T.C.
MİLLİ EĞİTİM BAKANLIĞI

KİMYA TEKNOLOJİSİ

PROSESTE AKIŞ VE SEVİYE

Ankara, 2013
Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.

PARA İLE SATILMAZ.
İÇİNDEKİLER

AÇIKLAMALAR ........................................................................................................... ii
GİRİŞ ......................................................................................................................... 1
ÖĞRENME FAALİYETİ-1 ....................................................................................... 3
1. AKIŞÖLÇERLERİ ................................................................................................. 3
   1.1. Akişın Tanımı ............................................................................................... 3
   1.2. Akiş Birimleri ............................................................................................. 4
   1.3. Değişken Hacimli Akiş Sayaçları ................................................................. 4
      1.3.1. Pervaneli Sayaçlar ............................................................................... 5
      1.3.2. Türbinli Sayaçlar .................................................................................. 5
      1.3.3. Girdaplı (Vortex) Sayaçları .................................................................. 8
   1.4. Diyaframlı Akişölçerler ............................................................................. 9
      1.4.1. Orifis Plakalı Ölçerler .......................................................................... 10
      1.4.2. Akiş Memeli Ölçerler .......................................................................... 12
      1.4.3. Venturi Borulu Ölçerler ....................................................................... 13
   1.5. Değişen Alanlı Akiş Sayaçları ................................................................ 15
      1.5.1. Rotometre ......................................................................................... 15
      1.5.2. Gate metre ......................................................................................... 17
      1.5.3. Gilflo Sayaçlar .................................................................................... 18
      1.5.4. Dahl Tüplü Sayaçlar ......................................................................... 18
   1.6. Ultrasonik Akişölçerler .......................................................................... 19
   1.7. Elektromanyetik Akişölçerler ................................................................ 21
UYGULAMA FAALİYETİ ....................................................................................... 24
ÖLÇME VE DEĞERLENDİRME ............................................................................ 26
ÖĞRENME FAALİYETİ-2 .................................................................................... 28
2. SEVIYE KONTROLÜ ............................................................................................. 28
   2.1. Tanımı ........................................................................................................ 28
   2.2. Seviyeölçerler ............................................................................................ 29
      2.2.1. Sürekli Ölçüm Sağlayan Yöntemler ...................................................... 29
      2.2.2. Kısa Aralıklı Algılama Veren (Ölçüm Sağlayan) Yöntemler .............. 39
UYGULAMA FAALİYETİ ....................................................................................... 43
ÖLÇME VE DEĞERLENDİRME ............................................................................ 45
MODÜL DEĞERLENDİRME ............................................................................... 46
CEVAP ANAHTARLARI ......................................................................................... 48
KAYNAKÇA ........................................................................................................... 49
<table>
<thead>
<tr>
<th>ALAN</th>
<th>Kimya Teknolojisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAL</td>
<td>Proses Teknisyeni</td>
</tr>
<tr>
<td>MODÜLÜN ADI</td>
<td>Proseste Akış ve Seviye</td>
</tr>
<tr>
<td>MODÜLÜN TANIMI</td>
<td>Proseste akış birimleri, akış ölçerler, seviye ölçerler ve çeşitleri ile ilgili bilgi ve becerilerin kazandırıldığı bir öğrenme materyalidir.</td>
</tr>
<tr>
<td>Süre</td>
<td>40/32</td>
</tr>
<tr>
<td>Ön Koşul</td>
<td>Proseste Basınç ve sıcaklık modülünü başarmış olmak</td>
</tr>
<tr>
<td>Yeterlik</td>
<td>Proseste akış ve seviye kontrolünü yapmak</td>
</tr>
<tr>
<td>Modül Amaç</td>
<td>Genel Amaç: Gerekli ortam sağlandığında, proses kontrol enstrümanlarının akış ve seviye kontrolünü yapabileceğinizi.</td>
</tr>
</tbody>
</table>
| Amaçlar      | 1. Sistemden akan akışkanın akış kontrolünü yapabileceğinizi.  
|              | 2. Sistemde bulunan maddenin seviye kontrolünü yapabileceğinizi. |
| Eğitim Öğretim Ortamları ve Donanımları | Ortam: Sınıf, atölye veya laboratuvar, kütüphane, ev, bilgi teknolojileri ortamı (Internet vb.), kendi kendinize veya grupla çalışabileceğiniz tüm ortamlar  
|              | Donanım: Akış kontrol ve seviye kontrol elemanları |
| Ölçme ve Değerlendirme | Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçe aracları ile kendinizi değerlendireceksiniz.  
|              | Öğretmen, modül sonunda ölçme aracı (çoktan seçmeli test, doğru-yanlış testi, boşluk doldurma, eşleştirme vb.) kullanarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek sizi değerlendirecektir. |
Sevgili Öğrenci,

Akış (debi) ve seviye, üretim sürecinde üretim faaliyetlerini doğrudan etkileyen iki değişkendir. Üretim faaliyetlerimizin gerçekleşebilmesi için bu iki değişkenin sürekli takip edilmesi ve kontrol altında tutulması gerekir.

Akışkanın hareketi sırasında hızı ve debisi, bilim ve sanayinin pek çok yerinde ihtiyaç duyulan bilgilerdir. Bu verilerin ölçülmesi için pek çok cihaz geliştirilmiştir. Herhangi bir akış ölçme işleminde ölçme cihazı ve yöntemnin seçiminde başta cihazın hassasiyeti ve kapasite aralığı olmak üzere pek çok etken rol oynar. Çok sayıda üretimde fabrika verimi akışın ölçülebilmesine ve hassas olarak kontrol altında tutulabilmesine bağlıdır.

Akış ölçümü, gıdadan kimyaya hemen her endüstride artan rekabet nedeniyle daha çok önem kazanmakta ve buna bağlı olarak daha fazla ölçüm noktasının takip edilmesi ihtiyacı ortaya çıkmaktadır. Yeni proses ve ölçüm noktalarının, çok kısa sürelerde ve kısıtlı alanlarda hızla tesise entegre edilebilmesi için ölçüm kalitesi önem taşımaktadır.

Seviye ölçümü endüstriyel uygulamalar ve günlük kullanım alanlarında oldukça sık karşılaşılan bir uygulamadır. Genellikle bu uygulamalarda çeşitli maddelerin miktarları bilinmek istenmektedir. Bu da seviye ölçümünün önemini bir kat daha artırmaktadır. Miktar ölçülecek maddelerin çeşitliliği sivi, katı ve gaz olabilir; katların granül, toz, kaba parçacık; sıvıların çeşitli yoğunlukta olabilmesi, ölçümede kullanılan yöntemleri çeşitlendirmektedir.

Bu modül ile proste akış ve seviyenin önemini, değişkenleri ölçmekte kullanılan araçları, araçların özelliklerini, nerelerde kullanıldığını ve nasıl çalıştıklarını ögreneceksiniz.
ÖĞRENME FAALİYETİ-1

AMAÇ

Gerekli ortam sağlandığında sistemden akan akışkanın akış kontrolünü yapabileceksiniz.

ARAŞTIRMA

- Debi ölçümünün uygulandığı yerleri araştırınız.
- Çevrenizdeki kimyasal üretim yapan tesislere giderek nasıl akış ölçümü yapıldığını araştırınız.
- Akışölçerlerin çeşitlerini ve kullanım alanlarını araştırınız.

