GIDA TEKNOLOJİSİ

GIDALARDADA ENSTRÜMENTAL
ANALİZLER 1
541GI0058

Ankara, 2011
• Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

• Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.

• PARA İLE SATILMAZ.
İÇİNDEKİLER

AÇIKLAMALAR ... ii
GİRİŞ .. 1
ÖĞRENME FAALİYETİ–1 ... 3
1. ENSTRÜMENTAL ANALİZLERDE ÖN HAZIRLIK .. 3
 1.1. Gıdalarda Yapılan Enstrümental Analizler .. 3
 1.2. Enstrümental analizlerde ön hazırlıklar .. 7
UYGULAMA FAALİYETİ ... 9
ÖLÇME VE DEĞERLENDİRME .. 15
ÖLÇME SORULARI ... 15
ÖĞRENME FAALİYETİ–2 ... 17
2. SPEKTROSKOPİ .. 17
 2.1. Spektroskopı ile İlgili Terimler ... 17
 2.2. Spektroskopik Yöntemler .. 21
 2.3. Ultraviyole (UV) ve Görünür Bölge Moleküler Absorpsiyon Spektroskopisi 21
 2.3.1. UV ve Görünür Bölge Absorpsiyon Spektrofotometreleri 24
UYGULAMA FAALİYETİ .. 30
ÖLÇME VE DEĞERLENDİRME .. 34
ÖĞRENME FAALİYETİ–3 ... 37
3. REFRAKTOMETRİ ... 37
 3.1. Refraktometrinin İkilesi ... 37
 3.2. Refraktometre ve Çeşitleri ... 40
 3.2.1. Abbe Refraktometresi .. 40
 3.2.2. El Refraktometreleri ... 43
 3.3. Refraktometrik Analizler .. 46
 3.3.1. Nitel Analizler .. 46
 3.3.2. Nicel analizler ... 47
 3.4. Refraktometrik Analizlerde Numunenin (Örnek) Hazırlanması 48
 3.5. Okuma Yapma ve Sıcaklık Düzeltmesi ... 48
 3.6. Refraktometrik Gıda Analizleri .. 49
 3.6.1. Zeytin Yağında, Bitkisel Sıvı Yağlarda Kırılma İndisi Tayini 49
 3.6.2. Meyve ve Sebze Mamulleri, Bal, Gazozda Suda Çözünebilen Kuru Madde
 Tayını ... 50
UYGULAMA FAALİYETİ ... 52
ÖLÇME VE DEĞERLENDİRME .. 56
MODÜL DEĞERLENDİRME ... 59
CEVAP ANAHTARLARI ... 63
KAYNAKÇA ... 64
<table>
<thead>
<tr>
<th>MODÜLÜN KODU</th>
<th>541GI0058</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAN</td>
<td>Gıda Teknolojisi</td>
</tr>
<tr>
<td>DAL / MESLEK</td>
<td>Gıda Kontrol / Gıda Laboratuvar Teknisyeni</td>
</tr>
<tr>
<td>MODÜLÜN ADI</td>
<td>Gıdalarda Enstrümental Analizler 1</td>
</tr>
<tr>
<td>MODÜLÜN TANIMI</td>
<td>Enstrümental analizlere ön hazırlık ve spekrofotometre, refraktometre kullanarak gıdalarda enstrümental analiz yapma yetenekinin kazandırıldığı öğrenme materyalidir.</td>
</tr>
<tr>
<td>SÜRE</td>
<td>40/32</td>
</tr>
<tr>
<td>YETERLİK</td>
<td>Enstrümental analizleri yapmak.</td>
</tr>
</tbody>
</table>

MODÜLÜN AMACI

Genel Amaç
Anализ metoduna uygun olarak enstrümental analizlere ön hazırlıklar ile spekrofotometre ve refraktometre kullanarak gıda analizleri yapabileceksiniz.

Amaçlar
1. Enstrümental analizlerin ön hazırlığını yapabileceksiniz.
2. Spekrofotometre ile gıdalarda analiz yapabileceksiniz.
3. Refraktometre ile gıdalarda analiz yapabileceksiniz.

EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI
Kimya laboratuvarında; genel laboratuvar araç - gereçleri, blender, spekrofotometre (UV), standart çözelti kiti, el refraktometresi, kağıt, kalem, cam yazar kalem, temizlik malzemeleri.

ÖLÇME VE DEĞERLENDİRME
Modülüne içinde yer alan her faaliyetten sonra, verilen ölçme araçları ile kazandığınız bilgi ve becerileri ölçerek kendi kendini değerlendirileceksiniz.
Modül sonunda ise kazandığınız bilgi, beceri ve tavırları ölçmek amacıyla öğretmen tarafından hazırlanacak yazılı ve uygulamalı ölçme araçları ile değerlendirileceksiniz.
Sevgili Öğrenci,

İşlenmiş gıdaların besin değerleri ile fonksiyonel özelliklerinin etiketlenmesinin giderek yaygınlaşması ve üretimde her basamağın etkisinin tayini için birçok örnekte hızlı şekilde, otomatik olarak tayin etme zorunluluğu enstrümental analizlerin kullanılmasını gerektirdiğini ortaya koymaktadır.

