşiktir.

\[
2\text{Cu} + \text{S} + \text{S} \rightarrow \text{Cu}_2\text{S} \\
2\text{CuS} + \text{S} \rightarrow \text{Cu}_2\text{S} + \text{S}
\]

1.5.3.2. Bakır(II) Sülfür (CuS)

Doğada en az çözünen bakır(II) sülfürdür. Bakır(II) tuzu çözeltilerinden asidik, bazik veya nötr ortamda hidrojen sülfür(H₂S) gazı geçirilmesiyle siyah renkte çöker.

\[
\text{Cu}^{2+} + \text{H}_2\text{S} \rightarrow \text{CuS} + 2\text{H}^+
\]
1.5.3.3. Bakır II Sülfat \([\text{CuSO}_4]\) (Göz taşı)

Bakır(II) sülfatın en çok bilinen bileşığı çoğunlukla 5 mol kristal suyu içerir. Susuz olanı renksiz, kristal suyu içeren ise mavi renklidir. Bu bileşinin suyunun alınması doğrudan olmaz. Önce 2 mol suyunu vererek \(\text{CuSO}_4\cdot3\text{H}_2\text{O}\), 100 °C’ta 2 mol suyunu daha vererek \(\text{CuSO}_4\cdot\text{H}_2\text{O}\) kristallerini, 300°C’de ise suyunun tamammı vererek susuz bakır sülfatı oluşturur. Daha kuvvetli ısıtılsa bozunarak bakır(II) okside dönüştür.

Bakır(II) sülfat, endüstride bakır(II) sülfürün havada kavrulduktan sonra sülfürik asitle tepkimesiyle;

\[
2\text{CuS} + 3\text{O}_2 \rightarrow 2\text{CuO} + 2\text{SO}_2 \\
\text{CuO} + \text{H}_2\text{SO}_4 \rightarrow \text{CuSO}_4 + \text{H}_2\text{O}
\]

Laboratuvarında ise bakır metali üzerine seyreltik sülfürik asit eklenmesiyle ve hava üflenmesiyle elde edilir.

\[
2\text{Cu} + 2\text{H}_2\text{SO}_4 + \text{O}_2 \rightarrow 2\text{CuSO}_4 + 2\text{H}_2\text{O}
\]

Bu tepkimede derişik sülfürik asit kullanılarrsa kükürt dioksit gazı açığa çıkar.

\[
\text{Cu} + 2\text{H}_2\text{SO}_4 \rightarrow \text{CuSO}_4 + 2\text{H}_2\text{O} + \text{SO}_2
\]

Bakır(II) sülfat, elektrolizlerde elektrolit olarak mikrop ve bakterileri öldürücü ilaçların yapımında, suların temizlenmesinde ve benzeri alanlarda kullanılır. Bakır bileşiklerinden özellikle, bakır sülfat (göz taşı) bağıcıklıka micro organizmaları yok etmekte kullanılır. Son zamanlarda bu amaç için bakır sülfatın yerini oksitli bakır klorür almaktadır.
UYGULAMA FAALİYETİ

UYGULAMA FAALİYETİ
Bakır ve bileşiklerinin özelliklerini inceleyiniz.

Kullanılan araç ve gereçler: Deney tüpü, spatül, bakır tozu, nitrik asit, CuSO₄, NH₃, H₂SO₄