1. AKIŞÖLÇERLER

Kimya sektörünün kimyasal proses işlemlerinin çoğunluğu kısmen veya tamamen akışkan fazında gerçekleştmedir. Bu nedenle akışkanların akımı, ölçümü ve kontrolü kimya sektöründe önemli bir yer tutmaktadır.

Akışın ölçümü, malzemenin bir yerden bir yere taşınmasına gerekşime gösteren herhangi bir işlemde kullanılan bir yöntemdir.

Ölçüm, bir malzeme akışının niceliğini belirlemek için ya da bir akış debisi oluşturmak ve onu kontrol altında tutmak için kullanılan bir yöntemdir. Çoğu kimyasal proseslerde fabrika verimi akışın ölçülebilirliğini ve hassas olarak kontrol altında tutulabilmesine bağlıdır. Bununla beraber bir akış ölçüm düzeni uygulanacaksa bu ölçüm düzeni üretim verimi ve ölçüleceğe gerekçeye uygun ve aynı zamanda yeterli olmalıdır.

1.1. Akışın Tanımı

Akış (debi), belirli bir kesitten, belirli bir sürede geçen akışkan miktarıdır. Endüstride kontrol amacıyla kullanılan dört ana proses değişkeninden birisidir.

1.2. Akış Birimleri

Akış ölçümü için bilinmesi gereken önemli fiziksel büyüklükler, akışkanın birim zamanda akan hacimsel miktarı (hacimsel debi - \( m^3/s \)), birim zamanda akan kütlesel miktarı (kütlesel debi-kg/sn.) ve birim zamanda kat ettiği hızı (hız - m/sn.)

Direk hacimsel veya kütlesel ölçüm yapma ölçüm işlemini sonlandırır. Bazı ölçümlerde hacimsel veya kütlesel ölçümlerin zorluğundan dolayı veya alternatif bir ölçüm sistemi olarak hız ölçümü kullanılır. Hız ölçümünün yapıldığı yerin kesiti bilincine nece gibi için çeşitli matematiksel işlemlerle hacimsel veya kütlesel debiler bulunabilir.

Akış ölçümünde kullanılan birimler, ölçümların yapılacak akışkanın miktarı ile ilgilidir. Ölçülmesi istenilen debi değeri büyüksece debi birimleri de büyüür. Debi küçültülece birim de küçülür.

<table>
<thead>
<tr>
<th>US gal/dk.</th>
<th>Imp gal/dk.</th>
<th>( ft^3/sn. )</th>
<th>( m^3/ ) saat</th>
<th>Litre/sn.</th>
<th>Varil (42 gal)/dk.</th>
</tr>
</thead>
<tbody>
<tr>
<td>US gal/dk.</td>
<td>1</td>
<td>0,8327</td>
<td>0,00223</td>
<td>0,2271</td>
<td>0,0631</td>
</tr>
<tr>
<td>Imp gal/dk.</td>
<td>1,201</td>
<td>1</td>
<td>0,002676</td>
<td>0,2727</td>
<td>0,0758</td>
</tr>
<tr>
<td>( ft^3/sn. )</td>
<td>448,83</td>
<td>373,7</td>
<td>1</td>
<td>101,9</td>
<td>28,32</td>
</tr>
<tr>
<td>( m^3/ ) sn.</td>
<td>15852</td>
<td>13200</td>
<td>35,35</td>
<td>3600</td>
<td>1000</td>
</tr>
<tr>
<td>( m^3/ ) dk.</td>
<td>264,2</td>
<td>220</td>
<td>0,5886</td>
<td>60,0</td>
<td>16,667</td>
</tr>
<tr>
<td>( m^3/ ) sa.</td>
<td>4,403</td>
<td>3,670</td>
<td>0,00982</td>
<td>1</td>
<td>0,2778</td>
</tr>
<tr>
<td>Litre/sn.</td>
<td>15,85</td>
<td>13,20</td>
<td>0,0353</td>
<td>3,600</td>
<td>1</td>
</tr>
<tr>
<td>Litre/dk.</td>
<td>0,2642</td>
<td>0,220</td>
<td>0,000589</td>
<td>0,060</td>
<td>0,0176</td>
</tr>
<tr>
<td>Varil (42 gal)/dk.</td>
<td>42</td>
<td>34,97</td>
<td>0,0937</td>
<td>9,538</td>
<td>265</td>
</tr>
</tbody>
</table>

Tablo 1.1: Akış birimleri ve dönüşümleri

1.3. Değişken Hacimli Akış Sayaçları

Bu tip sayaçlar her dönüşünde belli bir hacimde akışkanın geçmesine izin verir. Debi, belirli bir sürede içinde bir sayaç içinden geçen akışkan hacminin doğrudan ölçülmesi ile bulunabilir.
1.3.1. Pervaneli Sayaçlar


Pervane boyutuna bağlı olarak her dönüşte geçirdiği akışkan miktarı farklıdır. Çalışmaları titreşimlidir.

1.3.2 Türbinli Sayaçlar

Türbinli akış ölçerlerde pervaneli akış ölçerlerle benzer şekilde çalışır. Türbin tipi akış ölçerler, akışkanın akış hattı içinde yer alan dönebilir kanaat gözlük takımlarından (türbin) ibarettir. Türbinli akış ölçerler giriş akışını düzenleyen cihazlardan, rotordan, rotor desteklerinden, rotor rulmanlarından mahfazalardan ve sinyal alıcı bobinden oluşmaktadır.

Türbin rotoru çoklu pervaneye sahiptir ve ayrıca bobin tarafından algılanan dönüş hızı akışa doğru orantılıdır. Türbin tipi akış ölçme cihazları, yoğunluk ve viskozite dalgalandırmalarına karşı duyarlıdır.

Bu sistemin çıkışı dijital darbeler şeklinde olup gerektiğiinde frekans-voltaj çeviciler ile analog sinyaller elde etmek mümkündür. Türbin tipi akışölçerler, gazlar için, sıvılar için ve litre/dk. ile 120000 litre/dk. akış ölçebilmektedir.

Genellikle en küçük ölçme miktarı ile en büyük ölçme miktarı arasında 1/10 oranı mevcuttur. Doğruluk dereceleri %0,25 civarında olup cevap hızları 2-10 m/sn. arasındadır. Cihazın göstergesi bu dönüş sayısını, debi olarak gösterecek şekilde kalibre edilmiştir.
Akışölçer içerisinde bulunan yönlendirici kanahtıklar akışkanın türbine doğru akışını sağlar. Böylelikle daha hassas bir ölçüm yapılmış olur.

Şekil 1.4: Türbinli akışölçer ve çalışma prensibi


Kütle akış hızı çıkışı gerekiyorsa o zaman kütle akış değerini bulmak üzere türbin tipi akış cihazı için başka değerler gerektirir. Mutlak basınç, basınç farkı, sıcaklık ve vizkozite değerleri gibi fiziksel proses ölçümlerini içeren manuel veya bilgisayarlar ile yapılan hesaplamalar, gerçek akış hızını hesaplamak için çıkış sinyaline uygulanmalıdır. Eğer sızdırmaz rulmanlar kullanılmaz ise rulmanların kirlenmesini önlemek için temiz akışkanların kullanılması gerekir.
1.3.3. Girdaplı (Vortex) Sayaçları

Akışkan, bir akış elemanı üzerinde aktıkça akış elemanın her iki tarafından akış aşağıdaki kısmında alternatif olarak girdap oluşur. Girdapların frekansı akışkan hızı ile doğru orantılıdır.