Enstrümental analiz yöntemleri hızlı bir gelişim göstermekte, her geçen gün yeni yöntemler uygulanmaya katılmaktaktır ve eski yöntemlerde geliştirilmektedir. Bu yöntemde kullanılan cihazların duyarlıklarını ve seçicilikleri de teknolojik gelişmeye paralel olarak artmaktadır.

Enstrümental analiz metotları, örneği oluşturan bileşenlerin verdiği sinyalleri değerlendirmeye prensibine bağlı olduğundan, bu metotların anlaşılması kolay olmamakla birlikte tecrübe, istek, sabır ve bilgi birikimi gerektirmektedir.

Bu modülde; gıda analizlerinde en çok kullanılan spektrofotometre(UV), el refraktometresi kullanımını ile bu cihazlarla gıdalarla analiz uygulamalarına yer verilmiştir.

Bu modülü başarıyla tamamladığınızda çeşitli gıda maddelerinde bu iki cihaz kullanarak enstrümental analizleri yapabileceksiniz.
AMAÇ

Bu öğrenme faaliyeti sonunda uygun ortam sağladığından analiz metoduna uygun olarak enstrümental analizlerin ön hazırlığını yapabileceksiniz.

ARAŞTIRMA

Çevrenizde bulunan gıda işletmelerinde ve laboratuvarlarında,

- Enstrümental analizler için yapılan ön hazırlıklar nelerdir, araştırınız.
- Araştırmalarınızı sınaş arkaadalılarımıza paylaşınız.

1. ENSTRÜMENTAL ANALİZLERDE ÖN HAZIRLIK

1.1. Gıdalarda Yapılan Enstrümental Analizler

Enstrümental analiz metotlarının klasik analiz metotlarına göre avantajları şunlardır:

- Enstrümental analiz metotları, çok düşük konsantrasyonlarda bile iyi sonuç vermektedir. Klasik analiz metotlarında bu kadar düşük konsantrasyonlar tayin edilemezler.
- Enstrümental analiz metotları, klasik metotlardan daha hızlıdır ve kısa sürede sonuçlar alınabilir.
- Enstrümental amaçla kullanılan bir cihaza mikrobilgisayar bağlanarak, analiz sonuçları otomatik olarak kaydedilebilir. Kısacası enstrümental analiz metotları otomasyona uygundur.

Enstrümental analiz metotlarının klasik analiz metotlarına göre dezavantajları şunlardır:
Enstrümental analizde kullanılan cihazlar laboratuvara özel bir yer isteyen, pahalı ve bakıma ihtiyaç gösteren cihazlardır.

Enstrümental analizde elde edilen sinyallerin değerlendirilmesi iyi yetişmiş insan gücüne ihtiyaç gösterirken klasik analizde ise buna gerek duyulmaz.

Enstrümental metotların öğretilmesi ve öğrenilmesi güç iken klasik analizinki kolaydır.

Enstrümental analizler, konsantrasyonları yüksek olan maddelerde uygulanamazken klasik metotlar çok kolay uygulanır.

Enstrümental metotlarda cihazlar kullanmadan önce kalibre edilmek için standart maddelerle ihtiyaç duyulurken klasik analizlerde böyle bir işleme gerek yoktur.

Zamanında kullanılmayan pek çok analiz enstrümental analizle yapılmaktadır ve nerdeyse, maddenin her fiziksel özelliği üzerine bir enstrümental analiz metodunu geliştirmiştir. Örneğin, maddesin enerjisinin absorpsiyonu absorptimetre, floresans özelliği gösteren spektrofluorimetri, renkliyse spektrofotometri, elektrik akımı geçiren kondüktometri vs. metotlar ortaya konmuştur. Bunlarla ilgili geniş bilgi Tablo 1.1'de verilmiştir. Tabloda fiziksel özellik yerine sinyal kullanılmasının nedeni kullanılan cihazın kalitatif veya kantitatif olarak belirtilmek istenen özelliğin bir sinyal olarak vermesidir. Bu sinyaller bu konuda bilgili kişiler tarafından incelemeler son sonu madde hakkında yeterli bilgi elde edilir.

<table>
<thead>
<tr>
<th>SİNYAL</th>
<th>ENSTRÜMENTAL ANALİZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Işın absorplanması</td>
<td>Fotometri ve spektrofotometri (UV, görünür, IR) nükleer magnetik rezonans, elektron spin rezonans fotoakustik spektroskopi</td>
</tr>
<tr>
<td>Işın saçılması</td>
<td>Raman spektroskopisi, türbitimetre, nefelometri</td>
</tr>
<tr>
<td>Işın emisyonu</td>
<td>Emisyon spektroskopisi (UV, görünür, X –ışını elektron, Auger), lüminesans (UV, görünür, X –ışını) Refrakтометри, interferометри</td>
</tr>
<tr>
<td>Polarize Işın düzlemini değişirme</td>
<td>Polarimетri, optik rotarı dispersiyon</td>
</tr>
<tr>
<td>Elektrik akımı</td>
<td>Amperometri, polarografi</td>
</tr>
<tr>
<td>Elektrik yükü</td>
<td>Kulometri</td>
</tr>
<tr>
<td>Elektrik direnci</td>
<td>Kondüktometri</td>
</tr>
<tr>
<td>Elektrik potansiyeli</td>
<td>Potansiyometri</td>
</tr>
<tr>
<td>Reaksiyon hızı</td>
<td>Kinetik metotlar</td>
</tr>
<tr>
<td>Termal özellikleri</td>
<td>Termal iletkenlik, entalpi metotları</td>
</tr>
<tr>
<td>Radyoaktivite</td>
<td>Aktivasyon ve izotop seyreltme metotları</td>
</tr>
<tr>
<td>Kütleinin yüke oranı</td>
<td>Kütle spektroskopisi</td>
</tr>
</tbody>
</table>

