T.C.
MİLLİ EĞİTİM BAKANLIĞI

GİDA TEKNOLOJİSİ

SOFRALIK ZEYTİN VE ZEYTİNYAĞI ANALİZLERİ
541GI0099

Ankara, 2012
Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yetenekleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.

PARA İLE SATILMAZ.
AÇIKLAMALAR

<table>
<thead>
<tr>
<th>KOD</th>
<th>541GI0099</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAN</td>
<td>Gıda Teknolojisi</td>
</tr>
<tr>
<td>DAL/MESLEK</td>
<td>Gıda Kontrol / Gıda Laboratuvar Teknisyeni</td>
</tr>
<tr>
<td>MODÜLÜN ADI</td>
<td>Sofralık Zeytin ve Zeytinyağı Analizleri</td>
</tr>
</tbody>
</table>

MODÜLÜN TANIMI
Bu modül, zeytinyağında serbest yağ asitliği tayini, peroksit sayısı tayini, zeytinde tuz tayini ve zeytinyağlından duyusal yolla kalite tayini işlemleriyle ilgili bilgi ve becerilerin kazandırıldığı öğrenme materyalidir.

Süre
40/24

Ön Koşul
Ön koşulu yoktur.

YETERLİK
Sofralık zeytin ve zeytinyağı kalite kontrol analizlerini yapmak

MODÜLÜN AMACI

Genel Amaç
Bu modül ile gerekli bilgileri alıp uygun ortam sağıldığında analiz metoduna uygun olarak sofralık zeytin ve zeytin yağı kalite kontrol analizlerini yapabileceksiniz.

Amaçlar
1. Zeytinyağında serbest yağ asitliği tayini yapabileceksiniz.
2. Peroksit sayısı tayini yapabileceksiniz.
3. Sofralık zeytinde tuz tayini yapabileceksiniz.
4. Zeytinyağında duyusal analizler yapabileceksiniz.

EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI

Ortam: Kimya laboratuvarı, teknoloji sınıfı, kütüphane, internet

Donanım: Genel laboratuvar araç gereçleri, panel odası, zeytinyağı numunesi, termostatlı ısıtıcı, tadım kabı

ÖLÇME VE DEĞERLENDİRME

Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçme araçları ile kendinizi değerlendirerek olursunuz. Öğretmen modül sonunda ölçme aracı (çoktan seçmeli test, doğru-yanlış testi, boşluk doldurma, eşleştirme vb.) kullanarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek sizi değerlendirerek olursunuz.
Sevgili Öğrenci,

Zeytin ağacının günümüzden 6000 sene önce Anadolu’nun güney doğusunda Yukarı Mezopotamya’da bilindiği, meyvelerinden faydalanıldığı, buradan Suriye ve Yunanistan üzerinden iklim bakımından uygun Akdeniz kıyılarına yayıldığı kabul edilmektedir.

Zeytinyağı, zeytinin preslenmesiyle elde edilen herhangi bir kimyasal işleme tabi tutulmadan doğrudan tüketilebilen tek yağdır. Bitkisel yağlar içerisinde fiziksel metotlarla üretilen tek yağ olsa da zeytinyağının sahip olduğu bir ayricalık vardır. Son yıllarda bu özelliği nedeniyle zeytinyağı sadece üretimi yapılan ülkelerde değil, sağlıklı yaşam idealini ilke edinen ülkelerde de tüketilmeye başlanmıştır.

Sofralık zeytin, kültüre alınmış elverişli zeytin çeşitlerinin normal iriliklerini aldığı zaman toplanmış, acılığı giderilmek üzere belirli teknik usullerle hazırlanmış ve pazara çıkmak üzere korunmuş olan yeşil, siyah ve rengi dönük (pembe) danelerdir.

Türkiye, dünya sofralık zeytin üretiminde ikinci, dünya siyah zeytin üretimde birincisi sıradadır. Dünyanın en büyük zeytinyağı üretici ülkesi ise İspanya’dır. Arkaşından İtalya ve Yunanistan, daha sonra Tunus, Türkiye, Fas gelmektedir. Libya, Cezayir ve Portekiz gibi ülkeler de önemli üreticiler arasındadır.

Sofralık zeytin ve zeytinyağı üretiminde yapılacak en küçük ihmal ve dikkatsizlik ürünlerde işlem öncesi, sonrası ve depolama sırasında olumsuz kalite değişimleri görülmesine, mikrobiyal, kimyasal ve fiziksel bozulmalara neden olur Besleme değerini azaltır ve üretilen ürünler sağlık açısından tehlikeli hale gelirler.

Kaliteli, sağlıklı sofralık zeytin ve zeytinyağı üretimi, tüketicinin aldatılmasını önlemek için üretim, depolama ve pazarlama aşamalarında yapılması zorunlu kimyasal ve duyusal analizler Türk Gıda Kodeksi ve standartlarda belirtilmiştir.

Bu modülü tamamladığımızda Türk Gıda Kodeksine uygun olarak üretim yerlerinden örnek alarak zeytinyağı ve zeytin kalitesini, yaptığınız analizlerle tayin edebileceksiniz.
ÖĞRENME FAALİYETİ–1

AMAÇ

Bu öğrenme faaliyeti sonunda uygun ortam sağlandığında analiz metoduna uygun olarak zeytinyağında serbest yağ asitliği tayini yapabileceksiniz.

ARAŞTIRMA

- Piyasada satılan zeytinyağı çeşitlerini araştırınız.
- Asitlik özelliğine göre zeytin ve zeytinyağı çeşitlerini belirleyip satış fiyatlarını kaydediniz.
- Yaptığınız araştırmaları sınıfta arkadaşlarınızla paylaşınız.

1. ZEYTİNYAĞINDA SERBEST YAĞ ASİTLİĞİ TAYINI

1.1. Genel Bilgi

- Zeytinin toplanma ve işletmeye taşma biçimleri,
- Yağının çıkarılmasına kadar geçen süre,
- Zeytinin yıkanıp yıkanmaması,
- Zeytin ezme tekniklerinin özellikleri elde edilen zeytinyağının asit oranını etkiler. Bu asitlik zeytinin ağaçtan toplanma ve zeytinyağına işlemeye süreciyle ilgilidir.

Bunun yanında;
- Zeytinin yetiştirtiği bölenin iklimi,
- Arazinin özelliği,
- Toprağın verimi,
- Zeytin türü,
- Ağacların bakım,
- Zeytin zararlarının ve diğer mücadele edilip edilmediği,
Kullanılan gübre çeşidi de zeytinyağındaki asitliği etkiler. Burada herhangi bir dış etken olmadan, tamamen doğal bir asitikten söz edilmektedir. Yani zeytinyağında asitlik, bitkide doğal olarak oluşan yağ asitlerinin bir şekilde gliserinle (ya da onları nötralize edecek başka bir madde ile) buluşamamalarının sonucudur.

Buradan bitkisel yağlarda asit oranının asla sıfır olamayacağı sonucu ortaya çıkar. Asit oranı çok düşük (sıfıra yakın) olabilir ama mutlaka belli bir asitlik söz konusudur.

1.2. İlktesi

Alkol-eter karışımında çözündürülen yağdaki serbest yağ asitlerinin ayarlı bir alkali çözeltisi ile fenolftalein indikatörü eşliğinde titrasyonu ve harcanan ayarlı alkali çözelti miktarından yararlanarak sonucun hesaplanması ilkesine dayanır.

Asitlik derecesi, 100 g zeytinyağında bulunan “oleik asit” miktarının yüzde olarak olarak değeridir.

<table>
<thead>
<tr>
<th>Yağ Asitleri</th>
<th>% Miktar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleik Asit</td>
<td>% 56 – 83</td>
</tr>
<tr>
<td>Linoleik Asit</td>
<td>% 3.5 – 20</td>
</tr>
<tr>
<td>Palmitik Asit</td>
<td>% 7.5 – 20</td>
</tr>
<tr>
<td>Stearik Asit</td>
<td>% 0.5 – 5.0</td>
</tr>
<tr>
<td>Linolenik Asit</td>
<td>% < 1.5</td>
</tr>
</tbody>
</table>

Tablo 1.1: Zeytinyağının yapısında bulunan yağ asitleri ve % miktarları

1.3. Kullanılan Araç Gereçler

- Erlen: 250 ml
- Büret: 50 ml
- Damlalık
- Balon joje
- Mezür
- Analitik terazi: ± 0,000 1g duyarlıktı olmalıdır.

1.4. Kullanılan Kimyasallar

- Etil alkollü potasyum hidroksit çözeltisi: Ayarlı 0,1 N çözeltinin rengi saman sarısından koyu olmalıdır.
- Etil alkol (% 95’lik): Kullanmadan önce fenolftalein varlığında 0,1 N etilalkollü KOH ile nötralize edilmelidir.
Dietil eter: Kullanmadan önce fenolftalein varlığında etilalkollü KOH ile nötralize edilmelidir.

Etil alkol - dietil eter çözeltisi: 1/1 (hacim/hacim) oranında karıştırılır. (Karisım fenolftalein indikatörünün yanında etil alkollü potasyum hidroksit çözeltisi ile asitliği nötralize edilmelidir.)

% 1 lik fenolftalein indikatör çözeltisi: 1g fenolftalein 50 ml % 95'lik etil alkolde çözülür ve 100 ml'lik balon jojeye aktarılır. Hacim çizgisine kadar % 95'lik etil alkol ile tamamlanır.

Etil alkol ve dietil eter çözeltisi: Eşit miktarda (1/1) alkol ve dietil eter birbirile karıştırılır. Karışım azda olsa asidik özellik gösterir. Bu, yağ örnekinin titrasyonu esnasında fazla sarfiyat eden olur. Bunun için çözeltinin miktarına göre 3-4 damla fenolftalein çözeltisi eklenir, çok açık pembe renk gözlenene kadar büretteki 0,1 etanollü KOH çözeltisi ile nötralize edildikten sonra kullanılır.