Şekil 1.5: Girdap oluşumu


Girdapların frekansını ölçmek için çeşitli algılama metotları kullanılabılır. Kütle akış hızı çıkışı gereklidir olsursa o zaman kütle akış değerini bulmak üzere girdap akını tipi akış cihazı için diğer değerlerin okunmasını gerektirir. Mutlak basınç, basınç farkı, sıcaklık ve viskozite değerleri gibi fiziksel proses ölçümlerini içeren manuel veya bilgisayarlar ile yapılan hesaplamalar, gerçek akış hızını hesaplamak için çıkış sinyaline uygun olarak uygulanmalıdır.

Şekil 1.6: Girdaplı sayaç ve çalışma prensibi

Vorteks akışölçerler yüksek sıcaklıklı tıkan gaz ve buhar dahil olmak üzere çok sayıdaki akışkan tipi için uygundur. Bu akışölçerler Reynold sayıları, gazlar için 2x10^3 ile 1x10^5 arasında ve sıvılar için 4x10^3 ile 1,4x10^5 arasında olacak şekilde geniş uygulama alanlarına sahiptir. Cihaz çıkışı, akışkanın yoğunluğu, sıcaklığı ve basıncından bağımsızdır. Ölçülen debinin doğruluğu kısma oranı 20,1’den fazla olacak şekilde geniş bir aralıktaki yüzde ±1'dir.
1.4. Diyaframlı Akişölçerler


- Diyaframlı akişölçerler basit, güvenilir ve diğer akişölçerlere göre esnekdir. Genelde iki bileşenden oluşur.
  - Bileşen: Basınç farkını ölçer ve alanda kontrol ölçüm cihazına sinyal gönderir. Bu bileşen gerekli sinyal iletiminin tipine göre seçilir.

- Diyaframlı akişölçerler aşağıdaki şekilde grupalanabilir:
  - Orifis plakalı ölçerler
  - Akiş memeli (akiş nozulu) ölçerler
  - Venturi borulu ölçerler
  - Pitot tüpü
1.4.1. Orifis Plakalı Ölçerler

Akışkanın akımını ölçmek için kullanılan orifis plakalı ölçerler içerisinde akımın geçmiş olduğu delikli bir plaka olarak dizayn edilmiştir. Plaka üzerindeki delik orifis olarak adlandırılmaktadır. Orifis plakanın akış yukarı kısmında ve akış aşağı kısmında birer tane tapa bulunmaktadır.

Plaka, merkezinde belli boyutlarda yuvarlak bir delik açılmış çelik levhadan oluşur. Buna merkezi delik levha denir. Bu levha normal olarak boru donanımında birbirine eklenecek iki boru flanş yüzeyleri arasına monte edilerek sıkıştırılır.

Şekil 1.7: Orifis plaka


Şekil 1.8: Orifis plakalı ölçer ve yapısı
Akış miktarı yani debi arttıkça orifis plakasının iki tarafı arasındaki basınç farkı da artar. Orifis plakasının iki tarafı arasındaki basınç farkını ölçen manometre veya bir düzenek kurulur. Ölçulen basınç farkı skaladan akış miktarı olarak okunur.

Şekil 1.9: Orifis plakası ve çevre donanımı

- **Orifis plakali ölçerlerin avantajları**
  - Yapımı kolaydır.
  - Maliyeti düşüktür.
  - Akış hattına montajı kolaydır.
  - Hareketli parçalar yoktur.
  - Uzun süre güvenilir.

- **Orifis plakali ölçerlerin dezavantajları**
  - Akış hattında önemli derecede basınç düşüşüne neden olur.
  - Plakanın her iki tarafında zamanla çökelti meydana gelir. Bu çökelti oluşumu hem akışın zorlaşmasına hem de akış miktarı değerinin yanlış okunmasına neden olur.
  - Orifis deliğinin keskin kenarları zamanla aşınır. Plaka değiştirilmediği takdirde yanlış ölçüm yapılmasına neden olur.
1.4.2. Akış Memeli Ölçerler

Akış memeli (akış nozulu) akışölçerler orifis akışölçerlerle aynı prensibe göre çalışır. Ayrıca venturi tüpündeki bir varyasyon olduğu varsayabilir. Nozul açıklığı akıskandi eliptik bir sınırlamadır. Ancak basıncın geri kazanımı için çıkış bölgesi yoktur. Basınç tapaları, \( \frac{1}{2} \) boru çapı kadar akış aşağı ve 1/1 boru çapı kadar akış yukarı yerleştilir.

![Şekil 1.10: Akış nozul ve çalışma prensibi](image1)

Orifis plakadaki dar boğaz yerine burada akış memesi kullanılır. Orifis plakasındaki keskin kenarları burada olmadığı için yıpranma ve basınç düşüşü daha azdır. Ancak maliyeti daha fazladır ve montajı daha zordur.

![Resim 1.3: Akış nozul](image2)

Akış nozulu (memesi) yüksek sıcaklıklı buhar akışı gibi türbülansın oldukça büyük olduğu (Reynolds sayısı 50000 üstünde) durumda kullanılan yüksek hızlı bir akış ölçme cihazdır. Bir akış nozulundaki basınç düşüşü ventüri tüpünün basınç düşüşü ile orifis plakalı tiplin basınç düşüşü arasındadır. Yani %30 ile %95 arasındadır.

1.4.3. Venturi Borulu Ölçerler


Şekil 1.13: Ventüri borulu ölçerin iç yapısı


Avantajları
- Kullanımı kolaydır.
- Basınç azalması diğer sistemlere göre daha azdır.
- Yüksek katı içeriğine karşı az hassas.
- Uzun süre güvenilirlik özelliğine sahiptir.
- Hareketli parça yoktur.

Dezavantajları
- Nozul ve orifis tipi akış ölçüm sistemlerine göre konstrüksiyon imalatı pahalıdır.
- Kareköklü basınç-hız ilişkisi vardır.
- Kısıma oranı zayıftır.
- Montajda hassas işlem gereklişidir.
- Ölçüm için daha uzun alan gereklidir.

1.5. Değişen Alanlı Akış Sayaçları


1.5.1. Rotometre

Rotometreler, akışkanın akışında akış hattına düşey olarak yerleştirilmiş bir konik cam tüp ve içinde serbest hareket edebilen cam tümün tabanı ile aynı büyüklükte bir ağırlıktan (yüzer eleman-şamandıra) meydana gelir. Akışkan, konik cam tümün dar kesitli kısmından girip bu tüm içerisinde yukarıya doğru tüm duvarı ile ağırlık arasındaki halkasal boşluktan akar ve ağırlık ya da yüzer elemanı akış miktarına bağlı olarak yukarı doğru hareket ettirir. Ağırlık akış gösterici elemandır ve akış hızı arttırıncaya yukarı çıkıma devam eder.

Resim 1.4: Venturi borulu ölçer ve kullanım alanı

Şekil 1.14: Rotometre ve çalışması
Şekil 1.15: Rotometre çalışma prensibi


Rotometreler gaz ve sıvı akış ölçümleri için kullanılmaktadır. Genelde temizleme akışları ve seviyeleri için kullanılır.

Resim 1.5: Rotometre (cam tüp)

Bazı durumlarda yüzey elemanın seviyesini algılamak ve akış sinyalini iletmek için otomatik bir algılama cihazı kullanılır. İletim yapan bu rotometreler genelde paslanmaz çelikten ya da çeşitli akışkan uygulamaları ve daha yüksek basınç değerleri için başka maddelerden (metallerden) yapılabilir.
Rotometreler, %2 doğruluğa sahip bir orifis plakadan daha geniş bir akış bandını ölçer. Camdan yapılanlar 300 psig (1 psig 1,082 bara eşittir.) maksimum çalışma basıncını ölçer.