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakır II nitrat elde etmek için</td>
<td></td>
</tr>
</tbody>
</table>
| ➢ Deney tüpüne yarım spatül bakır tozu alınız. | ➢ Laboratuvar önliğünüzü giyerek çalışma ortamınızı hazırlayınız.
 ➢ İş güvenliği önlemlerini alınız. |
| ➢ Derişik nitrik asit ekleyiniz. | ➢ Çeker ocağınızı çalıştırmayı unutmayınız.
 ➢ Çıkan gazlardan korununuz.
 ➢ Gerekirse maske kullanınız. |
<p>| ➢ Oluşan karakteristik rengi gözleyiniz. | ➢ Renk değişimine dikkat ediniz. |
| ➢ Bakır II oksit elde etmek için: | |</p>
<table>
<thead>
<tr>
<th>İşlemler</th>
<th>Anlamları</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bir deney tüpü içerisine 2 ml CuSO₄.5H₂O çözeltisi alınız.</td>
<td>Dikkatli çalışmaya özen gösteriniz.</td>
</tr>
</tbody>
</table>
| Üzerine derişik NH₃ tan damla damla ilave ediniz. | Amonyak şişesinin kapağını kapamayı unutmayınız.
| | Gerekirse maske kullanınız. |
| Mavi jel hâlinde Cu(OH)₂ çökeleğini gözlemleyiniz. | Deney tüpünü fazla çalkalamayınız. |
| Çökeleği ısıtınız. | Bekin alevini fazla açmayınız.
| | Tüm maşası kullanınız.
<p>| | Etrafa sıçratmamaya özen gösteriniz. |</p>
<table>
<thead>
<tr>
<th>İşlem</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siyah renkli CuO oluşumunu gözlemleyiniz.</td>
<td>Isıtma işleminde etrafa sıçratmaya dikkat ediniz.</td>
</tr>
<tr>
<td>Oluşan çökeleğe H₂SO₄ ilave ediniz.</td>
<td>Asitle çalışırken puar kullanınız.</td>
</tr>
<tr>
<td>Sonucu irdeleyiniz.</td>
<td>Tepkimeleri oluşturmayı çalışınız.</td>
</tr>
<tr>
<td>Susuz CuSO₄ elde etmek için:</td>
<td></td>
</tr>
<tr>
<td>Deney tüpü içine yarım spatül CuSO₄.5H₂O (göztüşt) koyunuz.</td>
<td>Etrafa dökmemeye özen gösteriniz.</td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Bek alevinde kuru kuruya ısıtınız.</td>
<td>Bekte çalışırken dikkatli olunuz.</td>
</tr>
<tr>
<td>Mavi rengin kaybolduğunuzu gözlemleyiniz.</td>
<td>Kısık alevde çalışıp acele etmeyiniz.</td>
</tr>
<tr>
<td>Mavi rengin kaybolduğunuzu gözlemleyiniz.</td>
<td>Mavi rengin kaybolduğunuzu gözlemleyiniz.</td>
</tr>
<tr>
<td>Üzerine derişik NH₃ çözeltisinden ilave ediniz.</td>
<td>Amonyak şişesinin kapağını kapamayı unutmayın.</td>
</tr>
<tr>
<td>Şişe kepini kapamayı unutmayın.</td>
<td>Amonyak alırken puar kullanınız.</td>
</tr>
<tr>
<td>Çökelek oluşumunuzu gözlemleyiniz.</td>
<td>Deney tüpünü çalkalamayınız.</td>
</tr>
<tr>
<td>Çökelek üzerine çözünme olana kadar NH\textsubscript{3} ilave ediniz.</td>
<td>Amonyak şişesinin kapağını kapamayı unutmayıınız</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Oluşan mavi rengi gözlemleyiniz.</td>
<td>Rengin açılmasını arkadaşlarınızla irdeleyiniz.</td>
</tr>
<tr>
<td>Raporunuzu yazarak teslim ediniz.</td>
<td>İşlem basamakları ve aldığınız notlardan faydalanarak raporunuzu hazırlayınız. Raporunuzu öğretmeninize teslim ediniz.</td>
</tr>
</tbody>
</table>
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri **Evet**, kazanamadığınız becerileri **Hayır** kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. İş güvenliği önlemlerini aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Deney tüpüne yarım spatül bakır tozu aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Derişik nitrik asit eklediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Oluşan karakteristik rengi gözlemlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Bir deney tüpü içerisinde 2 ml CuSO₄ çözümü aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Üzerine derişik NH₃ tan damla damla ilave ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Mavi jel hâlinde Cu(OH)₂ çökeleğini gözlemlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Çökeleği ısıttınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Siyah renkli CuO oluşumunu gözlemlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Oluşan çökelege H₂SO₄ ilave ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Sonucu irdelediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Deney tüpü içine yarım spatül CuSO₄.5H₂O (göztaşı) koydunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Bek alevinde kuru kuruya ısıttınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Mavi rengin kaybolduğunu gözlemlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Üzerine derişik NH₃ çözeltisinden ilave ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Çökelek oluşumunu gözlemlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Çökelek üzerinde çözünme olana kadar NH₃ ilave ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Oluşan mavi rengi gözlemlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Raporunuzu yazdınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

FeS + O₂ → FeO + SO₂ tepkimesi en küçük katsayılarla denkleştirildiğinde FeO’nin katsayısı kaç olur?
A) 3 B) 2 C) 1/2 D) 2/3

0,1 mol CuO (bakır(II) oksit) bileşği yeteri kadar H₂ gazı ile indirgendiğinde kaç gram bakır metali elde edilir? (Cu: 64)
CuO + H₂ → Cu + H₂O
A) 3,2 B) 6,4 C) 32 D) 64

1. CuSO₄·5H₂O (göz taşığı) bileşigiindeki bakır %'si nedir?
(Cu: 64, S: 32, O: 16, H: 1)
A) 2,56 B) 4,12 C) 10,5 D) 25,6

2. Bakır metali küükürt ile ısıtılarak 15,9 g bakır(I) sülfür elde edilmek istenirse kaçar g bakır ve küükürt gerekir?
A) 12,7g Cu-3,2g S B) 1,27g Cu-3,2g S C) 12,7g Cu-0,32g S D) 1,2g Cu-2,2g S

3. Aşağıdikilerden hangisi bakırın alaşımlarından değildir?
A) Bronz B) Pirinç C) Çelik D) Devarda

4. Yeterli seyreltik HNO₃ ile bakırın tepkimesinden 11,25 g Cu(NO₃)₂ elde etmek için kaç g Cu metali kullanmak gerekir?(Cu: 64, N:14, O:16, H:1)
3Cu + 8HNO₃ → 3Cu(NO₃)₂ + 2NO + 4H₂O
A) 3,81 g B) 38,1 g C) 0,38 g D) 3,18 g

5. 5 g Cu(SO₄)₂·5H₂O ısıtılması ile kaç g su uzaklaştırılır?
A) 2,6 g B) 18 g C) 1,8 g D) 0,18 g

DEĞERLENDİRME

ÖĞRENME FAALİYETİ–2

AMAÇ

Gerekli ortam sağlandığında kuralına uygun olarak gümüş ve bileşiklerinin özelliklerini inceleyebileceksiniz.