1.5. İşlem Basamakları

5 - 10 g zeytinyağı örnek, 0,0001 g duyarılıkla erlenmayer içine tartılır.
Örnek yaklaşık 100 ml etil alkol-dietileter karışımında çözülür.
Erlendeki örnek üzerine 2-3 damla indikatör çözeltisinden damlatılır.
Bürete konan 0,1 N alkollü, KOH çözeltisi ile açık pembe renge kadar titre edilir.
Oluşan bu renk yaklaşık 15 saniye kadar kalıcı olmalıdır.
Titre edilen çözeltinin rengi koyu pembe oluncaya kadar titrasyona devam edilmiş ise asitlik değeri, indikatör renginin koyuluğu orandında önemli düzeyde yüksek çıkacaktır. Bu da asitlik değerinin yanılsı çıkması anlamına gelir. Bu nedenle titrasyon indikatörün rengi açık pembe olur olmasa sonlandırılmalıdır.
Harcanan aralıKOH çözeltisi sarfıyatı büretten okunarak kaydedilir.
Aynı numuneden paralel çalışılarak, her iki deney sonuçlarının ortalaması alınır (V).
Sonuç yüzde asitlik veya asit sayısı cinsinden hesaplanır.

Hesaplama:

Serbest yağ asitliği = \(\frac{V}{m} \times 2,8 \) (oleik asit olarak)

veya

Asit Sayısı = \(\frac{V}{m} \times 5,6 \) mg KOH / g

Bu eşitliklerde;
Serbest yağ asitliği = \(\frac{1,2 \times 0,96}{5} \times 2,8 = 0,6451 \) (oleik asit olarak)
V= Titresyonda harcanan 0,1 N etil alkollü potasyum hidroksit çözeltisi hacmi (ml),
m = Alınan numunenin ağırlığı (g).
F = 0,1 KOH çözeltisinin faktörüdür.

Örnek problem: Analiz amacıyla getirilmiş natürel zeytinyağından 5 g örnek alınmış, etil alkoll-dietil karışımında çözündürüldükten sonra fenolftalein ilave edilip 0,1 N, faktörü 0,96 olan alkollü KOH ile pembe renk oluşuncaya kadar titre edilmiştir. Titresyon sonunda sarf edilen 1,2 ml olarak okunduğuna göre, bu yağın asitliğini % oleik asit olarak (serbest yağ asitleri cinsinden) hesaplayınız. Sonucu standartlarla kıyaslayarak yağın asitlik kalitesi hakkında bilgi veriniz.

Burdada:
V= 1,2 (Titresyonda harcanan 0,1 N etil alkollü potasyum hidroksit çözeltisi hacmi - ml)
m = 5 (Alınan numunenin ağırlığı -g) tir.

\[
\text{Serbest yağ asitliği} = \frac{V}{m} \times 2,8 \text{(oleik asit olarak)}
\]

\[
\text{Serbest yağ asitliği} = \frac{1,2 \times 0,96}{5} \times 2,8 = 0,6451 \text{(oleik asit olarak)}
\]

Analizi yapılan yağın değerlendirilmesi:

- Bu zeytinyağının asit oranı 1’in altındadır. Natürel sızma zeytinyağı grubuna girmektedir (İngilizcede "ekstra virgin" olarak adlandırılır.).

1.6. Sonucu Değerlendirme

Natürel zeytinyağlılar yüzde asitlik oranına göre Uluslararası Zeytinyağı Konseyi (UZK) ve Türk Standartları Enstitüsü’nün saptadığı dört ayrı türde değerlendirilir. Bunlar;
- Sızma,
- Natürel,
- Natürel birinci ve
- Lampant’tür. Analizi yapılan (natürel) zeytinyağlıların hangi gruba girdiği aşağıdaki standartlara göre tayin edilebilir.

- Natürel sızma zeytinyağı

- **Natürel zeytinyağı (Virgin olive oil)**

 Çeşitli nedenlerle "hafif kusurlu" ve asit oranı biraz daha yüksek çıkan yağlar ise, genelde "natürel", "virgin" ya da "katıksız" olarak nitelendirilir. Asit oranı % 1-2 arasındadır.

- **Natürel birinci sınıf zeytinyağı (Ordinary virgin olive oil)**

 Asitlik derecesi 2’ nin üstündedir. Azami 3,3 asit içerdığı için "hafif kusurlu" sayılır.

- **Lampant**

Zeytinyağının serbest yağ asitliğini tayin etmek için aşağıdaki verilen işlem basamaklarını uygulayınız.

Kullanılacak araç gereçler ve kimyasallar
- Erlen
- Büret
- Damlalık
- Balon joje
- Mezur
- Analitik terazi
- Etil alkollü potasyum
- Hidroksit çözeltisi
- Etil alkollü fenolftalein çözeltisi
- Etil alkol- dietil etercözeltisi

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Bir erlen içerisinde 5 veya 10 g yağ numunesi tartınız.</td>
<td>➢ Analiz öncesi hazırlığınızı yapmayı unutmayınız.</td>
</tr>
<tr>
<td>➢ Erlenin 250 ml hacimli olmasını dikkat ediniz.</td>
<td>➢ Erlenin 250 ml hacimli olmasını dikkat ediniz.</td>
</tr>
<tr>
<td>➢ Tartımı 0,001 g duyarlılıkta yapmaya özen gösteriniz.</td>
<td>➢ Tartımı 0,001 g duyarlılıkta yapmaya özen gösteriniz.</td>
</tr>
<tr>
<td>➢ Darayı not etmeyi unutmayınız.</td>
<td>➢ Darayı not etmeyi unutmayın.</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Erleneye 50 - 150 ml etil alkoll- dietil eter çözeltisi ilave ediniz.</td>
<td>➢ Çözeltileriyi 1/1 (hacim/hacim) oranında hazırlamaya dikkat ediniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Hazırladığınız çözeltinin, fenolftalein indikatörü varlığında etil alkollü potasyum hidroksit çözeltisi ile asitliğini nötrleştirmeyi unutmayıniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Yağın çözünmesini sağlayınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Dikkatli çalışınız.</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Birkaç damla fenolftalein çözeltisi ilave</td>
<td></td>
</tr>
</tbody>
</table>
%1’lik fenolftalein indikatörüünü %95’lik etil alkol ile hazırlanlığını unutmayın.
İndikatör ilave ettikten sonra erleni çok iyi çalkalayınız.

<table>
<thead>
<tr>
<th>Köprü</th>
<th>Köprü</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1’lik fenolftalein indikatörüünü %95’lik etil alkol ile hazırlanlığını unutmayın</td>
<td>%1’lik fenolftalein indikatörüünü %95’lik etil alkol ile hazırlanlığını unutmayın</td>
</tr>
<tr>
<td>İndikatör ilave ettikten sonra erleni çok iyi çalkalayınız</td>
<td>İndikatör ilave ettikten sonra erleni çok iyi çalkalayınız</td>
</tr>
<tr>
<td>Büreti ayarlı KOH çözeltisi ile doldurunuz.</td>
<td>Büreti ayarlı KOH çözeltisi ile doldurunuz.</td>
</tr>
<tr>
<td>Büreti 0’a kadar doldurmayı unutmayın.</td>
<td>Büreti 0’a kadar doldurmayı unutmayın.</td>
</tr>
<tr>
<td>Eğer büret tam doldurulmamışsa yarımdan okuma yaparak başlangıç noktasını kaydetmeye dikkat ediniz.</td>
<td>Eğer büret tam doldurulmamışsa yarımdan okuma yaparak başlangıç noktasını kaydetmeye dikkat ediniz.</td>
</tr>
<tr>
<td>Büret musluğu kontrollü olarak açıp önce hızlı, eş değerlik noktasına yakın (indikatörün rengi görülüp kaybolduğu zaman) yavaş damlalar hâline çalkalayarak dikkatli bir şekilde titrasyon yapınız.</td>
<td>Büret musluğu kontrollü olarak açıp önce hızlı, eş değerlik noktasına yakın (indikatörün rengi görülüp kaybolduğu zaman) yavaş damlalar hâline çalkalayarak dikkatli bir şekilde titrasyon yapınız.</td>
</tr>
<tr>
<td>Titrasyona açık pembe renk oluşuncaya kadar devam ediniz.</td>
<td>Titrasyona açık pembe renk oluşuncaya kadar devam ediniz.</td>
</tr>
<tr>
<td>Dönüm noktasına çok dikkat ediniz.</td>
<td>Dönüm noktasına çok dikkat ediniz.</td>
</tr>
<tr>
<td>Oluşan rengin 15 saniye kalıcı olmasına dikkat ediniz.</td>
<td>Oluşan rengin 15 saniye kalıcı olmasına dikkat ediniz.</td>
</tr>
</tbody>
</table>

Büreti ayarlı KOH çözeltisi ile doldurunuz.

- Büreti ayarlı KOH çözeltisi ile doldurunuz.
- Büret 0’a kadar doldurmayı unutmayın.
- Eğer büret tam doldurulmamışsa yarımdan okuma yaparak başlangıç noktasını kaydetmeye dikkat ediniz.
- Büret musluğu kontrollü olarak açıp önce hızlı, eş değerlik noktasına yakın (indikatörün rengi görülüp kaybolduğu zaman) yavaş damlalar hâline çalkalayarak dikkatli bir şekilde titrasyon yapınız.
- Titrasyona açık pembe renk oluşuncaya kadar devam ediniz.
- Dönüm noktasına çok dikkat ediniz.
- Oluşan rengin 15 saniye kalıcı olmasına dikkat ediniz.
Resim 1.7: Oluşan rengin 15 saniye kalıcı olması

- Harcanan sarfiyatı bürette okuyunuz.

- Dikkatli çalışınız.
- Bürette hacim ölçerken okumayı göz hizasında ve kavisin altından yapınız.
- Büretten okuduğunuz ilk ve son sarfiyatları not etmeyi unutmayınız.
Asit sayısını hesaplayınız.

Serbest yağ asitliği \(\frac{V}{m} \times 2.8 \) (oleik asit olarak)

Analiz sonrası işlemlerini yapınız.