Tablo 1.1: Enstrümental metotlar ve dayandıkları sinyaller
Günümüzde enstrümental analiz yöntemleri birçok alanda olduğu gibi gıda kontrolünde ve gıda araştırmalarında çok önemli bir yer tutmaktadır. Her geçen gün yeni enstrümental analiz yöntemleri uygulamaya katılmakta, eski yöntemler ise geliştirilmektedir. Teknolojik gelişme paralel olarak cihazların duyarlılıkları ve seçicilikleri de artmaktadır.

Enstrümental analizler metotları, örneği oluşturan bileşenlerin verdiği sinyalleri değerlendirmesi prensibine bağlı olduğundan bu metotların anlaşılması kolay değildir. İstek, sabır, bilgi ve tecrübe birikimi gerektirdiği asla unutulmamalıdır.

Enstrümental gıda analiz metotları şu şekilde gruplandırılır:

- **Spektroskopi**
 - Moleküler Spektroskopi
 - Atomik Spektroskopi
 - Polarimetri
- **Refraktometri**
- **Kromatografi**
 - Sıvı Kromatografi
 - Gaz Kromatografi
 - Yüksek Performans Sıvı Kromatografi (HPLC)
 - Kağıt Kromatografi
- **Potansiyometri**

Gıda analizlerinde enstrümental analiz yöntemlerinden fotometrik analiz yöntemleri tercih edilir. Çözeltilerin ışığı absorbe (soğurma) etme, ışığı çevrme veya kırmak gibi özelliklerinin ölçülmesi esasına dayanan yöntemler **fotometrik yöntemler** denir.

Bu analiz yöntemlerinde şunlar yapılır:

- Analiz edilecek örnek çözelti haline getirildikten sonra üzerine belli bir kimyasal ilave edilir.
- Böylece elde edilen sistemin ışığı absorbe etme, ışığı çevirme veya ışığı kırmak dereceleri ölçülür.
- Ölçüm değerleri aynı koşullarda hazırlanmış ve içerisinde belli miktarda madde bulunan bir standart seri ile karşılaştırılarak sonuca gidilir.

Fotometrik analiz yöntemlerinin en büyük avantajı seri çalışmaya ve çok az madde miktarlarının bile belirlenmesine imkan sağlamasıdır.
Başlıca fotometrik analiz yöntemleri şunlardır:
- Spektrofotometri
- Kolorimetri
- Refraktometri
- Türbidometri
- Fluorometri

Bu enstrümental analiz metotlarından gıda analizlerinde en çok kullanılan spekroskopi, refraktometri, polarimetri, kağıt kromatografisi ve potansiyometri ile ilgili detaylı bilgiler ilgili modullerin öğrenme faaliyetlerinde verilecektir.

Gıdalarda yapılan enstrümental analizlerden bazıları **Tablo 1.2**’de verilmiştir.