ARAŞTIRMA

- Çevrenizde bulunan gümüş ve bileşiklerinin kullanım alanlarını araştıracak bir tablo hâline getiriniz ve sınıf ortamında tartışınız.

2. GÜMÜŞ

Resim2.1: Metalik gümüş

<table>
<thead>
<tr>
<th>Element sembolü</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom numarası</td>
<td>47</td>
</tr>
<tr>
<td>Kütle numarası</td>
<td>107,86</td>
</tr>
<tr>
<td>Erime noktası °C</td>
<td>961,98</td>
</tr>
<tr>
<td>Kaynama noktası °C</td>
<td>2212</td>
</tr>
<tr>
<td>Öz kütle gr/mlt</td>
<td>10,50</td>
</tr>
<tr>
<td>Renk</td>
<td>Gümüş</td>
</tr>
<tr>
<td>Elektron düzeni</td>
<td>[Kr]4d105s1</td>
</tr>
<tr>
<td>Yükseltgenme basamağı</td>
<td>+1</td>
</tr>
</tbody>
</table>
Tablo 2.1: Gümüşün özellikleri

2.1. Doğada Bulunuşu
Gümüş doğada az bulununan bir elementtir. Dünyada Kanada ve Rusya’da; Türkiye’de ise Balıkesir, Kütahya, Ankara, Yozgat ve Artvin’de maden yataklarında vardır. Serbest olarak; Galen minareli (PbS.Ag) ve simli kurşun olarak bulunur. Önemli minareleri;

<table>
<thead>
<tr>
<th>Gümüş</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galen</td>
<td>PbS.Ag</td>
</tr>
<tr>
<td>Argentit</td>
<td>Ag₂S</td>
</tr>
<tr>
<td>Horn gümüş</td>
<td>AgCl</td>
</tr>
<tr>
<td>Kırmızı gümüş</td>
<td>3Ag₂Sb₂S₃</td>
</tr>
<tr>
<td>Prüstit</td>
<td>Ag₃AsS₃</td>
</tr>
<tr>
<td>Piragirit</td>
<td>Ag₃Sb₂S₃</td>
</tr>
</tbody>
</table>

Üretilen gümüşün bir kısmı gümüş minarelerinden, büyük bir kısmı ise bakır ve kurşun üretiminde yan ürün olarak elde edilir.

2.2. Elde Edilme Yöntemleri:

- **Gümüş; endüstride iki yoldan elde edilir.**
 - Bakır ve kurşun üretiminde yan ürün olarak
 - Minarallerinden gümüş eldesi
- **Bakır üretiminde gümüşün yan ürün olarak eldesi**

\[
2\text{Ag} + 2\text{H}_2\text{SO}_4 \rightarrow \text{Ag}_2\text{SO}_4 + 2\text{H}_2\text{O} + \text{SO}_2
\]

\[
\text{Ag}_2\text{SO}_4 + \text{Cu} \rightarrow 2\text{Ag} + \text{CuSO}_4
\]

- **Kurşun üretiminde gümüşün yan ürün olarak eldesi**

 - **Pattinson yöntemi:** Bu yöntem, gümüşlu kurşun minarallerinden gümüş elde edilmesinde kullanılan bir yöntemdir. Bunun için minarel ergitilir ve soğumaya bırakılrsa kurşun kristallenir. Bu kristallerin sürekli olarak alınmasıyla geriye gümüş-kurşun alaşımı kalır.

 - **Parkes yöntemi:** Bu yöntemde gümüş içeren karışımları ergitilir ve bir miktar çinko eklenerek iyice karıştırlar. Gümüşün büyük bir kısmı çinko çözuğur. Karışımda dondurulduğunda çinko-gümüş alaşımı
yüzeyde toplanır ve katılır. Buradan alınan alaşım damıtılarak daha uçucu olan çinko uzaklaştırılır ve az miktarda küçükna kurşun içeren gümüş geride kalır.

Buradan elde edilen gümüşte de kısmen safsızlık bulunabilir. Çok saf gümüş, elektrolitik saflaştırma ile elde edilir.

- **Minerallerinden gümüş eldesi**

Gümüş minarelerinden gümüş elde ederken en önemli sorun, çözünmeyen gümüş bileşiklerinin çözeltiye geçmesini sağlamaktır. Bunun için siyanürleştirme ve amalgam yöntemleri uygulanır.