Deney raporu yazınız.

Rapor hazırlamak çok önemlidir. Öğretmeninizin verdiği ölçütlere uygun bir rapor hazırlayınız.

Sonucu ilgili tebliğ veya tüzüklerdeki değerlerle karşılaştırmak kaydediniz.

KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Analiz öncesi hazırlığınızı yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 5 veya 10 gr zeytinyağı numunesini bir erlene tarttınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Tartımı 0,01gr duyarlılıkta yapmaya özen gösterdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 50 - 150 ml etil alkol- dietil eter çözeltisi ilave ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Yağın çözünmesini sağladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Birkaç damla fenolftalein çözeltisi ilave ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. İndikatör ilave etmeden önce erleni çok iyi çalkaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Büreto koyduğunuz 0,1 N etil alkollü potasyum hidroksit çözeltisi ile titre ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Titrasyona açık pembe renk oluşuncaya kadar devam ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Dönüm noktasına dikkat ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Oluşan rengin 15 saniye kalıcı olmasına dikkat ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Büreten okuduğunuz ilk ve son sarfıyatları not ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Analiz sonrası işlemlerini yaptıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Formülden serbest yağ asitlerini ve asit sayısını hesaplayarak deney raporu yazdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Sonucu rapor olarak düzenlediniz mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Zeytinyağı asitlik tayininde bürete doldurulan çözelti aşağıdakilerden hangisidir?
 A) KOH çözeltisi
 B) AgNO₃ çözeltisi
 C) NaCl çözeltisi
 D) Fenolftalein çözeltisi

2. 100 g zeytinyağında bulunan “oleik asit” miktarının yüzde olarak belirlenmesiyle aşağıdakilerden hangisi bulunur?
 A) Asitlik derecesi
 B) Peroksit sayısı
 C) Sabunlaşma sayısı
 D) İyot sayısı

3. Zeytinyağında en fazla bulunan yağ asidi aşağıdakilerden hangisidir?
 A) Oleik asit
 B) Sitrik asit
 C) Asetik asit
 D) Sülfürik asit

4. Lampant zeytinyağlarıyla ilgili olarak aşağıdakilerden hangisi yanlıştır?
 A) Asit oranı 3,3'ün üstünde dir.
 B) Küflü ve bozuk yağları simgeler.
 C) Doğrudan tüketilebilirler.
 D) Rafinasyona tabi tutulurlar.

5. Yağlarda asitlik ile ilgili olarak aşağıdakilerden hangisi yanlıştır?
 A) Üreticinin bilinçlendirilmesinden söz ederken düşük asitli yağ üretimi hedeflenir.
 B) Zeytinin toplanma ve işletmeye taşınma biçimleri zeytinyağındaki asitliği artırır.
 C) Bitkisel yağlarda asit oranı asla sıfır olamaz.
 D) Asitlik derecesi yüzde 5,3'ten az olan natürel yağlar biyolojik açından en değerli yağlardır.

6. Zeytinyağında asitlik tayini analizi yapılırken kullanılan alkol eter çözeltisinin amacı aşağıdakilerden hangisi değildir?
 A) Yağdaki serbest yağ asitleriyle kostığın (KOH) birleşmesini sağlamaktır.
 B) Eter yağı çözme amacıyla kullanılır.
 C) Alkol, hem su hem de eter ile tam olarak karşıtı için kullanılır.
 D) Alkol titrasyon bitiş noktasında pembe renk verdiği için kullanılır.
Aşağıdaki cümlelerin başında boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

7. () Zeytinyağın asitlik analizinde titrasyon sonunda oluşan açık pembe renk yaklaşık 5 saniye kaybolmadan kalmalıdır.

8. () Natürel sızma zeytinyağıında asit oranı 1 ve altındadır.

DEĞERLENDİRME

ÖĞRENME FAALİYETİ–2

AMAÇ

Analiz metoduna uygun olarak zeytinyağında peroksit sayısı tayini yapabileceksiniz.

ARAŞTIRMA

- Zeytinyağında peroksit tayininin hangi amaçlar için uygulandığını araştırınız.
- Araştırmanızı sınıfta arkadaşlarınızla paylaşınız.

2. ZEYTİNYAĞINDA PEROKSİT SAYISI TAYINI

2.1. Genel Bilgi

Peroksit sayısı, yağlarda bulunan aktif oksijen miktarının ölçüsü olup 1 kg yağda bulunan peroksit oksijeninin miliekivelangram olarak miktarıdır.

Yağların depolanmaları sırasında;
- Oksijen
- Sıcaklığın
- Metal iyonlarının
- Işığın vs. katalitik etkisi ile bozulması söz konusudur.

Bin bir zahmetle damla damla biriktirilerek elde edilen zeytinyağı eğer sudan ve posadan iyi arındırmaması ve depolama koşullarına dikkat edilmezse bozulmalar oluşacağından kolayca yitirilebilir. Bozulmuş zeytinyağı artık zeytinyağı özelliklerini göstermez. Doğal olarak bu istenmeyen bir durumdur.

Zeytinyağında bozulmanın derecesi peroksit sayınıyle belirlenir.

Zeytinyağı kalitesi değerlendirilirken asitlik oranı ve peroksit sayısı birlikte değerlendirilmelidir. İki yağ aynı asit düzeyinde ama farklı peroksit değerinde olabilir.

Peroksit miktarının belirlenmesi, yağın bozulma derecesi ve daha ne kadar saklanabileceğini hakkında fikir verir. Iyi izlenirse görülecektir ki, yüksek peroksitli yağ, düşük olana göre çok daha hızlı bozulur.
2.2. İlkesi

Potasyum iyodürün yağdaki peroksit oksijeni ile okside olarak iyodun serbest hâle geçmesi ve bu serbest hâldeki iyodun da tiyosülfat ile titre edilerek miktarının bulunması ilkesine dayanır.

2.3. Kullanılan Araç Gereçler

- **Erlen:** Kapaklı, 250 ml’lik, mutlaka çok dikkatli temizlenmiş ve kurutulmuş olmalıdır.
- **Büret:** 50 ml’lik
- **Cam tartım kaşığı:** 3 ml
- **Balon joje**
- **Mezur**
- **Analitik terazi** (+ 0,0001 g duyarlıktı)

2.4. Kullanılan Kimyasallar

- **Kloroform**
- **Asetik asit:** Buzlu (glokal)
- **Potasyum iyodür (KI) çözeltisi:** Kaynatılmış, soğutulmuş damızık suya, çözünmeyen potasyum iyodür parçacıkları kalana kadar eklenir. Çözeltinin kontrolü için her analizden önce hazırlanan doymuş potasyum iyodür çözeltisinden 0,5 ml alınarak içerisinde 15 ml asetik asit, 10 ml kloroform bulunan erlen’e eklenir ve üzerine 2 ml nişasta çözeltisi konur. Eğer 0,01 N Na₂S₂O₃ 5H₂O çözeltisinin 1 damlasi ile mavi renk oluşuyorsa çözelti atılarak yeniden hazırlanır. KI çözeltisi karanlık bir yerde saklanmalıdır.
- **Sodyum tiyosülfat (Na₂S₂O₃ 5H₂O) çözeltisi:** 0,002 N veya 0,01 N, ayarlımalıdır. Sodyum tiyosülfat çok çabuk bozulur. Buzdolabında saklanmalı ve 1 aydan fazla tutulmamalıdır.
- **Nişasta çözeltisi:** % 1 ’lik taze hazırlanmış olmalıdır. 1 g çözünür nişasta az miktarda damızık su ile iyice karıştırılır. 100 ml’ye seyreltilir. Kaynamaya kadar ısıtılıp oda sıcaklığında soğutulur. Eğer uzun süre kullanılamaksız (bir ay kadar), 100 ml içerisinde 1 g borik asit ilave edilerek çözünmesi sağlanmalıdır.

2.5. İşlem Basamakları

- Numuneyi, tahmin edilen peroksit sayısı göre aşağıdaki cetvelde belirtilen miktarda ve 0,0001 g duyarlılıkta erlenmayer içine tartınız.

<table>
<thead>
<tr>
<th>Beklenen Peroksit Sayısı</th>
<th>Numune Miktarı (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0’ kadar</td>
<td>2.0</td>
</tr>
<tr>
<td>5- 10</td>
<td>1.6</td>
</tr>
<tr>
<td>11- 15</td>
<td>1.4</td>
</tr>
<tr>
<td>16- 20</td>
<td>1.2</td>
</tr>
<tr>
<td>21- 30</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Tablo 2.1: Tahmin edilen peroksit sayısı göre alınacak numune miktarı tablosu
Aldığınız numune üzerine bir pipet yardımcıyla 10 ml kloroform ekleyiniz. Karışımı hızla çalıкаяarak yağın çözünmesini sağlayınız. Bundan sonra numune üzerine 15 ml buzlu (glesiyal) asetik asit ilave ediniz.

Doymuş potasyum iyodür çözeltisinden 1 ml alınız ve onu da karışına ilave ediniz. Doymuş potasyum iyodür çözeltisinden 1 ml alınız ve onu da karışına ilave ediniz (siyah-mavi renk oluşmalıdır.).

Erlenin kapağını kapatınız ve hemen laboratuvarındaki en karanlık dolabın içine koyunuz. Erleni 5 dakika karanlıkta bekletiniz.

Karışımı karanlık dolaptan çıkarıp üzerinde 50 ml saf su ve 1 ml nişasta çözeltisi ilave ediniz (siyah-mavi renk oluşmalıdır).

Beklenen peroksit sayısı 12,5’ten az ise 0,002 N, 12,5 veya daha fazla ise 0,01 N sodyum tiyosülfat çözeltisi ile titre ediniz ve sarfiyatı okuyunuz (V₂). Titrasyon sonu indikatörün siyah-mavi rengin kaybolduğu ve erlenediği çözeltinin renksiz olduğu noktasıdır. Titrasyon sonuna karar vermek çok önemlidir çünkü fazladan kaçan 1-2 damla bile peroksit değerinin yüksek çıkmasına neden olur.