<table>
<thead>
<tr>
<th>ANALİZ</th>
<th>METOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BESİN ETİKETİ ANALİZLERİ</td>
<td></td>
</tr>
<tr>
<td>Nişasta (kantitatif) tayini</td>
<td>Polarimetrik yöntem</td>
</tr>
<tr>
<td>C Vitamini analizi</td>
<td>Spektrofotometrik yöntem</td>
</tr>
<tr>
<td>2. GENEAL ANALİZLERİ</td>
<td></td>
</tr>
<tr>
<td>Briks tayini</td>
<td>Refraktometrik yöntem</td>
</tr>
<tr>
<td>Kirılma indisi</td>
<td>Refraktometrik yöntem</td>
</tr>
<tr>
<td>Suda çözünen madde tayini</td>
<td>Refraktometrik yöntem</td>
</tr>
<tr>
<td>Kirılma indisi tayini</td>
<td>Refraktometrik metot</td>
</tr>
<tr>
<td>pH tayini</td>
<td>Potansiyometrik yöntem</td>
</tr>
<tr>
<td>3. KATKI MADDELERİ VE KONTAMİNANT ANALİZLERİ</td>
<td></td>
</tr>
<tr>
<td>Aflatoksin (B1, B2, G1, G2)</td>
<td>HPLC (Yüksek performans sıvı kromatografisi) yöntemi</td>
</tr>
<tr>
<td>Benzoat tayini</td>
<td>Spektrofotometrik yöntem</td>
</tr>
<tr>
<td>Boya tayini (kalitatif)</td>
<td>Kağıt Kromatografisi</td>
</tr>
<tr>
<td>Nitrit/nitrat tayini</td>
<td>Spektrofotometrik yöntem</td>
</tr>
<tr>
<td>Sorbat tayini</td>
<td>Spektrofotometrik yöntem</td>
</tr>
<tr>
<td>4. YAĞ ANALİZLERİ</td>
<td></td>
</tr>
<tr>
<td>Yağ asitleri kompozisyonu</td>
<td>Gaz Kromatografisi</td>
</tr>
<tr>
<td>UV ışığında özgül soğurma</td>
<td>Spektrofotometrik yöntem</td>
</tr>
<tr>
<td>Yağ asitleri kompozisyonu</td>
<td>Gaz Kromatografisi</td>
</tr>
<tr>
<td>5. SÜT VE SÜT ÜRÜNLERİ ANALİZLERİ</td>
<td></td>
</tr>
<tr>
<td>Glikomakropeptid analizi (PAS analizi)</td>
<td>HPLC (Yüksek performans sıvı kromatografisi) yöntemi</td>
</tr>
<tr>
<td>6. ET VE ET ÜRÜNLERİ ANALİZLERİ</td>
<td></td>
</tr>
<tr>
<td>Hidroksiprolin miktarı</td>
<td>HPLC (Yüksek performans sıvı kromatografisi) yöntemi</td>
</tr>
<tr>
<td>Nitrit/nitrat tayini</td>
<td>Spektrofotometrik yöntem</td>
</tr>
<tr>
<td>7. MEYVE-SEBZE VE ÜRÜNLERİ ANALİZLERİ</td>
<td></td>
</tr>
<tr>
<td>Benzoik asit tayini</td>
<td>Spektrofotometrik yöntem</td>
</tr>
<tr>
<td>Briks tayini</td>
<td>Refraktometrik yöntem</td>
</tr>
<tr>
<td>Hidroksimetil furfural tayini</td>
<td>Spektrofotometrik yöntem</td>
</tr>
<tr>
<td>Laktik asit tayini</td>
<td>Spektrofotometrik yöntem</td>
</tr>
<tr>
<td>Meyve oranı</td>
<td>Spektrofotometrik ve mineral analiz</td>
</tr>
</tbody>
</table>
Prolin tayini | Spektrofotometrik yöntem
Salçada likopen tayini | Spektrofotometrik yöntem
Sirkede yapaylık tayini | Kolorimetrik yöntem
Suda çözünen madde miktarı | Refraktometrik yöntem
Boya maddeleri tayini (kalitatif) | Kağıt Kromatografisi
Fenolik madde profilii | HPLC (Yüksek performanslı kromatografisi) yöntemi

8. TAHIL VE TAHIL ÜRÜNLERİ
Aflatoksin analizi | IAC ile saflaştırma sonrası HPLC (Yüksek performanslı kromatografisi) ile analiz
Nişasta tayini | Polarimetrik yöntem
Lipoksigenaz aktivitesi tayini | Spektrofotometrik yöntem

9. KURU BAKЛАGIL ANALİZLERİ
Izoflavon miktarı | HPLC (Yüksek performanslı kromatografisi) yöntemi
Lipoksigenaz aktivitesi tayini | Spektrofotometrik yöntem

10. ŞEKERLİ/ÇİKOLATALİ ÜRÜNLER ANALİZLERİ
Boya tayini (kalitatif) | Kağıt Kromatografisi
Diyastaz tayini | Kolorimetrik yöntem
Hidroksimetil furfural tayini | Spektrofotometrik yöntem
Nişasta miktarı | Polarimetrik yöntem
Şeker kompozisyonu analizi | HPLC (Yüksek performanslı kromatografisi) yöntemi

11. ÇAY ANALİZLERİ
Boya tayini (kalitatif) | Kağıt Kromatografisi
Antioksidan aktivitesi tayini | Spektrofotometrik yöntem
Fenolik madde profilii | HPLC (Yüksek performanslı kromatografisi) yöntemi

Tablo 1.2: Gıdalarda yapılan enstrümental analizlere örnek

1.2. Enstrümental analizlerde ön hazırlıklar

Yapılacak enstrümental analiz metoduna göre öncelikle ön hazırlıkların yapılması gerekir.

Bu analiz yöntemlerinde analiz edilecek örnek çözelti haline getirilmelidir. Bunun için örneklerin analiz yöntemlerinde belirtildiği şekilde çözeltiler ve kimyasal maddeler hazırlananlıdır.

Daha sonra bu örneğe ölçüm yapmadan önce ilave edilecek kimyasal maddeler analiz yönteminde belirtilen şekilde hazırlanmalıdır.

Analiz öncesi sistemın ısıtı absorbe etme, ısıtı çevrme veya ısıtı kırma dereceleri ölçümü için cihazlar kullanım talimatlarında belirtilen şekillerde çalıştırılacak kullanıma hazır hale getirilmeleri gerekmektedir. Bunun için her cihaz için ayıır işlemler yapılmalıdır. Bu konular ilgili faaliyetlerde ayrıntılı olarak anlatılacaktır.

Ölçüm değerlerinin aynı koşullarda ve içerisine belli miktarda madde bulunan bir standart seri ile karşılaştırılması için analiz öncesi standart seri çözeltilerinin hazırlanması...