- **Siyanürleştirme yöntemi:** Metalik gümüş ve bütün gümüş bileşikleri oksijenli ortamda alkali siyanürlerde kolayca çözünerek gümüş komplekslerini verirler.

\[
4\text{Ag} + 8\text{NaCN} + 2\text{H}_2\text{O} + \text{O}_2 \rightarrow 4\text{Na}[\text{Ag(CN)}]_2 + 4\text{NaOH}
\]

\[
\text{AgCl} + 2\text{NaCN} \rightarrow \text{Na}[\text{Ag(CN)}]_2 + \text{NaCl}
\]

Yabancı maddelerden süzülen arındırılan kompleks, toz hâlinde metalik çinko veya alüminyum eklenerek gümüşe indirgenir.

\[
2\text{Na}[\text{Ag(CN)}]_2 + \text{Zn} \rightarrow \text{Na}[\text{Zn(CN)}]_4 + 2\text{Ag}
\]

- **Amalgam yöntemi:** Bu yöntem, metalik hâlde gümüş veya gümüş klorür içeren minarelerden gümüşün elde edilmesinde kullanılır. Bunun için toz hâline getirilen minarel su ve çıva ile karıştırılır. Çıva metalik gümüşü çözzer, gümüş klorürü de metalik gümüşe indirgeyerek amalgam oluşturur.

23
Oluşan amalgam diğer safszılıklardan ayrılır. Demirden yapılmış damıtma kaplarında ısıtılırsa ciVA uçar, yoğunlaştırılarak tekrar kullanılır, gümüş ise geride kalır. Buradan elde edilen gümüş kısmen safszılık içerdiginden, elektrolitik saflaştırma ile saflaştırılır.

- **Elektrolitik saflaştırma:** Elektrolizde burada saf gümüş katodu, saf olmayan gümüş ise anodu oluşturur. Elektrolit olarak seyreltik nitrik asit içeren gümüş nitrat çözeltisi kullanılır. Saf gümüş anotta toplanır.

2.3. Özellikleri

Gümüşün zor yükseltgenmesi soy metal olmasına neden olmaktadır.

- Normal koşullarda oksijenden etkilenmez, ancak H₂S veya sülfür içeren maddeler yanında (yumurta, hardal gibi) oksijenden kolaylıkla etkilenir ve parlaklığı kaybolur.

\[
4\text{Ag} + 2\text{H}_2\text{S} + \text{O}_2 \rightarrow 2\text{Ag}_2\text{S} + 2\text{H}_2\text{O}
\]

- Gümüş metaline su buharı ve HCl asit etki etmez. HNO₃ ve H₂SO₄ gibi asitler etki eder.

\[
3\text{Ag} + 4\text{HNO}_3 \rightarrow 3\text{AgNO}_3 + \text{NO} + 2\text{H}_2\text{O}
\]

\[
2\text{Ag} + 2\text{H}_2\text{SO}_4 \rightarrow \text{Ag}_2\text{SO}_4 + \text{SO}_2 + 2\text{H}_2\text{O}
\]

- Kompleks bileşikler oluşturur.
 - Gümüş tuzu çözeltileri Cl⁻ iyonu ile beyaz renkli AgCl çökeleği verir.

\[
\text{Ag}^+ + \text{Cl}^- \rightarrow \text{AgCl}
\]
 - Bu çökelek amonyakta, gümüş diamin kompleksi vererek çözünür.
Gümüş tuzu çözelti OH- iyonu ile siyah renkli AgOH çökeleği verir.

\[\text{Ag}^+ + \text{OH}^- \rightarrow \text{AgOH} \]

Gümüş hidroksit kararsız bir bileşiktir, ışıkta bir süre sonra bozunarak gümüş okside dönüşür.

\[2\text{AgOH} \rightarrow \text{Ag}_2\text{O} + \text{H}_2\text{O} \]

Bu çökelekte amonyakta gümüş diamin kompleksi vererek çözünür.

\[\text{Ag}_2\text{O} + 4\text{NH}_3 + \text{H}_2\text{O} \rightarrow 2[\text{Ag(NH}_3)_2]^+ + 2\text{OH}^- \]

• Standart indirgenme potansiyellerine göre bakır elementi, gümüş iyonunu bileşiginden açığa çıkarır.

\[\text{Cu} + 2\text{Ag}^{1+} \rightarrow 2\text{Ag} + \text{Cu}^{2+} \]

• Gümüş aynası amonyaklı gümüş nitrat çözeltisinin indirgenlerle (glikoz, sodyum potasyum tartarat, formaldehit gibi) ısıtılması ile elde edilir.

\[2\text{Ag}^{2+} + 3\text{NH}_3\text{OH} + \text{HCHO} + \text{işi} \rightarrow 2\text{Ag} + \text{HCOO}^- + 3\text{NH}_4^+ + 2\text{H}_2\text{O} \]

2.4. Kullanıldığı Yerler

- Gümüş metali çok yumuşak olduğundan çoğunlukla bakır ve diğer metallerle alaşımları hâlinde kullanılır.
- Çatal, kaşık gibi ev eşyaları yapımında kullanılan gümüş, % 90 gümüş ve % 10 bakır içerir.
- İngiliz gümüşü denilen ve % 92,5 gümüş % 7,5 bakır içerenalsa ise daha çok mücevher ve para yapımında,
- Ayrıca;
- Ayna yapımında,
- Fotoğrafçılıkta,
- Süs eşyası yapımında ve
- Elektrolizle kaplamacılıkta kullanılır.
2.5. Gümüş Bileşikleri

Gümüş, bileşiklerinde en çok +1 değerlikli olur, buna argentus adı verilir. Gümüş iyonları fazla hidroliz olmaz, iyi bir yükseltgendir.