Sodyum tiyosülfat sarfiyatınızı deftere kaydediniz. Sonucu hesaplayınız.

Hesaplanması:

\[
\text{Peroksit Sayısı} = \frac{10 \times (V₂ - V₁) \times F}{m} \text{ meqgr } O₂ / kg
\]

Burada:
- \(V₂\) = Titrasyonda harcanan 0,01 N sodyum tiyosülfat çözeltisi (ml)
- \(V₁\) = Şahit denemede harcanan 0,01 N sodyum tiyosülfat çözeltisi (ml)
- \(F\) = 0,01 N Na₂S₂O₃ çözeltisinin faktörü
- \(m\) = Alınan numunenin ağırlığı (g) dir.

Örnek problem:

5 g rafine zeytinyağı örneği alınmış, gerekli işlemler yapıldıktan sonra faktörü 1 olan (F=1) 0,01 sodyum tiyosülfat (Na₂S₂O₃ 5H₂O) çözeltisinin 2 ml’i ile titre edilmiştir. Şahit denemede ise 0,2 ml sodyum tiyosülfat (Na₂S₂O₃ 5H₂O) çözeltisi sarf edilmiştir. Buna göre bu zeytinyağıın peroksit sayısını hesaplayarak sonucu değerlendiriniz.

Çözüm:
Burada:
- \(V₂\) = 2 (Titrasyonda harcanan 0,01 N sodyum tiyosülfat çözeltisi -ml)
- \(V₁\) = 0,2 (Şahit denemede harcanan 0,01 N sodyum tiyosülfat çözeltisi -ml)
- \(F\) = 1 (0,01 N Na₂S₂O₃ 5H₂O) çözeltisinin faktörü
- \(m\) = 5 g (Alınan numunenin ağırlığı) dir.
Peroksit Sayısı = \frac{10 \times (V_2 - V_1) \times F}{m} \text{ meqgr O}_2 / \text{kg}

\text{Peroksit Sayısı} = \frac{10 \times (2 - 0.2) \times 1}{5} = \frac{10 \times 1.8 \times 1}{5} = \frac{18}{5} = 3.6 \text{ meqg O}_2 / \text{kg}

Analizi yapılan yağın değerlendirilmesi:

Analizi yapılan rafine zeytinyağını aşağıdaki değerlerle karşılaştığımızda bu yağ, yenilebilten sınırdadır ancak peroksit indeksinin maksimum sınıra yakın olması, bu yağın kısa zamanda bozulmaya başlayacağını hakkında fikir vermektedir.

2.6. Sonucu Değerlendirme

<table>
<thead>
<tr>
<th>Peroksit Değeri</th>
<th>Maksimum(meq aktif oksijen miktarı)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natürel Sızma Zeytinyağı</td>
<td>20</td>
</tr>
<tr>
<td>Natürel Birinci Zeytinyağı</td>
<td>20</td>
</tr>
<tr>
<td>Rafine Zeytinyağı</td>
<td>5</td>
</tr>
<tr>
<td>Riviera Zeytinyağı</td>
<td>15</td>
</tr>
<tr>
<td>Rafine Prina Yağı</td>
<td>5</td>
</tr>
<tr>
<td>Prina Yağı</td>
<td>15</td>
</tr>
</tbody>
</table>

Tablo.2.2: “Zeytinyağı ve Prina Yağı Tebliği”ne göre zeytinyağıların da olması gereken maksimum peroksit değerleri

Numunenin peroksit değerinin verilen değerlerden fazla çıkması yağda bozulma başladığının, maksimum değere yakın çıkması ise kısa sürede bozulmaya başlayacağını göstergesidir.
UYGULAMA FAALİYETİ

Size verilen zeytinyağı numunesinin peroksit sayısını tayin etmek için aşağıdaki verilen işlem basamaklarını uygulayınız.

Kullanılacak araç gereçler ve kimyasallar
- Erlen
- Büret
- Cam tartım kaşığı
- Balon joje
- Mezür
- Analitik terazi
- Kloroform
- Asetik asit
- Potasyum iyodür (KI) çözeltisi
- Sodyum tiyosülfat (Na₂S₂O₃.5H₂O) çözeltisi
- Nişasta çözeltisi

İşlem Basamakları

- Numuneyi (tahmin edilen peroksit sayısına göre) yaklaşık 1,4 g tartınız.

Öneriler
- Analiz öncesi hazırlığınızı yapmayınız.
- Numuneyi ağzı şilifli ve kapaklı erlene tartınız.
- Erlenin 250 ml hacimli olmasına dikkat ediniz.
- Tartım yapımadan önce terazinin sıfır ayarını kontrol etmeyi unutmayınız.
- Tartımı 0,0001g duyarlılıkla yapmaya özen gösteriniz.
- Darayı not etmeyi unutmayınız.
1. Üzerine 10 ml kloroform ekledikten sonra erleni hızla çalkalayarak yağın çözünmesini sağlayınız.

2. Çözünmenin tam olup olmadığını dikkatli gözlemleyiniz.
 - Erlenin kapağını kapatarak çalkalamayı unutmayınız.

3. Daha sonra 15 ml asetik asit ve 1 ml potasyum iyodür çözeltisi ekleyerek erleni çalkalayınız.

4. Dikkat çalışınız.
 - Potasyum iyodür çözeltisini taze ve çözelti hazırlama kurallarına uygun olarak hazırlamaya özen gösteriniz.
 - Damıtık suyun kaynatılıp soğutulmuş olmasıına dikkat ediniz.
 - Hacim ölçümünü duyarlı yapınız.
 - KI ve suyu koyduktan sonra çalkalamayı unutmayın.
 - Her analizden önce hazırlanan domuş potasyum iyodür çözeltisini kontrol ediniz.

5. 5 dakika karanlık bir yerde bekleiniz.

Tabelası

<table>
<thead>
<tr>
<th>İşlem</th>
<th>Detaylı Anlatım</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Üzerine 10 ml kloroform ekledikten sonra erleni hızla çalkalayarak yağın çözünmesini sağlayınız.</td>
</tr>
</tbody>
</table>
| 2. | Çözünmenin tam olup olmadığını dikkatli gözlemleyiniz.
 - Erlenin kapağını kapatarak çalkalamayı unutmayınız. |
| 3. | Daha sonra 15 ml asetik asit ve 1 ml potasyum iyodür çözeltisi ekleyerek erleni çalkalayınız.
 - Dikkat çalışınız.
 - Potasyum iyodür çözeltisini taze ve çözelti hazırlama kurallarına uygun olarak hazırlamaya özen gösteriniz.
 - Damıtık suyun kaynatılıp soğutulmuş olmasıına dikkat ediniz.
 - Hacim ölçümünü duyarlı yapınız.
 - KI ve suyu koyduktan sonra çalkalamayı unutmayın.
 - Her analizden önce hazırlanan domuş potasyum iyodür çözeltisini kontrol ediniz. |
| 5. | 5 dakika karanlık bir yerde bekleiniz. |

Zamanı sık sık kontrol ediniz.
| ➢ Bu süre sonunda 75 ml damıtik su ve 1 ml nişasta çözeltisi ilave ediniz. | ➢ Hacim ölçümünü duyarlı yapınız.
➢ % 1’ lik nişasta indikatör çözeltisini çözelti hazırlama kurallarına uygun olarak hazırlayınız.
➢ Çözeltiliyi hazırlarken kaynatılıp soğutulmuş damıtik su kullanınız.
➢ Bakterilerin üremesini önlemek için nişasta çözeltisini taze olarak hazırlayınız veya 100 ml nişasta çözeltisi içine 1 g borik asit ilave ediniz. |
- Beklenen peroksit sayısı 12,5'ten az ise 0,002 N, 12,5 veya daha yüksek ise 0,01 N sodyum tiyosülfat çözeltisi ile titre ediniz.

<p>| Titrasyon düzeneği hazırlayınız. |
| 0,01 N sodyum tiyosülfat çözeltisi hazırlayınız. |
| Büreti 0,1 N sodyum tiyosülfat çözeltisi ile doldurup, “0” ayarını yapmayı unutmayın. |
| Titrasyonu yavaş yavaş ve erleni çok kuvvetli çalkalayarak yapınız. |
| Sodyum tiyosülfat çözeltisinin erlene damla damla akmasına özen gösteriniz. |
| Çalkalama yaparken çözeltinin sıçramamasına dikkat ediniz. |
| Dönüm noktasına çok dikkat ediniz. |
| Büretteki son damlayı erlene almayı unutmayın. |</p>
<table>
<thead>
<tr>
<th></th>
<th>Harcanan sarfiyatı büretten okuyunuz ve kaydediniz. ((V_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Okuduğunuz sodyum tiyosülfat çözeltisi miktarını kaydetmeyi unutmayınız.</td>
</tr>
<tr>
<td></td>
<td>Okumayı büretin çeperlerindeki çözeltinin süzülmesi için titrasyon bittikten 10-15 saniye sonra yapmaya özen gösteriniz.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Şahit denemeyi yapınız ve harcanan sarfiyatı büretten okuyarak kaydediniz. ((V_1))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Şahit denemenin tek farkının yağ numunesi yerine aynı miktarda saf su kullanmak olduğunu hatırlayınız.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Formülden peroksit sayısını hesaplayarak deney raporu yazınız.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verileri formüle eksiksiz yerleştirmeye özen gösteriniz</td>
</tr>
<tr>
<td></td>
<td>Hesaplamayı dikkatli ve doğru yapınız.</td>
</tr>
<tr>
<td></td>
<td>Hesaplama hatasının yanlış sonuca neden olacağını unutmayın.</td>
</tr>
<tr>
<td></td>
<td>Sonucu ilgili teblig veya tüzüklereki değerlerle karşılaştırmak kaydediniz.</td>
</tr>
<tr>
<td></td>
<td>Rapor hazırlamak çok önemlidir. Öğretmeninizin verdiği ölçütlere uygun bir rapor hazırlayınız.</td>
</tr>
<tr>
<td></td>
<td>Analiz sonrası işlemlerinizi yapınız.</td>
</tr>
</tbody>
</table>