Enstrümental gıda analiz yöntemlerinde analiz öncesi hazırlıklar değişmekte birlikte genel olarak analiz foyu dikkatlice okunmalı ve aşağıdaki işlemler yapılmalıdır.

- Analiz için gerekli kimyasal çözeltilerin listesi çıkarılmalıdır.
- Listelenen çözeltiler usulüne uygun olarak teker teker hazırlanmalıdır.
- Standart seri çözeltileri hazırlanmalı ya da analiz kitleri tedarik edilmelidir.
- Örnek, analiz için, analiz foyündeki belirtilen şekilde hazırlanmalıdır.
- Kullanım talimatlarına uygun olarak cihaz çalışmaya hazır hale getirilmelidir.
UYGULAMA FAALİYETİ

Analiz foyu verilmiş olan enstrümental olarak sodyum (Na⁺) analizinde, analiz öncesi hazırlıkları yapmak için aşağıda verilen işlem basamaklarını uygulayınız.

SODYUM (Na) ANALİZİ

Yöntemin Prensibi

Gıda örneklerindeki organik kısımlar, kuru yakma yöntemi ile kül firmında veya yaş yakma yönteminde asit yardımı ile tamamen yakılır. Geriye kalan inorganik kısımda mineral aranması yapılır.

Kullanılan Kimyasallar

- NaCl: 10 g NaCl tuzu etüvde 70-80°C’de 2 saat bekletilerek kurutulur veya 1000 ppm lik hazır Na Standartı kullanılır
- Derişik sülfürik asit (H₂SO₄)
- Derişik nitrik asit (HNO₃)
- Perklorik asit (HClO₄)

Kullanılan Malzemeler

- Eter
- Etüv
- Cam petri
- Analitik Terazi
- Kjeldahl Tüpü
- İstici Tabla
- Erlen
- Pipet
- Balonjoje
- Cam Huni
- Süzgeç Kağıdı
- Sallayıcı
- Porselen Kroze
- Kül Fırını
- Piset
- Mezur
- Desikatör
- Sodyum Lambası
- Spektrofotometre
Deneyin Yapılışı

Yaş Yakma Metodu ile Örnek Hazırlama

- Homojen hale getirilen örnekten 2-4 g veya ml (analiz yapılacak örnekteki aranan mineralin miktarına göre ayarlanmalıdır) alınarak Kjeldahl tüpüne yerleştirilir.
- Üzerine 21 ml derişik nitrik asit (HNO₃), 3 ml sülfürik asit (H₂SO₄), 3 ml perklorik asit (HClO₄) eklenir ve yakma ünitesine bağlanır.
- Eğer yakma düzeneği yoksa bu işlem erlende hot plate üzerinde yapılabilir. Fakat gaz çıkışı çok yoğun olacağından çeker ocağa veya davlumbazın altında çalışılmalıdır.
- Kahverengi duman çıkışı bitene kadar düşüşü da çalıştırılır.
- Eğer yer yerin içeriği erleyip beyaz duman çıkışı azalana kadar yakma işlemine devam edilir. Seyreltilme yapılıacak balonjojelerin üzerine huni ve süzgeç kağıtları yerleştirilir.
- Oda sıcaklığına kadar soğutulan çözeltinin içerisinde yaklaşık 15 ml saf su eklenir ve sıcaklık iyileştirilir.
- Deney kabı saf su ile bir kaç kez yanarak suzaak kağıdı dökülür.
- Daha sonra sıcak kağıdı birkaç kez saf su ile yanarak balonjoce hacim çizgisine kadar saf su ile tamamlanır.
- Eğer numune çok yağlı ise ağrılığı bilinen örnek erlene alınarak üzerine 100 ml ete ilave edilerek 2-3 saat çalışalayıcıda kariştırılır. Eter fazı dökülerek numune madde kaybı olmaksızın Kjeldahl tüpüne veya erlene alınır.

Kuru Yakma Metodu ile Örnek Hazırlama

- Homojen hale getirilen örnekten 2-4 g veya ml alınarak kroze koyulur. Eğer örnek sıvı ise 1 gece 110 °C’de etüvde bekletilir. Eğer kati örnek ise üzerine 2 mL etil alkol koyularak 400 °C ön yakma işlemi yapılır.
- Krozele küf firınınca yerleştirilir.
- Daha sonra küf firının sıcaklığı 525± 10 °C’ye ayarlanır. 3- 4 saat sonunda krozele döşürlü alınır. Kömür rengi oluşmuşsa soğutularak üzerine yavaşa 0,5 ml nitrik asit ve 1 ml saf su eklenerek tekrar küf firınınca yerleştirilir.
- Krozedede yanmamış madde kalmaya kadar yakma işlemine devam edilir.
- Daha sonra krozeler oda sıcaklığında soğutulur. Üzerine 5 ml nitrik asit eklenir.
- Seyreltilme yapılacak balon jojelerin üzerine huni ve sıcak kağıtları yerleştirilir.
- Sıcak kağıdın içerisinde bir miktar saf su koyulup üzerine krozedeki çözelti dökülür.
- Kroze saf su ile bir kaç kere yıkanarak sıcak kağıdın dökülür.
- Daha sonra sıcak kağıdı birkaç kez saf su ile yıkanarak balonjoce hacim çizgisine kadar saf su ile tamamlanır.
Standart Serileri Hazırlama