- **Rotometrenin avantajları**
  - Maliyeti düşüktür.
  - Montajı kolaydır.
  - Bozulma olasılığı düşüktür.
  - Basit bir yapıya sahiptir.
  - Diğer akışölcörlerin doğruluğunun kontrolünde kullanılır.

- **Rotometrenin Dezavantajları**
  - Akışkan hızı fazla olmamalıdır.
  - Debisi ölçülecek akışkan içinde parçacıklar olmamalıdır.
  - Bulanık yapıdaki akışkanların debi ölçümü yapılamaz.
  - Sadece akışın yukarı doğru olması durumunda kullanılarılabilir.

1.5.2. Gatemetre

Bu cihazlarda akışı ölçmek için kullanılan metot kesite bir kısıtlama getirmektir. Kesitte aşağı yukarı ve akış aşağı kısımda akan hacim sabitken kanalda akan sıvı yükselmektedir. Yüksekme ölçülerek akış hızı elde edilebilir.

1.5.3. Gilflo Sayaçlar


1.5.4. Dahl Tüplü Sayaçlar

Dahl tüpü çok az kullanılan bir akışölçer tipidir. Bu cihaz, iki çıkış hattı ihtiva eden bir boru dirseginden ibaretir.


1.6. Ultrasonik Akışölçerler

Ultrasonik ölçüme cihazı suyu, atık suyu, hidrokarbon sıvıları, organik ve inorganik kimyasal maddeleri, sütü, birayı ve madenî yağların akış hızını ölçebilmektedir. Temel şart olarak akışkanın ultrasonik olarak iletken olması ve oldukça iyi bir akışa sahip olması gereklidir. Kenetli ultrasonik akış ölçme cihazları proses ortamı ile herhangi bir temas olmadan borudan geçen akış hızını tespit edebilir.

Sıvı uygulamalarında doppler ve iletim süreli akış ölçme cihazları olarak iki çeşit ultrasonik ölçme cihazı bulunmaktadır. Her iki tür cihaz ilgili birimleri ile birlikte kenetli algılayıcıları kullanabilir ve prosesi durdurmadan borudaki akış hızını kesmeden maddenin akış hızını tespit edebilir.

Ultrasonik ölçüme cihazlarında transdüserler iki şekilde monte edilebilmektedir. Akış yukarı ve akış aşağı kısımdaki ultrasonik transdüserler borunu karşıt taraflarına (köşegen mod) veya aynı tarafta (yansıma modu) olarak monte edilebilir.
Şekil 1.20: Yansıma modu

Ultrasonik akışöölçerlerde akışın sıfır olması durumunda gönderilen sinyal herhangi bir sapmaya uğramadan geriye yansır. Şekilde görüldüğü gibi borunun bir kenarında ses dalgaları boru içerisinde açılı bir şekilde gönderilir, bu dalgalar yansıtıcıdan yansıtılarak gönderme açısına uygun bir toplama açısı ile alıcıda toplanır. Boru içerisindeki sıvının akmasıyla vericiden gönderilen ses dalgaları ile alıcının algılanması arasında geçen süre değişir.


Resim 1.7: Ultrasonik akışöölçer
Uygulama alanları
- Atık su ve içme suyu arıtma iyileştirme, çamurlu su ve proses suyu pompalama
- Yakıt ve kimya endüstrileri
- Hidroelektrik, soğutma, yangın söndürme istasyonları
- Ayrıştırma endüstrileri
- Yiyecek, kâğıt
- Otomobil endüstrileri
- Akiş dengeleme
- Merkezi sistemlerde ısı hesabında kullanılmak üzere debi ölçümü

1.7. Elektromanyetik Akışölcüler


Şekil 1.21: Manyetik alan oluşumu

Şekil 1.22: Elektromanyetik akış ölçümü prensibi

Şekil 1.23: Elektromanyetik akışölçerin kısımları


Elektromanyetik akışölçerlerin avantajları

- Doğru bir şekilde kalibre edildiğinde, tam akış aralığında yüksek doğruluk (< ±% 0,5) ve tutarlılık seviyesine sahiptir.
- Doğruluk; sıcaklık, basınç, viskozite, yoğunluk ya da iletkenlikteki değişkenliklerden hemen hemen etkilenmez.
- Akışa engel değildir.
- Sadece minimum rutin bakıma sahiptir ve sağlamdır.
- Şiddetli ve aşındırıcı sıvılar ve karışımları ölçebilir.
- Eşit doğrulukta hem ileri hem geri yöndeki akışı ölçebilir.

➢ Elektromanyetik akışölcерlerin dezavantajları

- Maliyeti nispeten yüksektir.
- Güç kaynağı gerektirir.
- Elektronik bileşenler yıllardır zarar görebilir.
- Tamiratlarında kalifiye teknisyenler tarafından gelişmiş donanımların kullanılması gerekir.
- Bu tip akışölcерlerde elektrik iletmeyen (yalıtkan) sıvıların debisinin ölçülmesi mümkün değildir.

Resim 1.8: Elektromanyetik akışölcер
Size verilen prosedüre akış kontrolünü yapınız.

**Araç gereçler:** Akışölçer, ölçüm cihazı

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Akış kontrol elemanının kontrolünü yapıyor.</td>
<td>➢ Çalışma önüğünü giyiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Çalışma ortamınızı hazırlayınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Kullandığınız araç gereçlerin temizliğine dikkat ediniz.</td>
</tr>
<tr>
<td>➢ Akış kontrol değerlerini ölçünüz.</td>
<td>➢ Akışölçer kullanım kurallarına uyunuz.</td>
</tr>
<tr>
<td>➢ Değerlere uygunluğunu kontrol ediniz.</td>
<td>➢ Talimattaki değer ile kontrol ediniz.</td>
</tr>
</tbody>
</table>
KONTROL LISTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri Evet, kazanamadığınız becerileri Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendirmeiniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Akış Kontrol elemanının kontrolünü yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Akış kontrol değerlerini ölçünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Değerlere uygunluğunu kontrol ettiniz mi?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Çalışacağı yüzeye dik olarak yerleştirilmesi zorunlu olan akışölçer aşağıdaki kilerden hangisidir?
   A) Türbinmetre
   B) Rotometre
   C) Anemometre
   D) Ventirimetre

2. Aşağıdakilerden hangisi rotometrenin parçalarından değildir?
   A) Şamandıra
   B) Skala
   C) Direnç
   D) Konik dikey boru

3. Aşağıdakilerden hangisi hız ölçüm metodu ile akış ölçüm aletlerinden değildir?
   A) Pitot boru
   B) Ventürimetre
   C) Rotometre
   D) Orifis

4. Aşağıdakilerden hangisi akışkanın iletken olmasını gerektiren akışöçer çeşididir?
   A) Vorteks
   B) Mass
   C) Kütlese
   D) Elektromanyetik