\[
\text{Peroksit Sayısı} = \frac{10 \times (V_2 - V_1) \times F}{m} \text{ meqgr O}_2/\text{kg}
\]
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendirme.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Analiz öncesi hazırlığınızı yaptıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Numuneyi (tahmin edilen peroksit sayısına göre) yaklaşık 1,4 g cam kaşığa tarttınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Erlenin kapağı açarak içine yerleştirildiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Üzerine 10 ml kloroform ekledikten sonra erleni hızla çalkalayarak yağın çözünmesini sağladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Daha sonra 15 ml asetik asit ve 1 ml potasyum iyodür çözeltisi ekleyerek erleni çalkaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 5 dakika karalılık bir yerde beklettiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Süre sonunda 75 ml damıtık su ve 1 ml nişasta çözeltisi ilave ettiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Beklenen peroksit sayısı 12,5’ten az ise 0,002 N, 12,5 veya daha yüksek ise 0,01 N sodyum tiyosülfat çözeltisi ile titre ettiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Harcanan sarfiyatı büretten okuyup kaydettiniz mı? (V1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Aynı işlemi yağ koymadan tanık deneme olarak yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Titrasyonda harcanan sodyum tiyosülfat çözeltisi miktarını (V2) kaydettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Analiz sonrası işlemleriinizi yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Formülden peroksit sayısını hesaplayarak deney raporu yazdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Sonucu rapor olarak düzenlediniz mi?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. 1- Oksijenin katalitik etkisi
2- Sıcaklığın katalitik etkisi
3- Işığın katalitik etkisi
4- Metal İyonlarının katalitik etkisi
5- Nemin katalitik etkisi
6-Havanın katalitik etkisi
Zeytinyağlarının depolanmaları sırasında bozulmalarına yukarıdakilerden hangisi ya da hangileri etkendir?
A) 1, 2, 3, 5
B) 2, 3, 4, 6
C) 3, 4, 5, 6
D) 1, 2, 3, 4

2. Aşağıdaki peroksit sayısı ile ilgili ifadelerden hangisi yanılsızdır?
A) Zeytinyağında bozulmanın derecesi peroksit tayiniyle belirlenir.
B) Oksidasyon derecesini gösteren bir parametredir.
C) 1 mg yağda bulunan peroksit oksijeninin miliekel dal gram olarak miktarıdır.
D) Yağların bozulma derecesi ve ne kadar saklanabileceği hakkında bir fikir verir.

3. 1- KI çözeltisi
2- Na₂S₂O₃ 5H₂O çözeltisi
3-% 1’lik nişasta çözeltisi
4- Asetik asit
5- Kloroform
6- NaOH çözeltisi
Yukarıdaki çözeltilerden hangisi ya da hangileri zeytinyağında peroksit sayısı tayininde kullanılır?
A) 1, 2, 3 ve 4
B) 1, 2, 4 ve 5
C) 1, 2, 3, 4 ve 5
D) 2, 3, 4, 5 ve 6

Bu cümlede boş bırakılan yere aşağıdakiakilerden hangisi getirilmelidir?
A) Asitlik oranı
B) İyot indeksi
C) Sabunlaşma oranı
D) Renk özellikleri
5. 2 g zeytinyağı örneği tartılarak, gerekli işlemler yapıldıktan sonra faktörü 1 olan (F=1) 0,01 sodyum tiyosülfat (Na$_2$S$_2$O$_3$ 5H$_2$O) çözeltisinin 3 ml’si ile titre edilmiştir. Şahit denemede ise 0,3 ml sodyum tiyosülfat (Na$_2$S$_2$O$_3$ 5H$_2$O) çözeltisi sarf edilmiştir. Buna göre bu zeytinyağının peroksit sayısı aşağıdakilerden hangisidir?

A) 13.5
B) 13.6
C) 13.7
D) 14.5

DEĞERLENDİRME

ÖĞRENME FAALİYETİ–3

AMAÇ

Sofralık zeytinde tuz miktarı tayini yapabileceksiniz.

ARAŞTIRMA

- Zeytin üreticilerini ziyaret ederek tuz miktarının zeytinin kalitesini nasıl etkilediğini öğreniniz.
- Ziyaretinizi rapor hâline getirerek sınıfta öğretmenlerinize ve arkadaşlarınızla paylaşınız.

3. SOFRALIK ZEYTİNDE TUZ ANALİZİ

3.1. Genel Bilgi

3.2. İlkesi

Ortamdaki klorür iyonlarının gümüş klorür halinde çökeltilmesi ve eş değerlik noktasında serbest kalan gümüş iyonlarının indikatör olarak kullanılan kromat (CrO4−) iyonları ile tuğla kırmızısı bir renk vermesi (gümüş kromat oluşumu) esasına dayanır.

\[
\text{NaCl} + \text{AgNO}_3 \rightarrow \text{AgCl} \downarrow + \text{NaNO}_3
\]

Beyaz

\[
\text{AgCl} + \text{K}_2\text{CrO}_4 \rightarrow \text{Ag}_2\text{CrO}_4 + \text{KCl}
\]

Tuğla Kırmızısı
3.3. Kullanılan Araç Gereçler

- Büret, (50 ml'lik)
- Damlalık
- Analitik terazi
- Mezür
- Balon joje(100 ml)
- Erlen (250 ml'lik)

3.4. Kullanılan Kimyasallar

- Saf su
- Ayarlı 0,1 N gümüş nitrat (AgNO₃) çözeltisi (AgNO₃ çözeltisi kahverengi şişede ve karanlıkta bekletilmelidir.)
- % 5’lik potasyum kromat (K₂CrO₄) çözeltisi
- 0,1 N sodyum hidroksit çözeltisi (ayarlı)
- Metil oranj çözeltisi (% 66’lık nitrik asit (HNO₃) çözeltisinden 1/10 oranında seyreltilmiş olmalıdır.)

3.5. İşlem Basamakları

- Zeytin numunesinin salamura kısmından 20 ml bir erlene aktarılır. Çözeltiye metil oranj indikatörü eklendir ve NaOH ile portakal renktən sarıya dönene kadar (renk açılan kadar) nötrleştirilmiş amaciyla titre edilir. Çözelti 250 ml balon jojeye alınarak hacim çizgisine kadar saf su ile tamamlanır. Daha sonra çözelti süzgeç kâğıdından süzülür, süzüntüden 20 ml analiz yapmak üzere alınır.
- Yukarıda hazırlanan ve belli hacimde erlene alınan numuneye 2-3 damla (yaklaşık 1 ml) kromat belirteci koyularak büretteki 0,1 N AgNO₃ ile kiremit kırmızısı renk gözlenene kadar titre edilir.
- Deney numune kullanmadan diğer işlemler aynı olmak suretiyle tekrarlanır (tanık deney).
- Numunedeki tuz miktarı sodyum klorür cinsinden ağırlık yüzdesi olarak şöyle hesaplanır:

\[
\text{Tuz(%m / m)} = \frac{0,0585 \times N \times V \times F}{G} \times 100
\]

N= Kullanılan AgNO₃’ın normalitesi,
G= Numunenin ml olarak hacmi veya g olarak ağırlığı,
V: Numunenin titresyonunda harcanan AgNO₃ çözeltisinin hacmi (ml),
F: AgNO₃’ın faktörüdür.

Örnek problem:

Laboratuvara getirilmiş zeytin numunesinden 20 ml bir erlene alınarak analize hazırlanmıştır. Analize hazır hale gelmiş numuneden 20 ml alınmış ve faktörü 1 olan 0,1 N AgNO₃’ in sarfiyatı 1,8 olarak bulunmuştur. Numunedeki % tuz miktarını bulunuz.
Çözüm:

\[
Tuz\left(\frac{\text{g}}{\text{m}^2}\right) = \frac{0.0585 \times N \times V \times F}{G} \times 100
\]

N= Kullanılan AgNO₃ ün normalitesi = 0.1
G= Numunenin ml olarak hacmi veya g olarak ağırlığı = (Numune ilk etapta suyla seyreltildiği için analiz yapılan miktari bulmak için oranı kurulur.)

\[
\begin{align*}
20 \text{ ml numune} & \quad 200 \text{ ml varsa} \\
X \text{ ml numune} & \quad 20 \text{ ml} \\
20 \times 20 / 200 & = 0,5 \text{ ml'dir}. \\
\end{align*}
\]

V: Numunenin titrasyonunda harcanan AgNO₃ çözeltisinin hacmi (ml) = 1,8 ml
F: AgNO₃’in faktörü= 1

\[
Tuz\left(\frac{\text{g}}{\text{m}^2}\right) = \frac{0.0585 \times 0.1 \times 1.8 \times 1}{0.5} \times 100 = 2,106\text{'dir.}
\]

Zeytin danesindeki tuz tayini için:

- Çekirdekle zeytinlerde zeytinin çekirdeği çıkarılır ve eziler eklenir.
- 250 ml’lik bir elen içine m gram ezme tartılır, 100 ml damıtık su ilave edilerek 30-40 dakika kaynatılır. 6 saat oda sıcaklığında beklenir, 100 ml’lik ölçülu balona süzülür ve 100 ml’ye tamamlanır.
- Alt üst edilerek karıştırılır, çözeltiden 2 ml alınır.
- Karışım gümüş nitrat çözeltisi ile sabit kıremet kırmızısı renge dönünceye kadar titre edilir.
- Sonuç zeytin salamura numunesinde olduğu gibi hesaplanır.

3.6. Sonucu Değerlendirme

<table>
<thead>
<tr>
<th>Zeytin tipleri</th>
<th>Tuz (NaCl) % (m/v)</th>
<th>pH değeri (en yüksek)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siyah zeytin</td>
<td>7</td>
<td>4.5</td>
</tr>
<tr>
<td>Fermente siyah zeytin</td>
<td>4</td>
<td>5.5</td>
</tr>
<tr>
<td>Yeşil zeytin ve rengi dönük zeytin</td>
<td>8</td>
<td>8.0</td>
</tr>
</tbody>
</table>

(1) Salamura içinde muhafaza edilmeyen zeytinlerde tuz (NaCl), mezokarp (etli) kısmında % (m/m) olarak tayin edilir.