- Kurutulan NaCl tuzundan 2,542 g tam olarak tartılarak daha önce temizlenmiş olan litr elik balonjojeye dikkatlice aktarılır.
- Yaklaşık 20 ml nitrik asit eklenir.
- Örnekler asitlendirilir.
- Yüksek nitrik asit eklenir.
- Örnek asitlendirilir ve hacim çizgisine kadar iyice çalıtırılır.
- Hacim çizgisine kadar saf su ile tamamlanır.
- Hazırlanan 1000 ppm'lik Na standartı hazırlanır.
- Hazırlanan 100 ppm'lik Na standartından istenilen aralıklarda çalışma standartları

\[M_1 \times V_1 = M_2 \times V_2 \]

formülüne göre hazırlanır.

- M1 = 100 ppm'lık stok standart
- V1 = Hesaplanması gereken 100 ppm'lık standarttan alınacak miktar ml
- M2 = Hazırlanması istenilen standart konsantrasyonu
- V2 = Hazırlanılması istenilen standart konsantrasyonunun son hacmi

- Standartların okunan absorbanslarından faydalanarak konsantrasyona karşı absobans garfi çizilir.
- Standart eğrisi oluşturulur ve örneğin absorbansı okutularak bu standart eğrisinden derişimi bulunur.

Hesaplamalar

Na miktarı (mg/kg) = (C x V x SF) / m

C = Örneğin, hazırlanan standart eğrisinden yararlanarak okunan konsantrasyonu
m = Alınan örnek miktarı (g) veya (ml)
V = Örneğin yakma işleminden sonra süzüldüğü balonjojenin hacmi (ml)
SF = Eğer seyreltme yapılmışsa seyreltme faktörü

<table>
<thead>
<tr>
<th>İŞLEM BASAMAKLARI</th>
<th>ÖNERİLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analiz foyunun dikkatlice okuyup kullanacak kimyasal maddeleri listeleiniz.</td>
<td>Her laboratuvar çalışmasından önce kişisel hazırlıklarınızı yapmayı unutmayıniz.</td>
</tr>
<tr>
<td></td>
<td>Laboratuvar kıyafetlerini giyiniz.</td>
</tr>
<tr>
<td></td>
<td>Ellerinizi her çalışma öncesinde yıkanıınız.</td>
</tr>
<tr>
<td></td>
<td>Çalışma ortamını temizleyiniz.</td>
</tr>
<tr>
<td></td>
<td>Anlamak bir işi yapmanın yarısıdır, unutmayıniz.</td>
</tr>
</tbody>
</table>
Listelediğiniz kimyasal maddeleri belirtilen şekilde hazırlayınız.

Bu analizde sadece NaCl hazırlanacaktır. Bunun için de 10 g NaCl tuzu etüvde 70-80°C’de 2 saat bekletilerek kurutulur veya 1000 ppm’ lik hazır Na Standartı kullanılır.

Diğerleri (Derişik sulfür asit (H2SO4), Derişik nitrik asit (HNO3), Perklorik asit (HClO4)) ise laboratuvara bu özellikte asitlerin olup olmadığını kontrol edilerek tedarik edilecektir.

Analiz foyunu dikkatlice okuyarak gereklilik malzemelerin listesini numara vererek hazırlamaya özen gösteriniz.

Bu analizin kullanılacak malzemeler kısmını inceleniz

Laboratuvarında bu malzemelerin olup olmadığını kontrol ederek durumunu laboratuvar sorumlusuna bildiririz.

Listelediğiniz malzemelerden cam ve porselen malzemeleri temizleyip kurutunuz.

Kullanacağımız cam ve porselen araç ve gereçlerin temizlenmesi için temizleme kuralları hatıralayınız ve uygulayınız.

Kuru veya yaş yakma metotlarından hangisini kullanacağımıza karar vererek buna uygun işlem basamaklarına geçiniz.

Bu kararı öğretmeninizle birlikte alarak uygun işlem basamaklarına geçmeyi unutmayın.

Hangi yöntemle yakma yapacağınızı karar verdikten sonra doğru işlemleri yapmak için bu işlemlerini kendiniz için not alınız.

Yaş yakma işlem basamakları

Kuru veya yaş yakma metotlarından hangisini kullanacağımıza karar vererek buna uygun işlem basamaklarına geçiniz.

Bu kararı öğretmeninizle birlikte alarak uygun işlem basamaklarına geçmeyi unutmayın.

Hangi yöntemle yakma yapacağınızı karar verdikten sonra doğru işlemleri yapmak için bu işlemlerini kendiniz için not alınız.

Yaş yakma işlem basamakları

Listelediğiniz kimyasal maddeleri belirtilen şekilde hazırlayınız.

Bu analizde sadece NaCl hazırlanacaktır. Bunun için de 10 g NaCl tuzu etüvde 70-80°C’de 2 saat bekletilerek kurutulur veya 1000 ppm’ lik hazır Na Standartı kullanılır.