5. Ultrasonik akışöçerler hangi fiziksel niceliği kullanır?
   A) Hız
   B) Sıcaklık
   C) Basınç
   D) Ses dalgası

6. Boru içine yerleştirilen engel tarafından oluşan dalgacıklar esasına dayalı ölçme yapan cihaz hangisidir?
   A) Vorteks akışöçer
   B) Elektromanyetik akışöçer
   C) Ultrasonik akışöçer
   D) Mass
7. Yanıcı ve patlayıcı kimyasalların ölçülmesinde hangi akış ölçer kullanılır?
   A) Ultrasonik akış ölçer
   B) Elektromanyetik akış ölçer
   C) Mass akış ölçer
   D) Vorteks akış ölçer

8. Akışkanın yoğunluğu basıncı ve sıcaklığından etkilemeden ölçüm yapan akış ölçer nedir?
   A) Mass akış ölçer
   B) Vorteks akış ölçer
   C) Ultrasonik akış ölçer
   D) Elektromanyetik akış ölçer

Aşağıdaki cümlelerin başında boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

9. (...) Akış (debi), belirli bir kesitten, belirli bir sürede geçen akışkan miktarıdır.
10. (...) Pervaneli sayaçlarda debi ne kadar fazla ise pervanelerin, dolayısı ile milin dönüş sayısı o kadar azdır.
11. (...) Ventüri tipi akış ölçme cihazları, yoğunluğa ve viskozite dalgalanmalara karşı duyarlıdır.
12. (...) Orifis plakası, plakanın iki taraf arasında basınç farkına neden olur.
13. (...) Akış memeli (akış nozulu) akış ölçerler ventüri akış ölçerlerle aynı prensibe göre çalışır.
14. (...) Akış nozulu (memesi) yüksek sıcaklıklıktaki buhar akışı gibi türbülansın oldukça büyük olduğu (Reynolds sayısı 100 000 üstünde) durumda kullanılan yüksek hızlı bir akış ölçme cihazıdır.
15. (...) Rotometreler gaz ve sıvı akış ölçümleri için kullanılmaktadır.

DEĞERLENDİRME

AMAÇ

Gerekli ortam sağlandığında sistemde bulunan maddenin seviye kontrolünü yapabileceksiniz.

ARAŞTIRMA

- Çevrenizdeki kimyasal üretim yapan tesislere giderek nasıl seviye ölçümü yapıldığını araştırınız.
- Seviyeölçerlerin çeşitlerini ve kullanım alanlarını araştırınız.

2. SEVİYE KONTROLÜ

Seviye ölçümü yapmak aslında ölçülecek nesnenin miktarını öğrenmektir. Proses kontrol amacıyla üretimde takip edilen dört ana değişkenden birisi de seviyedir. Özellikle sıvılarında miktar ölçümü hacim olarak yapılır. Hacim ölçümü ise sıvıların bulunduğu kapların fiziksel boyutları ile hesaplanabilmektedir. Taban alanı belli olan bir su kulesinde suyun yüksekliğini doğru olarak ölçebilir ve suyun miktarını bulabilirsiniz. İşte bu nedenlerden dolayı seviye ölçümü; sıvı miktarlarının ölçülmesinde, tanecikli katların miktarlarının ölçülmesinde oldukça önemlidir.

Seviye ölçümü uygulamaları, endüstride çok önemli bir yere sahiptir. Uygun seviye ölçüm yöntemlerinin belirlenmesi kritiktir. Zira her yöntem her uygulamada kullanılmaz. Seviye ölçüm yöntemi, seviyesi ölçulen maddenin cinsi ve sıcaklığı, tankın basınçlı veya atmosfere açık olması, tankın boyutları, tankın konumu, istenen hassasiyet değerleri, mekanik veya elektriksel bağlantı koşulları, maliyet beklentisi gibi parametrelerde göre değişiklik gösterebilir.

2.1. Tanımı

Seviye kontrolü maddenin seviyesinin, referans nokta ile istenen seviyede veya istenen seviyeler arasında tutulmasını sağlar. Seviye kontrolü yapacak maddenin seviyesinin değişimi çeşitli yöntemlerle veya algılayıcılarla sürekli olarak ölçülür. Bu ölçülen bilgiler bir sistem veya kontrolörde belirlenmiş programda göre seviye istenenin değerlerde tutulur.
2.2. Seviyeölçerler

Seviye kontrolü uygulamalarında, birçok eski ve geleneksel metot hâlen kullanılıyor olmasına rağmen seviye ölçümüne genel bir bakış açısı oluşturmak ve farklı yöntemler olduğunu bilmek de gereklidir.

Şekil 2.1: Seviyeölçer ve donanımı

Seviye sensörleri iki gruba incelenebilir:

- **Noktasal seviye kontrolünde kullanılan seviye sensörleri:** Seviye sensörleri genellikle temaslı enstrümanlardır ve kabın içerisindeki ürünün belirli bir noktadaki varlığının veya yokluğunun belirlenmesi için kullanılır. Nereye monte edildiklerine bağlı olarak kabin, tankın, deponun dolu, boş veya aradaki bir seviyede oldugunun sinyalini verir. Bu tip seviye sensörlerin bazıları, ultrasonik sensörler, kuru ve katı malzemeler için pedalli seviye sensörleri, kapasitif prolar, iletken prolar, hem sıvı hem katı malzemelerde kullanılan titreşim proları, yatay veya dikey olarak monte edilen tekli veya çoklu şamandıralı seviye sensörleridir.

- **Sürekli tip seviye sensörleri:** Diğer konu başlığında detaylıca anlatılmaktadır.

2.2.1. Sürekli Ölçüm Sağlayan Yöntemler

Temaslı veya temassız enstrümanlardır. Temaslı enstrümanların içerisinde, yük hücreleri, hidrostatik basınç sensörleri, kapasite proları, rölelerin çekiliş bıraktılması prensibi ile çalışan elektromekanik cihazlar, radar ve manyetostrik (mknatıssal büzülme) prensibi ile çalışan cihazlar bulunur. Temassız sürekli seviye sensörleri ise ultrasonik, açık hava radarları, lazerli veya nükleer seviye sensörlerini içermektedir.
2.2.1.1. Gözetleme Geyçleri (Ölçme Aleti)

Saydam borular ile seviye ölçümü yapmak için kullanılan gözetleme geyçlerinden en çok kullanılanı seviye camlardır.

Diğerleri ise yansıtıcı (refleks) cam seviye göstergesi ve transparent tip seviye göstergeleridir.

- **Seviye camları**: En basit seviye ölçme kabıdır. Bileşik kaplar ilkesine göre çalışır. Tank kenarına monte edilen cam borudaki seviye ile tank içerisindeki malzemenin seviyesi aynı olduğundan seviye, tank dışarısından kolaylıkla izlenebilir. Bu yöntemle, sisteme herhangi bir mekanik veya elektronik müdahale olmadan yalnızca görsel olarak seviye kontrolü yapılabilmektedir.


![Resim 2.1: Gözetleme camı seviye göstergesi](image-url)
Şekil 2.2: Seviye camları ve çalışma prensibi

- **Yansıtıcı (refleks) cam seviye göstergesi**: Göstergeler, sıvı ve gaz fazlarında ışığın farklı kırılması neticesi su ve buharın refleks camda farklı parlaklıkta görülmesi esası ile çalışır. Sıvı akışkan ışığın yutulmasından dolayı koyu renk, buhar ise ışığın tekrar yansıması sonucu parlak olarak görülür.