<table>
<thead>
<tr>
<th>Zeytin tipleri</th>
<th>Tuz (NaCl) % (m/v)</th>
<th>pH değeri (en yüksek)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pastöırze edilen zeytinler (1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siyah zeytin</td>
<td>1</td>
<td>4.5</td>
</tr>
<tr>
<td>Diğer zeytinler</td>
<td>Aranmaz</td>
<td>8.0</td>
</tr>
</tbody>
</table>

(1) Salamurada pH en çok 4.0 olduğunda sodyum klorür oranına bakılmaz.

<table>
<thead>
<tr>
<th>Zeytin tipleri</th>
<th>Tuz (NaCl) % (m/v)</th>
<th>pH değeri (en yüksek)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Siyah zeytinler (1)</td>
<td>4</td>
<td>5.5</td>
</tr>
<tr>
<td>-Yeşil zeytinler (1)</td>
<td>4</td>
<td>4.5</td>
</tr>
</tbody>
</table>

(1) Salamura içinde muhafaza edilmişen zeytinlerde tuz (NaCl), mezokarp (etli) kısmında % (m/m) olarak tayin edilir.

Tablo 3.1: “Sofralık Zeytin Tebliği”ne göre zeytinde pH ve tuz (NaCl) miktarları
UYGULAMA FAALİYETİ

Size verilen zeytin numunesinin tuz miktarını tayin etmek için aşağıdaki işlem basamaklarını uygulayınız.

Kullanılan Araç Gereçler
- Erlenmayer: Kapaklı, 250 ml’lik veya 400 ml’lik
- Büret: 50 ml’lik
- Damlalık
- Balon joje
- Mezür

Kullanılan Kimyasallar
- 0,1 N AgNO₃
- % 5 K₂CrO₄
- Saf su

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
</table>
| Analiz numunesini hazırlayınız. | | Zeytin numunesinin salamura kısmından 20 ml bir erlene aktarınız.
Çözeltiye metil oranj indikatörü ekleyerek NaOH ile portakal renkten sarıya dönene kadar (renk açılana kadar) nötrleştirmek amacıyla titre ediniz.
Çözeltiyi 250 ml balon jojeye alarak hacim çizgisine kadar saf su ile tamamlayıniz.
Daha sonra çözeltiyi süzgeç kağıdından süzerek süzüntüden 20 ml alınız. |
| Yukarıda hazırlanan ve belli hacimde alınan numuneye 2-3 damla (yaklaşık 1 ml) kromat belirteci koyunuz. | |

30
Büreti 0,1 N AgNO₃ çözeltisi ile doldurunuz.

Numuneyi bürete doldurmuş ve sıfır ayarı yapılmış 0,1 N AgNO₃ ile kiremit rengi alıcaya kadar titre ediniz.

Dikkatli ve titiz çalışınız.
Titrasyon düzeneği hazırlayınız.
0,1 N AgNO₃ çözeltisi hazırlayınız.
Büretten ayarlı 0,1 N AgNO₃ çözeltisi ilavesini yavaş yavaş ve erleni kuvvetle çalkalayarak titrasyon yapınız.
Çalkalama yaparken çözeltinin sıçramamasına dikkat ediniz.
Dönüm noktasına çok dikkat ediniz.
Büretteki son damlayı erlene almayı unutmayın.

Harcanan sarfiyatı büretten okuyunuz ve kaydediniz.

Okuduğunuz AgNO₃ çözeltisi miktarını kaydettmeyi unutmayın.
Okumayı büretin cepelerindeki çözeltinin süzülmesi için titrasyon bitikten 10-15 saniye sonra yapmaya özen gösteriniz.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Aynı işlemleri numune kullanmadan .(tanık deney) tekrarlayınız.</td>
<td>➢ Verileri formüle eksiksiz yerleştirmeye özen gösteriniz.</td>
</tr>
<tr>
<td>➢ Formülden zeytin salamuraşındaki tuz miktarını hesaplayarak deney raporu yazınız.</td>
<td>➢ Hesaplamayı dikkatli ve doğru yapınız.</td>
</tr>
<tr>
<td>➢ Formülden zeytin salamuraşındaki tuz miktarını hesaplayarak deney raporu yazınız.</td>
<td>➢ Hesaplama hatasının yanlış sonuca neden olduğunu unutmayınız.</td>
</tr>
<tr>
<td>➢ Analiz sonrası işlemleriniizi yapınız.</td>
<td>➢ Sonucu ilgili teblig veya tüzüklerdeki değerlere karşılaştırmak kaydediniz.</td>
</tr>
<tr>
<td>➢ Rapor hazırlamak çok önemlidir. Öğretmeninizin verdiği ölçütlere uygun bir rapor hazırlayınız.</td>
<td>➢ Rapor hazırlamak çok önemlidir. Öğretmeninizin verdiği ölçütlere uygun bir rapor hazırlayınız.</td>
</tr>
</tbody>
</table>

32
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için **Evet**, kazanamadığınız beceriler için **Hayır** kutucuğuna (X) işaretli koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Analiz öncesi hazırlığınızı yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Analiz numunessini hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Hazırladığınız numuneden belli hacimde erlene aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Erlenin içine 2-3 damla (yaklaşık 1 ml) kromat belirteci koydunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Bürette 0,1 N AgNO₃ doldurarak sıfır ayarı yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Numuneyi bürette doldurulmuş ve sıfır ayarı yapılmış 0,1 N AgNO₃ ile kiremit rengi alcancaya kadar titre ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Harcanan sarfiyatı büretten okuyarak kaydettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Tanık deney yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Formülden zeytin salamurasiındaki tuz miktarını hesaplayarak deney raporu yazdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Analiz sonrası işlemleriniizi yaptınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Aşağıdaki çözeltilerden hangisi zeytinin tuz tayininde kullanılmaz?
 A) NaOH çözeltisi
 B) K₂CrO₄ çözeltisi
 C) Na₂S₂O₃ 5H₂O çözeltisi
 D) AgNO₃

2. + AgNO₃ → AgCl↓ + NaNO₃
 Beyaz
 AgCl + K₂CrO₄ → + KCl
 Tuğla Kırmızısı
 Yukarıda boş bırakılan yerlere aşağıdaki seçeneklerden hangisi getirilmelidir?
 A) HNO₃, CrO₄
 B) NaCl, NO₃
 C) AgCl, CrO₄
 D) NaCl, Ag₂Cr₄

3. Sofralık zeytin analizinde büretten harcanan her 1 ml 0,1 N AgNO₃ NaCl eşittir.
 Bu cümlede boş bırakılan yere aşağıdaki ifadelerden hangisi getirilmelidir?
 A) 585 g
 B) 0,00585 kg
 C) 0,00585 g
 D) 0,5 kg

4. Sofralık zeytinde tuz analizi yaparken rengin dönmesiyle titrasyona son verilir.
 Bu cümlede boş bırakılan yerlere aşağıdaki ifadelerden hangisi getirilmelidir?
 A) Kiremit rengine
 B) Beyaz renge
 C) Metilen mavisine
 D) Pembe renge
5. 1. Tuz miktarının az olması zeytinin kuruyup sertleşmesine neden olur.
 2. Tuz miktarı işlenme sürecinde olan zeytinin fermentasyon sürecini ve dayanıklılığını etkiler.
 3. Tuz miktarı işlenmiş zeytinlerin raf ömrünü ve kalitesini etkiler.
 4. Tuz miktarı işlenme sürecinde olan zeytinin fermentasyon sürecini etkiler, dayanıklılığını etkilemez.
 5. Tuz miktarının fazla olması zeytinin kuruyup sertleşmesine neden olur

Yukarıdaki ifadelerden hangisi veya hangileri yanlış?
A) 1 ve 2
B) 4 ve 5
C) 1 ve 4
D) Yalnız 4

DEĞERLENDİRME

ÖĞRENME FAALİYETİ–4

AMAÇ

Zeytinyağında duyusal analiz yapabileceksiniz.

ARAŞTIRMA

- İki farklı zeytinyağı numunesi alınız. Birini karanlıkta ve kapalı olarak muhafaza ediniz. Diğerini güneş ışığı alacak şekilde ve ağzı açık olarak yaklaşık on gün muhafaza ediniz.
- Yağların tat ve kokularını kıyaslayınız. Sonucu öğretmeniniz ve diğer arkadaşlarınızla paylaşınız.

4. ZEYTİNAYAĞINDA DUYUSUL ANALİZLER

4.1. Genel Bilgi

Gıda maddelerinde tat ve kokunun meydana getirdiği hoşça giden kalıcı bileşke “lezzet” olarak tanımlanmaktadır. Sağlık ve beslenme açısından bütün gıda maddelerinde olduğu gibi zeytinyağında da kalite kontrolünün yanında duyusal olarak değerlendirilmesi gerekmektedir.

Zeytinyağının tüketici tarafından tercih edilmesinde kendine özgü tat, koku ve aroması, kalitesini destekleyen en önemli ölçütlер olarak karşımıza çıkmaktadır.

Natuırel zeytinyağı; zeytin çeşitine, iklim ve toprak şartlarına, yetiştirildiği yöreye, ağacın beslenme durumuna, mevsim durumuna, olgunluk derecesine, hasat zamannına ve muhafaza şeklinine bağlı olarak yapısında bulundurduğu 100’ ün üzerinde tespit edilmiş tat ve koku maddeleri ile diğer yağlara göre çok değişiklik göstermektedir.

Natuırel zeytinyağının yapılarındaki aroma maddeleri, günümüzde gaz kromatografisi cihazı ile belirlenemekte ise de aroma maddelerinin çok olmaları ve konsantrasyonlarının değişik olmaları nedeniyle bunların tespitlerinde zorluklarla karşılaşılmaktadır.