Diğerleri (Derişik sulfür asit (H2SO4), Derişik nitrik asit (HNO3), Perklorik asit (HClO4)) ise laboratuvara bu özellikte asitlerin olup olmadığını kontrol edilerek tedarik edilecektir.

Analiz foyunu dikkatlice okuyarak gereklilik malzemelerin listesini numara vererek hazırlamaya özen gösteriniz.

Bu analizin kullanılacak malzemeler kısmını inceleniz

Laboratuvarında bu malzemelerin olup olmadığını kontrol ederek durumunu laboratuvar sorumlusuna bildiririz.

Listelediğiniz malzemelerden cam ve porselen malzemeleri temizleyip kurutunuz.

Kullanacağımız cam ve porselen araç ve gereçlerin temizlenmesi için temizleme kuralları hatıralayınız ve uygulayınız.

Kuru veya yaş yakma metotlarından hangisini kullanacağınızı karar vererek buna uygun işlem basamaklarına geçiniz.

Bu kararı öğretmeninizle birlikte alarak uygun işlem basamaklarına geçmeyi unutmayın.

Hangi yöntemle yakma yapacağınızı karar verdikten sonra doğru işlemleri yapmak için bu işlemlerini kendiniz için not alınız.

Yaş yakma işlem basamakları

Kuru veya yaş yakma metotlarından hangisini kullanacağımıza karar vererek buna uygun işlem basamaklarına geçiniz.

Bu kararı öğretmeninizle birlikte alarak uygun işlem basamaklarına geçmeyi unutmayın.

Hangi yöntemle yakma yapacağınızı karar verdikten sonra doğru işlemleri yapmak için bu işlemlerini kendiniz için not alınız.

Yaş yakma işlem basamakları

Kuru veya yaş yakma metotlarından hangisini kullanacağımıza karar vererek buna uygun işlem basamaklarına geçiniz.

Bu kararı öğretmeninizle birlikte alarak uygun işlem basamaklarına geçmeyi unutmayın.

Hangi yöntemle yakma yapacağınızı karar verdikten sonra doğru işlemleri yapmak için bu işlemlerini kendiniz için not alınız.

Yaş yakma işlem basamakları

Kuru veya yaş yakma metotlarından hangisini kullanacağımıza karar vererek buna uygun işlem basamaklarına geçiniz.

Bu kararı öğretmeninizle birlikte alarak uygun işlem basamaklarına geçmeyi unutmayın.

Hangi yöntemle yakma yapacağınızı karar verdikten sonra doğru işlemleri yapmak için bu işlemlerini kendiniz için not alınız.
Üzerine 21 ml derișık nitrik asit (HNO₃), 3 ml sülfürik asit (H₂SO₄), 3 ml perklorik asit (HClO₄) ekleyerek yakma ünitesine bağlayınız. Dikkatli olunuz.

Kahverengi duman çığı bitene kadar düşük ısıda çalışınız. Daha sonra sıcaklığı yükseltiniz.

Erlendeği çözelti ve duman rengini sıkça kontrol ediniz. Renk istenilen özellikleri taşıdığı zaman yakma işlemini son verilmeldir, bu konuya önem veriniz. Süzme yapma hazırlıklarını hatırlayınız ve uygulayınız.

Kuru yakma işlem basmakları

Eğer örnek sıvı ise 1 gece 110 °C ’da etüvde bekletiniz.

Yaş yakma yapayor iseniz bu 9 işlem basamakını uygulamamız gerekiyor unutmayınız ve standart çözelti hazırlanma işlem basmalarına geçiniz. Örneğinizin durumuna göre (sıvı veya katı olmasına göre) işleminiizi gerçekleştiriniz.

Eğer katı örnek ise üzerine 2 ml etil alkol koyularak 400 °C ön yakma işlemi yapınız.

Tartım alma ve ölçüm alma kurallarını hatırlayarak uygulayınız.

Homojen hale getirilen örnekten 2-4 g veya ml alarak krozeye koyunuz.

Tartım alma ve ölçüm alma kurallarını hatırlayarak uygulayınız.

Krozeler kül firınına yerleştirip daha sonra kül firının sıcaklığı 525± 10 °C’ ye ayarlayınız.
3-4 saat sonunda krozeler dışarı alınıp üzerine yavaşça 0,5 ml nitrik asit ve 1 ml saf su ekleyip tekrar kül firmına yerleştiriniz

Kül firını kullanma talimatlarına uyunuz.

Krozede yanmamış madde kalmayana kadar yakma işlemine devam ediniz.

Kül elde konusunu hatırlayınız.

Daha sonra krozeleri oda sıcaklığına kadar soğutunuz ve üzerine 5 ml nitrik asit ekleyiniz.

Desikatör kullanma kurallarını uyunuz.

Seyreltilme yapılacak balonjojelerin üzerine huni ve süzgeç kağıtlarını yerleştiriniz.

Süzme işlemine hazırlık işlemlerini hatırlayınız.

Süzgeç kağıdın içerisine bir miktar saf su koyup üzerine krozedeği çözeltiyi dökünüz.

Süzgeç kağıdını birkaç kez saf su ile yıкарıp balonjojenin hacim çizgisine kadar saf su ile tamamlayınız.

Yıkama ve hacim tamamlama konularını hatırlayarak uygulayınız.