2.5.1. Oksijenli Bileşigi, Gümüş Oksit (Ag2O):

Gümüşün en önemli oksijenli bileşigidir. Gümüşün ozonla tepkimesiyle, toz hâlindeki gümüşün basınç altında oksijen içinde ısıtılmasıyla veya gümüş nitrat çözeltisine kuvvetli bazların eklenmesiyle koyu kahverengi amorf bir madde olarak elde edilir.

\[
12\text{Ag} + 3\text{O}_2 \rightarrow 6\text{Ag}_2\text{O} \\
4\text{Ag} + \text{O}_2 + \text{I}_2 \rightarrow 2\text{Ag}_2\text{O} \\
2\text{AgNO}_3 + 2\text{NaOH} \rightarrow \text{Ag}_2\text{O} + 2\text{NaNO}_3 + \text{H}_2\text{O}
\]

Gümüş oksit suda çok az çözünür, çözeltisi baziktir.

\[
\text{Ag}_2\text{O} + \text{H}_2\text{O} \leftrightarrow 2\text{Ag}^+ + 2\text{OH}^-
\]

Amonyaklı çözeltilerde çok az çözünür, kuvvetli bir bazdır.

\[
\text{Ag}_2\text{O} + 4\text{NH}_3 + \text{H}_2\text{O} \rightarrow 2[\text{Ag(NH}_3)_2]^+ + 2\text{OH}^-
\]

Gümüş oksit havada ısıtılsa kolaylıkla oksijen vererek bozunur.

\[
2\text{Ag}_2\text{O} \xrightarrow{300^\circ\text{C}} 4\text{Ag} + \text{O}_2
\]

2.5.2. Halojenürleri:

En önemli gümüş bileşikleri gümüş halojenürleridir. Gümüş florür suda çok çözünür, diğerlerinin çözünürlükleri ise klorürden iyodür'e doğru azalır.

Suda çözünmeyen gümüş halojenürleri, gümüş tuzları çözeltisine halojenür iyonlarının eklenmesiyle elde edilir.

\[
\text{Ag}^+ + \text{X}^- \rightarrow \text{AgX}
\]
Gümüş florür, gümüş oksidin sulu hidroflorik asitte çözünmesiyle elde edilir.

\[\text{Ag}_2\text{O} + 2\text{HF} \rightarrow 2\text{AgF} + \text{H}_2\text{O} \]

Gümüş klorür, derişik HNO\(_3\), derişik HCl asit ve alkali klorürlerde klor kompleksi yaparak çözünür.

\[\text{AgCl} + \text{HCl} \rightarrow [\text{AgCl}_2]^+ + \text{H}^+ \text{ veya } \text{H[AgCl]} \]

\[\text{AgCl} + 2\text{NH}_3 \rightarrow [\text{Ag(NH}_3)_2]^+ + \text{Cl}^- \text{ veya } [\text{Ag(NH}_3)_2]\text{Cl} \]

\[\text{AgCl} + \text{KCN} \rightarrow \text{K[Ag(CN)_2]} + \text{KCl} \]

Gümüşün florü dışında bütün halojenürleri ışığa duyarlıdır. Işıkta elementlerine ayrışarak önce menekşe daha sonra siyah renge dönüştür.

\[2\text{AgX} + \text{IŞIK (hv)} \rightarrow 2\text{Ag} + \text{X}_2 \]

Bu nedenle özellikle gümüş bromür (AgBr), ışığa duyarlı fotoğraf çözeltilerinin yapımında kullanılır.

2.5.3. Sülürleri

- **Gümüş sülfür (Ag\(_2\)S)**

Doğada argentit minerali hâlinde bulunur. Gümüş metali üzerinden kırmızı derecede kükürt buharı geçirilmesi veya gümüş tuzları çözeltisinden hidrojen sülfür gazı geçirilmesiyle siyah renkte elde edilir.

\[2\text{Ag} + \text{S} \rightarrow \text{Ag}_2\text{S} \]

\[2\text{AgNO}_3 + \text{H}_2\text{S} \rightarrow \text{Ag}_2\text{S} + 2\text{HNO}_3 \]

Gümüş sülfür sıcak nitrik asitte çözünür.

\[3\text{Ag}_2\text{S} + 8\text{HNO}_3 \rightarrow 6\text{AgNO}_3 + 3\text{S} + 2\text{NO} + 4\text{H}_2\text{O} \]

Gümüş, bileşikleri arasında suda en az çözünenidir. Siyanürlü ortamlarda kolay çözünür.
2.6. Cıva ve Bileşikleri

![Resim2.2: Metalik Cıva](image)

<table>
<thead>
<tr>
<th>Element sembolü</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom numarası</td>
<td>80</td>
</tr>
<tr>
<td>Kütle numarası</td>
<td>200,59</td>
</tr>
<tr>
<td>Erime noktası °C</td>
<td>-38,4</td>
</tr>
<tr>
<td>Kaynama noktası °C</td>
<td>357</td>
</tr>
<tr>
<td>Öz kütle gr/mlt</td>
<td>13,6</td>
</tr>
<tr>
<td>Renk</td>
<td>Parlak metalik</td>
</tr>
<tr>
<td>Elektron düzeni</td>
<td>[Xe]4f(^{14})5d(^{10})6s(^{2})</td>
</tr>
<tr>
<td>Yükseltgenme basamağı</td>
<td>+1 +2</td>
</tr>
</tbody>
</table>

Tablo 2.2. Cıvanın özellikleri

Cıva, doğada serbest hâlde (gümüş ve altınla amalgamı hâlinde) bulunacağı gibi bileşikleri hâlinde de bulunabilir. En önemli minareli **cinnabar** (HgS) dir.