Günümüzde zeytinyağı alımlarında kullanılan analitik ve kimyasal ölçütlерden asıllık tayini, peroksit tayini, yağ asitleri kompozisyonu ve spektrofotometrik analizler yağların tam olarak değerlendirilmesine imkan vermemektedir. Bu nedenle bu kontrollerin yanı sıra duyusal değerlendirmenin yapılması de gereklidir.

36
Bütün gıda maddelerinde olduğu gibi zeytinyağının da kalite kontrolü yapılırken temel olarak üç konuya dikkat edilir.

- Sağlık ve beslenme açısından kontrol
- Tağşi açısından kontrol
- Duyusal açıdan değerlendirme

Natürel zeytinyağın sağlıklı, beslenme ve tağşı açısından uygun, fakat duyusal özellikleri açısından kabul edilmiyorsa hiçbir değer ifade etmez.

Duyusal değerlendirme, gıdaların çeşitli karakteristiklerine karşı görme, tatma, koklama, dokunma veya işteyme duylarının tepkilerini oluşturan, ölçen, analiz eden ve açıklayan bir disiplindir. Dilimizde; organoleptik değerlendirme, degüstasyon, tat testi, duyusal test, duyusal analiz gibi terimler duyusal değerlendirme ile eş anlamlı olarak kullanılmaktadır. Natürel zeytinyağının değerlendirilmesinde görev alan eğitimli kişilere de degüstatör denilmektedir.

4.2. Kullanılan Araç Gereç ve Ortamlar

- **Panel odası:** Duyusal değerlendirmenin yapıldığı odadır. Bu oda uygun şekilde aydınlatılmalı, psikolojik olarak hoş ve rahatlık hissi vermelidir. Panel odası; mümkün olduğuna sade döşenmelidir, havalandırma sistemi bulunmalı, etrafında gürültü yanıp sönen çiçekler bulunmamalıdır, ışıklandırma tekduze ve ayarlanabilir olmalı ve ortamda lavabo bulunmalıdır. Panel odası için 20 - 22 °C'lik bir sıcaklık ve % 60-70’lik bir nisbi nem önerilmektedir.

- **Tadım kabı:** Tadım kapları 130 ± 10 ml kapasitede, 60 ± 1 mm yüksekliğinde, 50 ± 1 mm ağzı çapında, dayanıklı cam malzemeden yapılmıştır. İçindeki gıda maddesinin renginin anlaşılmasını önlemek amacıyla koyu renkte, çiziksiz, yivsiz ve pürüzsüz olmalıdır. Yağdaki uçucu bileşiklerin rahatlıkla dışarı çıkmasını sağlayan dar bir ağz yapısı olmalıdır. Her tadım kabı ile birlikte, kabin ağız çapından 10 mm daha büyük bir saat camı bulunmalıdır. Bu saat camı aroma kaybını ve toz girmesini önlemek için kapak olarak kullanılmaktadır.

 - **Tadım kaplarının temizlenmesi:** Tadım kapları kokusuz deterjan kullanılarak temizlenmelidir. Temizleme sonrası su ile iyi bir şekilde durulmalı ve en son durulama sağı su ile yapılmalıdır. Daha sonra tadım kapları kurumları için etüve bırakılır.

- **Zeytinyağı örnekleri için ısıtma düzeneği:** Natürel zeytinyağlarının duyusal analizleri belirli bir sıcaklık derecesinde yapılmalıdır. Zeytinyağlıarda bu sıcaklık derecesi 30 ± 3 °C’dir. Bu sıcaklığı sabitlemek için termostatlı bir ısıtıcı kullanılmaktadır.
4.3. İşlem Basamakları

- Duyusal analizi yapacak kişi panel odasına oturur. Panel odasına önceden konulmuş, içinde 15 ml natürel zeytinyağı bulunan, üzerinde saat camı kapalı olan tadım kabını alır. İçinde zeytinyağı bulunan üzeri saat camı ile kapalı olan tadım kabını hatırlıyaş sağa sola ve yana eşek eşek karşıtırır.
- Koku hakkında bir karar verildikten sonra tat ve lezzet hakkında karar verebilmek için tadım işlemine başlar.
 - Zeytinyağlından bir yudum (yaklaşık 3 ml) alınır.
 - Daha sonra ağızdan kısa ve arka arkaya nefes alınır. Bu alınan nefesle, zeytinyağlına uçucu ve aromatik bileşenlerinin geniz boşluğu yayılmasını sağlar.
 - Duyusal analizde zeytinyağının ağız içindeki temas hissi de dikkate alınmalıdır. Böylece yağın akıcılığı, yuvarlanışı ve keskinliği hakkında fikir edinilir.
 - Tadım için günün en uygun zamanı sabah 10:00- 11:00, öğleden sonra ise 14:30-15:30 saatleridir.

Zeytinyağında duyuşal analiz amacıyla tadım yapacak kişinin dikkat etmesi gereken kurallar ve taşınması gereken özellikleri şunlardır:

- Duyusal analizi yapacak kişi, tadım işlemminin en az 1 saat öncesinden hiçbir şey yememelidir.
- Zeytinyağı tadımı yapacak kişinin fiziksel ve ruh sağlığı iyi olmalıdır.
- Duyusal analizi yapacak kişi sigara içmemelidir.
- Parfüm, kokulu sabun ve makyaj malzemeleri gibi kokulu maddeler kullanılamalıdır.
- Yaşı 65’in altında olmalıdır.
- Ne çok aç ne de çok tok olmalıdır.
4.4. Sonucu Değerlendirme

Tadım sonucu aşağıdaki ölçütlere göre değerlendirilir.

- **Zeytinyağında olumlu kabul edilen özellikler:**
 - **Tazelik:** Temiz, taze ve hoş bir his veren karakteristik bir kokudur. Zeytin çeşitine göre hafif değişiklik gösterebilir.
 - **Tatlılık:** Aç, yuvaşı ve keskin özelliklere olmayan, hafif tatlı, meyve tadına benzenen yağın tadıdır.
 - **Açılık:** İyi olgunlaşma ve fenolik maddelerce zengin bazı zeytin çeşitlerinden elde edilen yağın karakteristik lezzetidir. Açılık, şiddetine bağlı olarak az veya çok hoşu giden bir lezzetidir.
 - **Meyve lezzeti:** Optimum olgunluk zamanda hasat edilmiş taze olgun zeytin koku ve tadını hissettiren lezzettir.
 - **Olgun meyve lezzeti:** Çok olgun zeytinlerden elde edilen zeytinyağının hoşça giden, genellikle zayıf ve tatlı lezzetidir.

- **Zeytinyağında olumsuz kabul edilen ve kusur olarak nitelendirilen özellikler:**
 - **Karasu:** Natürel zeytinyağının karasu ile uzun süre teması sonucunda kazandığı lezzettir.
 - **Küflü:** Uzun süre yüksek yoğunlukta depolanmış ve başta laktik asit fermentasyonu olmak üzere çeşitli tipte fermentasyonlara uğramış zeytinlerden elde edilen yağın karakteristik lezzetidir.
 - **Küflü rutubet:** Zeytinlerin uzun süre yoğunlukta depolanmalarından dolayı mikroorganizmaların faaliyetleri sonucu zeytinlerden elde edilen yağın lezzetidir.
 - **Şarap veya sirke lezzeti:** Alkol ve asetik asit fermentasyonlarına maruz kalmış taze olmayan zeytinlerden elde edilen ve önemli miktarda etil alkol ve asetik asit içeren yağın lezzetidir.
 - **Çamurlu Tortu:** Zeytinyağının, toprak altı depoları ve tanklarda dinlendirilmeleri sırasında dipte biriken tortu ile uzun süre temas etmesi sonucu ortaya çıkan lezzettir.
 - **Çürümüş (kokmuş) lezzet:** Anaerobik fermentasyonu uğramış tortu ile uzun süre temas etmiş yağın kazandığı lezzetidir.
 - **Toprak lezzeti:** Yerden toplanmış ve yıkanmamış zeytinlerden elde edilen yağın lezzetidir.
 - **Yaprak tadı:** Zeytin yaprakları ve ince dalları ile birlikte ezilen zeytinlerden elde edilen yağın lezzetidir.
 - **Metalik lezzet:** Yeni alet ve ekipmanlarla, sezonda ilk defa kullanılmış aletlerle elde edilmiş veya paslanmış metal yüzeylerle uzun süre temas etmiş yağın lezzetidir.
 - **Ransit (akışma) tatı:** Hava ile uzun süre temas sonucunda otooksidsasyona uğramış yağın lezzetidir.
- **Kaba - buruk lezzet:** Tadıldığı zaman yüksek viskoziteli ve kaba bir his meydana getiren yağın lezzetidir.
- **Hiyar lezzeti:** Hermetikli olarak ambalajlanmış yağın uzun süre teneke kutularda kalması hâlinde yapısında 2-6 nonadienal bileşliğinin meydana gelmesinden kaynaklanan lezzettir.
Laboratuvara getirdiğiniz (en az) iki adet zeytinyağı numunesinde duyusal analiz yapmak için aşağıdaki işlem basamaklarını uygulayınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Panel odasında uygun şartları sağlayınız.</td>
<td>➢ Bu oda uygun şekilde aydınlatılmalı, psikolojik olarak hoş ve rahatlık hissi vermelidir.</td>
</tr>
<tr>
<td></td>
<td>➢ Panel odasına servis tepsisi, bir bardak su ve peçete yerleştirmeye dikkat ediniz.</td>
</tr>
<tr>
<td>➢ 15 ml natürel zeytinyağıını tadım kabının içine koyunuz.</td>
<td>➢ Tadım kabında 15 ml natürel zeytinyağı bulunmasına dikkat ediniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Üzerine saat camı kapalı olmasını dikkat ediniz.</td>
</tr>
<tr>
<td>➢ Tadım kabındaki zeytinyağını termostatlı bir ısıtıcıda 30 °C ’de sabit sıcaklığa getiriniz.</td>
<td>➢ Tadım kabının üzerinde kod numarası bulunmasına dikkat ediniz.</td>
</tr>
<tr>
<td>➢ İçinde zeytinyağı bulunan tadım kabını hafifçe sağa sola ve yana eğerek karıştırıniz.</td>
<td>➢ Bu işlemde de tadım kabının üzerinde saat camı ile kapalı olmasına dikkat ediniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Dikkatli ve titiz çalışınız.</td>
</tr>
<tr>
<td>➢ Zeytinyağından bir yudum (yaklaşık 3 ml) alınız.</td>
<td>➢ Zeytinyağın tüm ağız boşluğunda, dilin ön tarafından başlayarak dilin yan taraflarına, arka tarafına ve damağa kadar dağılmamasına özen gösteriniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Zeytinyağın ağız içindeki temas hissini de dikkate alınız.</td>
</tr>
<tr>
<td>Daha sonra ağızdan kısa ve arka arkaya nefes alınız.</td>
<td>Bu alınan nefesin, zeytinyağının uçucu ve aromatik bileşenlerinin geniz boşluğuna yayılması sağladığını hatırlayınız.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Tadım aralarında bir dilim elma yiyiniz ve daha sonra ağızınızı ilk su ile çalkalayınız.</td>
<td>Ağzın çalkalanması ile bir sonraki tadım arasında 15 dakika süre geçmesi gerektiğini unutmayınız. Görevli kişinin bir günde en fazla 4-8 numunenin duyusal analizini yapabileceğini hatırlayınız.</td>
</tr>
<tr>
<td>Sonuçu size verilen ölçütlerere göre değerlendiriniz.</td>
<td>Size verilen değerlendirme formlarını eksiksiz ve dikkatli doldurmaya özen gösteriniz.</td>
</tr>
</tbody>
</table>
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıdaki listelenen davranışlardan kazandığınız beceriler için **Evet**, kazanamadığınız beceriler için **Hayır** kutucuğuna (X) işareti koyarak kendinizi değerlendirdiniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Analiz öncesi hazırlığınızı yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Panel odasında uygun şartları hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 15 ml natürel zeytinyağını tadım kabının içine koydunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Tadım kabındaki zeytinyağını termostatlı bir ısıtıcıda 30°C da sabit sıcaklığa getirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. İçinde zeytinyağı bulunan tadım kabını hafifçe sağa sola ve yana eğerek karıştırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Zeytinyağını bir yudum (yaklaşık 3 ml) aldıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Daha sonra ağızdan kısa ve arka arkaya nefes aldıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Tadım aralara bir dilim elma yiyerek ağızınızı ılık su ile çalkaldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Sonucu size verilen ölçütlere göre değerlendirirdiniz mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