Bu tip seviye göstergelerinin, transparent ve diğer göstergelere göre daha düşük ilk yatırım ve işletme maliyeti vardır. Ancak bu tip seviye göstergelerinde iki sıvı arasındaki ayırma yüzeyi, sıvının renği gözlenemez. Ayrıca yüksek basınçlı buhar uygulamalarında ve camı aşındırabilecek proses akışkanlarında (yüksek sıcaklık alkalin çözeltileri veya hidroklorik asitler gibi) camı korumak için mika kullanımı gerektiğinden refleks cam uygun değildir. Bu uygulamalarda transparent tip seviye göstergeleri kullanılır.

Bu tip göstergeler, sıvı ve gaz fazlarında ışığın farklı kırılması neticesi su ve buharın refleks camda farklı parlaklıkta görülmesi esası ile çalışır. Sıvı akışkan ışığın yutulmasından dolayı koyu renk, buhar ise ışığın tekrar yansıması sonucu parlak olarak görülür.

**Şekil 2.3: Yansıtıcı (refleks) cam seviye göstergesi ve çalışma prensibi**
Şekil 2.4. Yansıtıcı (refleks) cam seviye göstergesi

- **Transparent tip seviye göstergeleri:** Transparent tip seviye göstergeleri, arasında akışkan bulunan birbirine paralel iki düz transparent camdan oluşmaktadır.

  Akışkan seviyesi, iki akışkanın farklı ışık geçirgenliğinin sonucu olarak gösterilir ve buharda ise sıvı ve buhar ayırma yüzeyi gösterge arkasından gelen ışık kaynağı ile eliptik formda görülür. Transparent tip seviye göstergeleri hemen hemen tüm akışkanlar için uygundur. Bu tip seviye göstergelerinde aşındırıcı ortamlarda mika vb. koruyucu kullanılabilir. Sıvı rengi ve iki sıvının ara yüzeyi gözlenebilir. İlk yatırım maliyetleri refleks tiplere oranla daha yüksektir.

2.2.1.2. Şamandıralı Cihazlar

Şamandıralı cihazlar kullanım şekillerine göre farklılıklar gösterir. Üç çeşitte incelenebilir.

- **Şeritli şamandıralı göstergeler**

  Bu tip seviye ölçeçlerde şamandıra bir şerit vasıtasıyla bir makaraya bağlanmıştır. Bu makara sağa sola döndükçe üzerine tespit edilmiş ibreyi de hareket ettirir. İbrenin hareket ettiği miktar bir skala boyunca seviye karşılığı olarak ölçümlendirilmiştir.

  Makaranın bir yere takılması ya da yükselen seviyeye rağmen dönüş yapmaması, şamandıra ile makara arasındaki ipin gergin olmaması gibi durumlar yanlış değer okunmasına neden olur. Bu sebeple şeridin boşta kalan ucuna bir denge ağırlığı bağlıdır. Bu denge ağırlığı şeridin gerginliğini ve makaranın dönenmesi için gerekli baskı sağlar.
Şamandıra, tank içindeki sıvının çeşitli nedenlerle dalgalandığı ve tank çeperine doğru sağa sola sürüklenebilir. Bu durumda şeridin okunan uzunluğu gerçek değerden fazla olacaktır. Tank içindeki sıvının seviyesi olduğundan daha düşük ölçülen. Bunu önlemek için şamandıranın dik hareket etmesini sağlayan kılavuz teller kullanılır.

Bu tür seviye ölçerlerde karşılaşılabilecek sorunlar şunlardır:

- Makaranın veya şeriden bir yere takılması
- Kılavuz tellerin kopması
- Şamandıranın sıvıyla dolu olduğu için sıvı ile dolması
- Şamandıranın korozyona uğraması

Şekil 2.5: Şeritli şamandıralı seviyeölçer

Kollu şamandıralı göstergeler

2.2.1.3. Kapasitans Sondalar


Şekil 2.6: Kollu şamandıralı göstergeler

Şekil 2.7: Kondansatör

**Şekil 2.8: Kondansatör ile seviye ölçümü**

### 2.2.1.4. Basınç Algılayıcılar


Suyun yoğunluğu 1 g/cm³'tür. 1,0 m yüksekliğindeki su tabanına 0,1 kg/cm²lik bir basınç uygular. Ancak yoğunluğu 13,6 g/cm³ olan cıva ise 1,0 m’lik yükseklikte 1,36 kg/cm²lik basınç uygular.

Tankın tabanına bir basınç ölçer bir değer verir. Ölçülen basınç değeri sıvının yoğunluğuna bölündüğünde tank içindeki seviye bulunmuş olur.

\[
L = \frac{P}{d}
\]

L: Seviye
P: Ölçülen basınç değeri
D: Sıvının yoğunluğu
Örnek: İçerisinde su (\(d=1\ g/\ cm^3\)) bulunan bir tankın tabanındaki basınç 0,4 kg/cm\(^2\) olarak bulunmuştur. Tank içindeki su seviyesini bulunuz.

Çözüm:
\[P = 0.4\ \text{kg/cm}^2 = 400\ \text{g/cm}^2\]
\[D = 1\ \text{g/cm}^3\]

\[L = \frac{P}{d} = \frac{400}{1} = 400\ \text{cm} = 4\ \text{m}\]

Şekil 2.9: Basınç yardımcıyla seviyenin bulunması

2.2.1.5. Mikrodalga Algılayıcılar


Avantajları

- Aşırı toz, gürültü veya çok buharlı ortamlarda ve zorlu proses koşulları altında bile çalıştırılması ölçüm doğruluğunu etkilemez.
- Yoğunluk değişiklikleri, farklı granül boyutları veya akışkanlık derecesi doğruluğu etkilemez.
- Kuru çakıl taşlarından ıslak taşlara kadar olan değişik ürünler bile ölçüm için herhangi bir sorun teşkil etmez.
- Prob üzerindeki veya tank duvarındaki ürün birikimleri ve yapısmalar ölçüm sonuçlarını etkilememektedir.
2.2.1.6. Ultrasonik Algılayıcılar


Tankın üstüne yerleştirilen transdüser içerisindeki piezoelektrik kristal, elektriksek sinyalleri belirli bir frekans ve sabit hızla ortam içerisinde dalgasal olarak hareket eden ses enerjisine dönüştürür. Ses dalgaları yayılır ve eko olarak transdüşere (Transdüser, bir enerji biçimini başka enerji biçimlerine dönüştüren cihazdır.) geri döner. Sıvı yüzeyine gönderilen ultrasonik dalganın sıvı yüzeyine ulaşması ve yüzeyden yansııp detektöre ulaşması belli bir zaman alır.

Cihaz, basitçe dalganın yayılmaya başlamasıyla, yüzeyden yansıyarak geri dönen süreyi ölçer. Bu süre, transdüser ile seviyesi ölçmek istenen malzemenin yüzeyi arasındaki uzaklıkta doğru orantılıdır ve malzemenin seviyesinin ölçülebilmesi için kullanılabilir.

Şekil 2.10: Ultrasonik algılayıcılar ve prensibi

Şekilde bir ultrasonik seviye algılama sisteminin basitleştirilmiş blok seması görülmektedir. Çalışma sırasında, iletilen ultrasonik işaret transdüser yüzünden sabit bir uzaklıkta bulunan bir referans yansıma ucundan yansıtılar ve transdüser yüzüne dönüşünde bir elektriksel işaret dönüştürülmür.
Şekil 2.11: Ultrasonik seviye algılayıcının blok şeması

Ultrasonik seviye algılayıcıları eko kaydetme ilkesine benzer tek sensörlü sistemlerle sınırlı değildir. Daha kullanışlı sistemlerde belirli bir aralıka yerleştirilmiş verici ve alıcı bulunmaktadır.