Cıvanın elde edilmesi için cıva(II) sülfür minareli kavrulur ve metalik cıva, cıva buharı hâlinde ayrılır. Cıva buharları su ile soğutulan toprak kaplarda yoğunlaştırılarak alırmış.

\[
\text{HgS} + \text{O}_2 \rightarrow \text{Hg} + \text{SO}_2
\]
Cıva, cıva(II) sülfür minarelinin havasız bir ortamda sönmemiş kireçle ısıtmasıyla da elde edilir.

\[4\text{HgS} + 4\text{CaO} \rightarrow 4\text{Hg} + 3\text{CaS} + \text{CaSO}_4 \]

2.6.1. Cıvannın özellikleri ve kullanım alanları

Cıva; gümüş beyazlığında bir metal olup oda sıcaklığında sıvı (plazmik hâl) olan tek metaldir. Oda sıcaklığında havadan etkilenmez, kaynama noktası dolayında oksijenle kırmızı renkte cıva oksit verir. Halojenleri, ozon ve kükürtle doğrudan ve kolaylıkla birleşir ancak bazlardan, sudan, su buharından, seyreltik \(\text{H}_2\text{SO}_4 \) ve seyreltik \(\text{HCl} \)’den etkilenmez. Sıcak deriĢik \(\text{H}_2\text{SO}_4 \) cıvaya etki ederek kükürt dioksit ve cıva (II) sülfat verir.

\[
\text{Hg} + 2\text{H}_2\text{SO}_4 \rightarrow \text{HgSO}_4 + \text{SO}_2 + 2\text{H}_2\text{O} \\
6\text{Hg} + 8\text{HNO}_3 \rightarrow 3\text{Hg}_2(\text{NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O} \\
\text{Hg} + 4\text{HNO}_3 \rightarrow 3\text{Hg}(\text{NO}_3)_2 + 2\text{H}_2\text{O} \\
\]

Cıvannın en önemli özelliklerinden biri, çoğu metallerle amalgam denilen alaĢımları yapmasıdır. Amalgamlar cıva ve diğer metalin derişimine bağlı olarak sıvı veya katı hâlde olabilir. Amalgamlar çoğulukla metaller arası çözelti özelliği gösterir, ancak bazı amalgamlarda (KHg, KHg \(_2\)) kimyasal bileĢim söz konusudur. Sodyum ve amonyum amalgamları gibi bazı amalgamlar, kuvvetli indirgen maddeler olduklarından çok yararlıdır.

- Önemli kullanım alanları;
 - Sıcaklık ölçerlerde,
 - Basınçölçerlerde,
 - Floresans lambaların yapımında,
 - Elektrik bağlantılarında kullanılır.

NOT: Cıva buharları çok zehirli olduğu için, cıva ile çalışırken çok dikkatli olunmalıdır.

Cıva, bileşiklerinde çoğunlukla +2 değerliktede de bazı bileşiklerde +1 değerliktede olur. Bunlardan +1 değerlikti olanlara merküroz, +2 değerlikti olanlara da merkürik bileşikleri adı verilir. Cıvannın +1 değerlikti iyonlarının formülü \(\text{Hg}^+ \) değil \(\text{Hg}_2^{2+} \) olarak gösterilir. Bu iyonda iki cıva atomu arasında bir kovalent bağ vardır.
2.6.2. Oksijenli bileşikleri

2.6.2.1. Cıva(I) oksit (Hg₂O)

Siyah bir tuzdur. Cıva(I) tuzu çözeltisine baz eklenmesiyle elde edilir. Kararsız bir oksit.

\[\text{Hg}_2(\text{NO}_3)_2 + 2\text{NaOH} \rightarrow \text{Hg}_2\text{O} + 2\text{NaNO}_3 + \text{H}_2\text{O} \]

2.6.2.2. Cıva(II) oksit (HgO)

Cıva(II) tuzu çözeltisine baz eklenmesiyle veya cıvanın kaynama noktası sıcaklığında oksijenle yakışmasıyla elde edilir.

\[\text{HgCl}_2 + 2\text{KOH} \xrightarrow{357^\circ\text{C}} \text{HgO} + 2\text{KCl} + \text{H}_2\text{O} \]

\[2\text{Hg} + \text{O}_2 \rightarrow 2\text{HgO} \]

2.6.2.3. Halojenli bileşikleri

Cıva bütün halojenlerle birleşerek cıva(I) ve cıva(II) halojenürleri verir.