ÖLÇME VE DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Gıda maddelerinde………… ve ………………. meydana getirdiği hoşa giden ve kalıcı bileşke lezzet olarak tanımlanır. Bu cümlede boş bırakılan yerlere aşağıdaki seçeneklerden hangisi getirilmelidir?
 A) Tat, koku
 B) Tat, aroma
 C) Aroma, koku
 D) Kıvam, tat

2. Natürel zeytinyağı zeytin çeşitlerinde, tat ve koku maddelerinin sayısı ve çeşidini etkileyen etmenler aşağıdaki seçeneklerden hangisinde verilmiştir?
 A) İklim ve toprak şartları, yetiştirildiği yöre, ağacın beslenme durumu
 B) Mevsimin durumu, olgunluk derecesi
 C) Hasat zamanı ve muhafaza şekli
 D) Hepsi

3. Zeytinyağında duyusal analiz yaparken koklama süresi …………… sanıyeyi geçmemelidir. Bu cümlede boş bırakılan yere aşağıdaki kilerden hangisi getirilmelidir?
 A) 10
 B) 20
 C) 30
 D) 40

4. Ağzın çalkalanması ile bir sonraki tadım arasında …………. geçmesi gerekmektedir. Bu cümlede boş bırakılan yere aşağıdaki kilerden hangisi getirilmelidir?
 A) 20 dakika
 B) 1 saat
 C) 15 dakika
 D) 30 dakika

5. Aşağıdaki seçeneklerden hangisi zeytinyağında istenen lezzettir?
 A) Meyve lezzeti
 B) Metalik lezzet
 C) Yaprak tadı
 D) Toprak lezzeti

DEĞERLENDİRME

MODÜL DEĞERLENDİRME

KONTROL LISTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendiririnizi.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Analiz öncesi hazırlığınızı yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Analiz numunesini hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-Asit sayısı tayini için:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 5 veya 10 g yağ numunesini bir erlene tarttınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Tartımı 0,01g duyarlılıkta yapmaya özen gösterdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 50 - 150 ml etil alkol- dietil eter çözeltisi ilave ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Yağın çözünmesini sağladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Birkaç damla fenolftalein çözeltisi ilave ettimiz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. İndikatör ilave etmeden önce erleni çok iyi çalkaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Bürete koyduğunuz 0,1 N etil alkollü potasyum hidroksit çözeltisi ile titre ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Titreşyona açık pembe renk oluşuncaya kadar devam ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Dönüm noktasına dikkat ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Oluşan rengin 15 saniye kalıcı olmasına dikkat ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Büreteren okuduğunuz ilke ve son sarfıyatları not ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Analiz sonrası işlemlerinizı yaptıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Formülden asit sayısını hesaplayarak deney raporu yazdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Bulduğunuz değerleri size verilen standartlarla karşılaştırıldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-Peroksit tayini için:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Numuneyi (tahmin edilen peroksit sayısına göre) yaklaşık 1,4 g tarttınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Üzerine 10 ml kloroform ekledikten sonra erleni hızla çalkalayarak yağın çözünmesini sağladınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
19. Daha sonra 15 ml asetik asit ve 1 ml potasyum iyodür çözeltisi ekleyerek erleni çalkaladınız mı?

20. 5 dakika karanlık bir yerde beklettiniz mi?

21. Süre sonunda 75 ml damıtık su ve 1 ml nişasta çözeltisi ilave ettiniz mi?

22. Beklenen peroksit sayısı 12,5’ten az ise 0,002 N, 12,5 veya daha yüksek ise 0,01 N sodyum tiyosülfat çözeltisi ile titre ettiniz mi?

23. Harcanan sarfiyatı (V_1) büretten okuyup kaydettiniz mi?

24. Aynı işlemi yağ koymadan tanık deneme olarak yaptınız mı?

25. Titresyonda harcanan sodyum tiyosülfat çözeltisi miktarını (V_2) kaydettiniz mi?

26. Formülden peroksit sayısını hesaplayarak deney raporu yazdınız mı?

27. Bulduğunuz değerleri size verilen standartlarla karşılaştırdınız mı?

C-Duyusal analiz için:

28. Panel odasını hazırladınız mı?

29. İçinde zeytinyağı bulunan üzeri saat camı ile kapalı olan tadım kabını hafife sağa sola ve yana eğerek karıştırdınız mı?

30. Saat camını kaldırarak zeytinyağı, koku hissedilinceye kadar en fazla 30 sn. süreyle kokladınız mı?

31. Zeytinyağlından bir yudum (yaklaşık 3 ml) aldıınız mı?

32. Zeytinyağıın tüm ağış boşluğuna, dilinizi ön tarafından başlayarak dilinizin yan taraflarına, arka tarafla ve damağa kadar dağılmışını sağladınız mı?

33. Daha sonra ağzınızdan kısa ve arka arkaya nefes aldıınız mı?

34. Zeytinyağıın ağzınızın içindeki temas hissini de dikkate aldıınız mı?

35. Bulduğunuz özellikleri size verilen standartlarla karşılaştırınız mı?

D-Sofralık zeyinde tuz tayini için:

36. Analiz numunesini hazırladınız mı?

37. Hazırladığınız numuneden belli hacimde erlene aldınız mı?

38. Erlenmiş içerisinde 2-3 damla (yaklaşık 1 ml) kromat belirtici koydunuz mı?

39. Numuneyi bürete doldurulmuş ve sıfır ayarı yapılmış 0,1 N AgNO₃ ile kiremit rengi alınca kadar titre ettiniz mi?

40. Tanık deney yaptınız mı?
41. Formülden zeytin salamurasiındaki tuz miktarını hesaplayarak deney raporu yazdınız mı?

42. Analiz sonrası işlemleriniizi yaptınız mı?

43. Laboratuvar son kontrollerinizi yaptınız mı?

DEĞERLENDİRME

CEVAP ANAHTARLARI

ÖĞRENME FAALİYETİ-1’İN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A</td>
</tr>
<tr>
<td>2.</td>
<td>A</td>
</tr>
<tr>
<td>3.</td>
<td>A</td>
</tr>
<tr>
<td>4.</td>
<td>C</td>
</tr>
<tr>
<td>5.</td>
<td>D</td>
</tr>
<tr>
<td>6.</td>
<td>D</td>
</tr>
<tr>
<td>7.</td>
<td>Yanlış</td>
</tr>
<tr>
<td>8.</td>
<td>Doğru</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ-2’NİN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>D</td>
</tr>
<tr>
<td>2.</td>
<td>C</td>
</tr>
<tr>
<td>3.</td>
<td>C</td>
</tr>
<tr>
<td>4.</td>
<td>A</td>
</tr>
<tr>
<td>5.</td>
<td>A</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ-3’ÜN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>C</td>
</tr>
<tr>
<td>2.</td>
<td>D</td>
</tr>
<tr>
<td>3.</td>
<td>C</td>
</tr>
<tr>
<td>4.</td>
<td>A</td>
</tr>
<tr>
<td>5.</td>
<td>C</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ-4’ÜN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A</td>
</tr>
<tr>
<td>2.</td>
<td>D</td>
</tr>
<tr>
<td>3.</td>
<td>C</td>
</tr>
<tr>
<td>4.</td>
<td>C</td>
</tr>
<tr>
<td>5.</td>
<td>A</td>
</tr>
</tbody>
</table>
KAYNAKÇA