Şekil 2.12: Ultrasonik çift sensör

Bu özel sensör kahin, viskoz, köpüklü sıvılar ve yüksek sıcaklıklardaki sıvılarla çalışmak için çok iyi bir seçimidir. Çıktı işaretinin enerji kazandığında röleler seviye göstergeleri, kaydedicileri, denetim aygıtları, pompalar ve diğer seviye bilgisi işleme donanımını çalıştırıcak için elektriksel işaret sağlar.
Basit eko aygıtlarının tersine, ultrasonik sistemler genellikle sensör yüzünde sıvı birikmesinden, yapışkan damlacıklardan, köpük, buhar ve viskozite değişimlerinden etkilenmez. Ultrasonik aygıtların çoğu sıcaklık ve basınç için otomatik kompanzasyona sahiptir.

Ultrasonik seviye ölçümlerinde, sesin havada yayılma hızı da bilindiğine göre sıvı seviyesi şu şekilde bulunabilir.

\[ L = h - \left( \frac{t}{2} \times V \right) \]

L: Tankın içindeki sıvı seviyesi  
h: Tank yüksekliği (metre)  
T: Zaman (saniye)  
V: Sesin havada hızı (340 m/sn.)

**Örnek:** 10 m yüksekliğindeki bir sıvı tankında ultrasonik metot ile seviye ölçümü yapılmaktadır. Ölçüm sonucunda ses dalgasının gidiş-dönüş süresi 0,02 sn. olarak ölçülmuştur. Tank içindeki sıvı seviyesini bulunuz.

**Çözüm:**

\[
L = 10 - (0,02 / 2 \times 340) \\
L = 10 - 3,4 \\
L = 6,6 \text{ m olarak bulunur.}
\]

2.2.2. Kısa Aralıklı Algılama Veren (Ölçüm Sağlayan) Yöntemler

Kısa aralıklı algılama veren seviye ölçerleri çalışma prensiplerine göre aşağıdaki şekilde sınıflandırılabilir:

- Manyetik yöntemler
- Elektrikli yöntemler
- Kızılötesi ışınlı yöntemler
- Radyo frekanslı yöntemler

2.2.2.1. Manyetik Yöntemler

Temel olarak sıvının kaldırma kuvvetinin kullanılacağı görüntüyü ölçüm yöntemidir. Birleşik kaplar presibi gereği, tank ile manyetik seviye göstergesi içerisindeki sıvı seviyeleri aynıdır.

Göstere gövdesi içine yerleştirilen ve her sıvının yoğunluğuna bağlı olarak kaldırma kuvvetine göre tasarlanan şamandıranın içerisindeki mıknatıs, ana gövdenin dış yüzeyine yerleştirilmiş göstere içerisindeki mıknatıs istıvada eden sezgi elemanlarını etkiler ve seviyenin yükselmesi veya alçalmasi sırasında sezgi elemanlarının sıra ile dönüşmesini sağlar. Sezgi elemanlarının farklı renklerde olan iki yüzü sayesinde de seviye bilgisi tank dışarısından kolaylıkla izlenebilir.
Gövdenin üzerine yerleştirilen sıralı reed röleler yardımcıla sürekli seviye bilgisi analog sinyale dönüştürülebilirken yine gövde üzerine istenen noktalara yerleştirilecek reed kontaklar sayesinde noktasal seviye kontrolü de yapılabilmektedir.

**Şekil 2.13: Manyetik seviye ölçümü**

Manyetik seviye göstergeleri tank, kazan ve depoların yan ve üst yüzeylerine monte edilir. Seviyeyi kolaylıkla ve yüksek doğrulukla görme imkanı vardır. Yüksek basınçlı tanklarda ve kazanlarda seviye ölçümü uygulanabilecek en ekonomik ve sık rastlanan yöntemlerden biridir. Ekonomik oluşu, bakım ve montaj kolaylığı ve değişik montaj şekilleriyle kullanıcısına avantaj sağlar.

### 2.2.2.2. Elektrikli Yöntemler

Ölçüm sırasında elektrik sinyali kullanılarak ölçme işlemi gerçekleştirilen yöntemdir. Elektrişel yöntemle ölçme işlemi yapan algılayıcı tipleri aşağıda anlatılmıştır:

- **İletkenlik tip seviye şalterleri:** Temel olarak düşük voltaj kaynağı ile (genellikle < 20 V) elektrik akımını iletebilen malzemelerin iletkenliğinden yararlanlarak seviye ölçümü yapılır.

  Yani bu cihazla elektriği iletebilen sıvıların seviyeleri ölçülebilir. İki elektrot kullanılır. Elktrotlardan biri sıvının sürekli içinde durur. Diğer elektrot ise bir üst seviyeye ulaşıldığında sıvının içinde, bir alt seviyeye ulaşıldığında sıvının dışında kalacak şekilde yerleşirilir.

  İletken sıvının bu iki elektrot arasında iletkenliği sağlaması veya kesmesine göre sinyal alınır. Sürekli sinyal sağlayamaz. Alt ve üst seviyeler arasında kontrol amacıyla kullanılır. İletken ve iletken ollayan iki sıvının ara yüzeyinin seviyesinin tespitinde de kullanılabılır.
**Isıl kütle:** Bu cihazlar, ısının sıvı içerisinde yayılımı ile havadaki yayılımını karşılaştırarak sıvının varlığını veya yokluğunu belirler. Sensör, termistor formu ile bir direnç ihtiva eder.

Termistör, kendisine gerilim uygulandığında ısıtıcı gibi davranır ve aynı zamanda ısıyı algılar ve elektrik sinyaline dönüştürür. Termistör tarafından yaratılan ısı, sıvı içinde yayıldığı anda switch çıkışı elde edilir.

**Endüktif tip seviye şalterleri:** Bu yöntemde manyetik alan geçirgenliği (permabilite) ölçülür. Laboratuvar çalışmaları dışında pek görülmez. Tank empedansının değişimini izlemek için pek pratik değildir, büyük miktarlarda enerji gerektirir. Öte yandan, tankın oluşturduğu çalışma frekansının (rezonans frekansı) değişimi ile de en azından şalter olarak ölçüm yapmak mümkündür. Metal detektörlerinin de çalışma prensibi budur. Ancak seviye ölçümünde uygulanabilirliği zayıftır.

2.2.2.3. **Kızılötesi Işın Yöntemleri**


![Şekil 2.14: Kızıl ötesi seviyeölçer](image_url)

Tank içindeki korrozif sıvıya hiçbir şey temas ettirmeden sıvı seviyesi ölçülebilir. Tank içindeki sıvı berrak ve ışığın geçmesine uygunsu ışık kaynağından çıkan işıklar detektör tarafından algılanıp ölçülebilir. Tankın içindeki sıvı seviyesi artıkça tankın
tepesindeki detektöre daha az ışık gelir. Buna karşılık detektörün tespit edebildiği ışık miktarındaki artış, tanktaki sıvı seviyesinin azaldığını gösterir.


2.2.2.4. Radyo Frekanslı Yöntemler

X ve δ ışınları gibi radyasyon kaynaklarından yayılan çok yüksek dalga boylu ışınlar bulanık ve ışık geçirmez sıvılardan da geçebilir. O hâlde bu tür ışınlar kullanılarak normal ışınların geçemeyeceği sıvıların da seviyeleri ölçülebilir.