2.6.2.3.1. Cıva(I) halojenürleri

Bunlar cıva(II) halojenürlerin cıva veya uygun bir indirgenle ya da Cıva(II) tuzu çözeltisine halojenür iyonu eklenmesiyle elde edilir.

\[\text{HgI}_2 + \text{Hg} \rightarrow \text{Hg}_2\text{I}_2 \]

\[\text{HgSO}_4 + \text{Hg} + 2\text{NaCl} \rightarrow \text{Hg}_2\text{Cl}_2 + \text{Na}_2\text{SO}_4 \]

\[\text{Hg}_2(\text{NO}_3)_2 + 2\text{KCl} \rightarrow \text{Hg}_2\text{Cl}_2 + 2\text{KNO}_3 \]

\[2\text{HgCl}_2 + \text{SnCl}_2 \rightarrow \text{Hg}_2\text{Cl}_2 + \text{SnCl}_4 \]

Cıva(I) halojenürlerinden en önemlişi Cıva(I) klorürdür.

2.6.2.3.2. Cıva(II) halojenürleri

Bunlar Cıva(II) tuzları çözeltisine halojenür iyonları eklenmesiyle elde edilir.

\[\text{Hg(NO}_3)_2 + 2\text{NaX} \rightarrow \text{HgX}_2 + 2\text{NaNO}_3 \]

30
2.6.2.4. Sülfürlü bileşikleri

Cıvannın sülfürlərinden Cıva(I) sülfür (Hg₂S) kararsızdır, bozunarak cıva(II) sülfür (HgS) ve cıvaya dönüşür.

2.6.2.4.1. Cıva(II) sülfür (HgS)

Gümüş ve bileşiklerinin özelliklerini inceleyiniz.

Kullanılan araç ve gereçler: Deney tüpü, gümüş nitrat çözeltisi, amonyak, doymuş glikoz çözeltisini, Cu tel

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gümüş aynası yapmak için:</td>
<td></td>
</tr>
</tbody>
</table>
| ➢ Deney tüpüne gümüş nitrat çözeltisi alınınız. | ➢ İş önlüğünü giyiniz, maskenizi takınız.
➢ Çalışma ortamınızı hazırlayınız. |
<p>| ➢ Çökelek oluşup çözününceye kadar amonyak çözeltisi ekleyiniz. | ➢ Eldiven takmayı unutmayınız. |</p>
<table>
<thead>
<tr>
<th>➢ Doymuş glikoz çözeltisini ekleyiniz.</th>
<th>➢ Çözeltinin doygunluğundan emin olunuz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney tüpü çevresinde parlak gümüş oluştuğunda bek alevini kısnız.</td>
<td>Beki kısmayı ihmal etmeyiniz.</td>
</tr>
<tr>
<td>Deney tüpünün çevresinde oluşan aynayı inceleyiniz.</td>
<td>Arkadaşlarınızla paylaşın.</td>
</tr>
</tbody>
</table>
| **Gümüş iyonunu indirgemek için:**
Deney tüpüne 3 ml gümüş nitrat çözeltisi koyunuz. | Ellerinizle çözeltiye temas etmeyiniz. |
<table>
<thead>
<tr>
<th>İşlemleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>İçerisine yüzeyi temizlenmiş Cu tel daldırınız.</td>
</tr>
<tr>
<td>Bakır telin ucunu halka şeklinde kıvırmayı unutmayınız.</td>
</tr>
<tr>
<td>Bir süre sonra Cu teldeki ve çözeltideki değişimleri gözlemleyiniz.</td>
</tr>
<tr>
<td>Reaksiyonun tamamlanmasını bekleyiniz.</td>
</tr>
<tr>
<td>Kullandığınız malzemeleri temizleyerek teslim ediniz.</td>
</tr>
<tr>
<td>Kullandığınız malzemeleri dikkatlice temizleyiniz.</td>
</tr>
<tr>
<td>Malzemelerin kırılabilen malzemeler olduğunu unutmayınız.</td>
</tr>
<tr>
<td>Raporunuzu teslim ediniz.</td>
</tr>
<tr>
<td>İşlem basamakları ve aldığınız notlardan faydalanarak raporunuza hazırlayınız.</td>
</tr>
<tr>
<td>Raporunuzu öğretmeninize teslim ediniz.</td>
</tr>
</tbody>
</table>
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri Evet, kazanamadığınız becerileri Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendirmeniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. İş önlüğünüzü giyip çalışma masanızı düzenlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Deney tüpüne gümuş nitrat çözeltisi aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Çökelek oluşup çözüninceye kadar amonyak çözeltisi eklediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Doymuş glikoz çözeltisini eklediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Karışımı bek alevinde gezdirdikten sonra ısıttınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Deney tüpü çevresinde parlak gümuş oluştuğunda bek alevini kıstınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Deney tüpünün çevresinde oluşan aynayı incelediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Deney tüpüne 3 ml gümuş nitrat çözeltisi koydunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. İçerisine yüzeyi temizlenmiş Cu tel daldırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Bir süre sonra Cu teldeki ve çözeltideki değişimleri gözlemlediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Kullandığınız malzemeleri temizleyerek teslim ettiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Raporunuzu teslim ettiniz mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. \(\text{AgNO}_3 + \text{NaOH} \rightarrow \text{Ag}_2\text{O} + \text{NaNO}_3 + \text{H}_2\text{O} \) tepkimesi denkleştirdiğinde NaOH’in katsayısı kaç olur?
 A) 2
 B) 3
 C) 2/3
 D) 3/2