Yalnız X ve δ ışınları doğru ve dikkatli kullanılmadığında çok tehlkilidir. Personel bu konuda çalışmaya başlamadan önce çok dikkatli bir biçimde eğitilmelidir. Çalışma sırasında da radyasyondan korunmak için radyasyon kaynağı çok iyi siperlenmelidir.

Bu yöntemde de ışının ne kadarının radyasyon kaynağından detektöre ulaştığı ölçülür. Detektöre ulaşan ışın miktarı ne kadar fazla ise tank içindeki sıvı miktarı o kadar düşüktür. Ayni şekilde ölçülen ışın miktarındaki azalma sıvı seviyesinin yükseldiğini gösterir. ışının ne kadarının radyasyon kaynağından detektöre ulaştığı ölçülür.

Detektöre ulaşan ışın miktarı ne kadar fazla ise tank içindeki sıvı miktarı o kadar düşüktür. Ayni şekilde ölçülen ışın miktarındaki azalma sıvı seviyesinin yükseldiğini gösterir.
Size verilen proesteki seviye kontrolünü yapınız.

**Kullanılan araç gereçler:** Seviyeölçer, ölçüm cihazı

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Seviye kontrol elemanını kontrol ediniz.</td>
<td>➢ Çalışma önlüğünü giyiniz.</td>
</tr>
<tr>
<td>➢ Seviye değerini ölçünüz.</td>
<td>➢ Çalışma ortamınızı hazırlayınız.</td>
</tr>
<tr>
<td>➢ Değerlere uygunluğunu kontrol ediniz.</td>
<td>➢ Kullandığınız araç gereçlerin temizlikine dikkat ediniz.</td>
</tr>
<tr>
<td>➢ Seviyeölçer kullanım kurallarına uyunuz.</td>
<td>➢ Seviyeölçer kullanım kurallarına uyunuz.</td>
</tr>
<tr>
<td>➢ Talimattaki değer ile kontrol ediniz.</td>
<td></td>
</tr>
</tbody>
</table>
**KONTROL LİSTESİ**

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri Evet, kazanamadığınız becerileri Hayır kutucuğuna (X) işaretli koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Seviye kontrol elemanını kontrol ettiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Seviye değerini ölçünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Değerlere uygunluğunu kontrol ettiniz mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**DEĞERLENDİRME**

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Aşağıdakilerden hangisi seviye ölçümünde, görecək seviye ölçme araçlarından biridir?
   A) Ultrasonik  
   B) Saydam borulu  
   C) Radar  
   D) Diyaframlı

2. Aşağıdakilerden hangisi elektriksel seviye ölçüm yöntemi değildir?
   A) Kapasitif  
   B) Endüktif  
   C) Titreşimli  
   D) Saydam borulu

3. Aşağıdakilerden hangisi ses dalgası ile seviye ölçümü yöntemi kullanılan transdüserdir?
   A) Titreşimli  
   B) Ultrasonik  
   C) Kapasitif  
   D) Endüktif

Aşağıdaki cümlelerin başında boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

4. (...) Seviye kontrolü maddenin seviyesinin, referans nokta ile istenilen seviyede veya istenen seviyeler arasında tutulmasıdır.
5. (...) Seviye camları en basit seviye ölçme kabıdır. Bileşik kaplar ilkesine göre çalışır.
6. (...) Kondansatörün kapasitesi, iletkenin alanı ve birbirlerine olan uzaklıklarından başka, aradaki sıvının dielektrik katsayısına bağlı değildir.
7. (...) “Ultrasonik” insan kulağının duyabildiği frekansta yer alan sesin hemen üstünde bulunan düşük frekanslardaki sese verilen isimdir.
8. (...) Manyetik yöntemler temel olarak sıvının kaldırma kuvvetinin kullanıldığı görülüllü ölçüm yöntemidir.

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Sonsuz küçük bir zorlama etkisinde dahi hiç direnç göstermeden akış eylemine geçen akışkan ortamlar aşağıdaki seçeneklerden hangisinde doğru olarak verilmiştir?
   A) Viskozite
   B) Debi
   C) İdeal akışkan
   D) Akış

2. Aşağıdaki seçeneklerden hangisinde akış ölçümünde akışkanın birim zamanda akan hacimsel miktaranın ölçümü değildir?
   A) Litret/sn.
   B) m/sn.
   C) ft³/sn.
   D) m³/sa.

3. Aşağıdaki seçeneklerden hangisinde türbinli akışölçerlerde bulunan parçalardan biri değildir?
   A) Rotor
   B) Sinyal alıcı bobin
   C) Rotor rulmanları
   D) Diyafram

4. Aşağıdakilerden hangisi akış ölçümü için belirlenmesi gereken fiziksel büyüklüklerden biri değildir?
   A) Kuvvet
   B) Hacimsel debi
   C) Kütesel debi
   D) Hız

5. Ses dalgaları ile borudaki akışkanın hızı aşağıdakilerden hangisi ile ölçülür?
   A) Rotametre
   B) Orifis
   C) Pitot boru
   D) Ultrasonik akışölçer

6. Orifis levha hangi tür akışkanın ölçümünde kullanılmaz?
   A) Su
   B) Buhar
   C) Kum
   D) Doğal gaz
7. Aşağıdakilerden hangisi venture tüpünün istenmeyen özelliklerinden biridir?  
   A) Hareketli parçası yok.  
   B) Basınç düşüşü  
   C) Katı güvenliği  
   D) Kareköklü basınç-hız ilişkisi

8. Aşağıdakilerden hangisi akışkanın iletken olmasını gerektiren akışölçer çeşididir?  
   A) Vorteks  
   B) Mass  
   C) KütleSEL  
   D) Elektromanyetik

9. Boru içine yerleştirilen engel tarafından oluşan dalgacıklar esasına dayalı ölçme yapan cihaz hangisidir?  
   A) Vorteks akışölçer  
   B) Elektromanyetik akışölçer  
   C) Ultrasonik akışölçer  
   D) Mass

10. Aşağıdakilerden hangisi noktası seviye kontrolünde kullanılan seviye sensörlerinden biri değildir?  
    A) Nükleer seviye sensörleri  
    B) Kapasitif problar  
    C) Şamandıralı seviyeölçer  
    D) Ultrasonik sensörler,

DEĞERLENDİRME
### ÖĞRENME FAALİYETİ-1’İN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
</tr>
<tr>
<td>9</td>
<td>DOĞRU</td>
</tr>
<tr>
<td>10</td>
<td>YANLIŞ</td>
</tr>
<tr>
<td>11</td>
<td>YANLIŞ</td>
</tr>
<tr>
<td>12</td>
<td>DOĞRU</td>
</tr>
<tr>
<td>13</td>
<td>YANLIŞ</td>
</tr>
<tr>
<td>14</td>
<td>YANLIŞ</td>
</tr>
<tr>
<td>15</td>
<td>DOĞRU</td>
</tr>
</tbody>
</table>

### ÖĞRENME FAALİYETİ-2’NİN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>DOĞRU</td>
</tr>
<tr>
<td>5</td>
<td>DOĞRU</td>
</tr>
<tr>
<td>6</td>
<td>YANLIŞ</td>
</tr>
<tr>
<td>7</td>
<td>YANLIŞ</td>
</tr>
<tr>
<td>8</td>
<td>DOĞRU</td>
</tr>
</tbody>
</table>

### MODÜL DEĞERLENDİRME’NİN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
</tr>
</tbody>
</table>
KAYNAKÇA