2. Aşağıdakilerden hangisi bir gümüş mineralidir?
 A) Galen
 B) Pirit
 C) Boksit
 D) Zinkit

3. \(3\text{Ag} + 4\text{HNO}_3 \rightarrow \text{AgNO}_3 + \text{NO} + 2\text{H}_2\text{O} \) tepkimesine göre 0,5 mol gümüş metali yeterince nitrik asitle tepkimeye girdiğinde NGA'da kaç litre NO gazı oluşur?
 A) 2,24 l
 B) 1,12 l
 C) 3,73 l
 D) 22,4 l

4. 0,02 molar 1 litre \(\text{AgNO}_3 \) çözeltisine bakır tel daldırılıyor. Kaç gram Ag metali elde edilir?(\(\text{Ag}:108 \))
 \(2\text{AgNO}_3 + \text{Cu} \rightarrow \text{Cu(NO}_3)_2 + 2\text{Ag} \)
 A) 4,38 gr
 B) 2,16 gr
 C) 3,16 gr
 D) 43,8 gr

5. Cehennem taşı da denilen madde aşağıdaki kilerden hangisidir?
 A) \(\text{CaCO}_3 \)
 B) \(\text{CuSO}_4 \)
 C) \(\text{Na}_2\text{CO}_3 \)
 D) \(\text{AgNO}_3 \)

6. Aşağıdakilerden hangisi bir cıva alaşımdır?
 A) Lehim
 B) Amalgam
 C) Tunç
 D) Pirinç

7. \(\text{HgS} + \text{O}_2 \rightarrow \text{Hg} + \text{SO}_2 \) tepkimesine göre 10 g Hg elde etmek için kaç g HgS kullanılmalıdır? (Hg:200, S:32)
 A) 11,6 gr
 B) 11,16 gr
 C) 23,2 gr
 D) 0,16 gr

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. \(\text{HgCl}_2 + \text{KOH} \rightarrow \text{HgO} + \text{KCl} + \text{H}_2\text{O} \) tepkimesi eşitlendiğinde KOH’in katsayısı kaç olur?
 A) 1
 B) 2
 C) 3
 D) 2/3

2. \(\text{Hg}^{(s)} + 2\text{H}_2\text{SO}_4^{(s)} \rightarrow \text{HgSO}_4^{(k)} + \text{SO}_2^{(g)} + 2\text{H}_2\text{O}^{(s)} \) tepkimesine göre; 20 g Hg tepkimeye girdiğinde NSHA’da kaç litre \(\text{SO}_2 \) gazi elde edilir (Hg: 200g/mol)?
 A) 22,4
 B) 2,24
 C) 0,224
 D) 4,48

3. \(\text{HgS} + \text{O}_2 \rightarrow \text{Hg} + \text{SO}_2 \) tepkemesine göre 100 g Hg elde etmek NSHA’da kaç litre \(\text{O}_2 \) harcanmalıdır (Hg: 200)?
 A) 2,8
 B) 5,6
 C) 11,2
 D) 22,4

4. \(\text{Ag}_2\text{O}^{(k)} \xrightarrow{300^\circ\text{C}} 2\text{Ag}^{(k)} + \text{O}_2^{(g)} \) tepkimesine göre; NSHA 0,224 litre \(\text{O}_2 \) gazı elde edebilmek için kaç g \(\text{Ag}_2\text{O} \) katısı harcanmalıdır (Ag:107, O:16)?
 A) 0,46g
 B) 460g
 C) 46g
 D) 4,6g

5. \(\text{Cu}^{(k)} + 2\text{H}_2\text{SO}_4^{(s)} \rightarrow \text{CuSO}_4^{(k)} + 2\text{H}_2\text{O}^{(s)} + \text{SO}_2^{(g)} \) tepkemesine göre; 1,59 g CuSO\(_4\) elde edebilmek için kaç g Cu katısı tepkimeye sokulmalıdır?
 A) 63 gr
 B) 6,3 gr
 C) 0,63 gr
 D) 0,063 gr

6. 5,6 gram demir ve bakır metalleri karışımı üzerine yeterince seyreltik HCl asit etki ettiriliyor. NSHA’da 1,12 L \(\text{H}_2 \) gazı açığa çıktığına göre karışımın % kaç demirdir (Fe:56, Cu:64)?
 A) 10
 B) 25
 C) 50
 D) 100

7. \(\text{Cu} + \text{HNO}_3 \rightarrow \text{Cu(NO}_3)_2 + \text{H}_2\text{O} + \text{NO} \) tepkime denkleştirilirse suyun kat sayısı kaç olur?
 A) 3
 B) 8
 C) 4
 D) 2

DEĞERLENDİRME

ÖĞRENME FAALİYETİ-1’İN CEVAP ANAHTARI

<table>
<thead>
<tr>
<th>1</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ-2’NİN CEVAP ANAHTARI

<table>
<thead>
<tr>
<th>1</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
</tr>
</tbody>
</table>

MODÜL DEĞERLENDİRME CEVAP ANAHTARI

<table>
<thead>
<tr>
<th>1</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
</tr>
</tbody>
</table>
KAYNAKÇA