Sıvı çözelti hazırlama konularını hatırlayarak işlem basamaklarını uygulayınız.

Hazırlanan 1000 ppm’lik Na standartından 10 ml pipetle alarak 100 ml’lik bolonjoyeye aktarıp ve hacim çizgisine kadar saf su ile tamamlayıp 100 ppm’lik Na standartı hazırlayınız.

Çözelti hazırlama konularını hatırlayarak işlem basamaklarını uygulayınız.

Hazırlanan 100 ppm’lik Na standartından istenilen aralıklarda çalışma standartları

\[M_1 \times V_1 = M_2 \times V_2 \]

formülüne göre hazırlayınız

Hangi Na standartları ile çalışacağınızı öğretmeniniz ile birlikte karar veriniz.
ÖLÇME VE DEĞERLENDİRME

ÖLÇME SORULARI

Aşağıdaki şeklarda doğru olan işaretleyiniz.

1. Enstrümental analizi en iyi tanımlayan ifade aşağıdakilerden hangisidir?
 A) Karmaşık işlemlerin yer aldığı, zor analizlerdir.
 B) Birden fazla aletle yapılan analiz yöntemleridir.
 C) Cihazlarla yapılan, maddelerin verdiği sinyalleri değerlendirmeye ilkesine dayanan, kısa sürede birçok örnekle çalışma imkânı sağlayan analiz yöntemidir.
 D) Elektrikli aletlerle yapılan analizlerdir.

2. Aşağıdakilerden hangisi gıda analiz ve araştırmalarında enstrümental analizlerin yaygınlaşmasının nedenlerinden biri değildir?
 A) Teknolojik gelişmeler
 B) Birçok gıda örneğinde hızlı bir şekilde otomatik olarak tayin yapılabilmesi
 C) Cihazların duyarlılıkları ve seçiciliklerinin artması
 D) Enstrümental cihazların ucuz olması

3. Aşağıdakilerden hangisi gıdalarda uygulanan enstrümental analizlerden biridir?
 A) Elektroskopi
 B) Kromotografi
 C) Spekroskopi
 D) Potansiyometri

4. Aşağıdakilerden hangisi fotometrik enstrümental analiz metotlarından biridir?
 A) Volumetri
 B) Gravimetri
 C) Refraktometri
 D) Potansiyometri

5. I. Örnek analiz için analiz löyünde belirtilen şekilde hazırlanmalıdır.
 II. Ölçüm yapılp kalibrasyon eğrisi hazırlanmalıdır.
 III. Analiz löyü dikkatlice okunmalıdır.
 VI. Analiz için gerekli kimyasal çözeltilerin listesi çıkarılmalıdır.
 Yukarıda verilen enstrümental analizlere ön hazırlık basamaklarından biri değildir?
 A) Yalnız III
 B) Yalnız II
 C) I ve III
 D) IV ve II

DEĞERLENDİRME

Cevaplarınızı cevap anahtarı ile karşılaştırınız. Yanlış cevap verdiğiniz ya da cevap verirken tereddüt yaşadığınız sorularla ilgili konuları tekrar ediniz.
Tüm sorulara doğru cevap verdiyseniz uygulamalı teste geçiniz.
KONTROL LİSTESİ

Öğretmeniz tarafından verilecek olan herhangi bir enstrümental gıda analiz foyunden yararlanarak analiz öncesi hazırlıkları yapınız. Yaptığınız işlemleri aşağıdaki değerlendirme tablosuna göre kontrol ediniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratuar önüğünü giydiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Çalışma ortamınızı temizlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analiz foyunu dikkatlice okuyup kullanılacak kimyasal maddeleri listelediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullanılacak malzemeleri de listelediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listelediğiniz kullanılacak kimyasalları belirtilen şekilde hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listelediğiniz kullanılacak malzemelerden cam ve porselen malzemeleri temizleyip kuruttunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuru veya yaş yakma metotları ile örnek analize hazırlanacaksa:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuru veya yaş yakma metotları analiz metodundan hangisini kullanacağınızı karar vererek uygun işlem basamaklarına geçтинiz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuru veya yaş yakma işlem basamaklarını adım adım takip ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuru veya yaş yakma metotları ile örnek analize hazırlanmayacaksa:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuru veya yaş yakma metotları analiz foyünde yer almayıorsa analiz foyündeki gibi örneği analize hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analiz foyünde belirtilen şekilde standart çözeltileri hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Seçeneklerinizin hepsi **EVET** ise bir sonraki öğrenme faaliyetine geçiniz. Cevabı **HAYIR** olan işlemleri tekrar deneyiniz.
AMAÇ

Bu öğrenim faaliyeti sonunda uygun ortam, araç ve gereç sağlandığında analiz metoduna uygun olarak spektrofotometre ile gidalarda analiz yapabileceksiniz.

ARAŞTIRMA

Bu faaliyet öncesinde yapmanız gereken öncelikli araştırmalar şunlardır:

- Spekrofotomatreler hakkında gıda işletmelerinden, laboratuvarlardan, bu cihazların satışını yapan firmalardan araştırma yapınız.
- Spektrofotometrik yönteminin avantajları ve dezavantajları nelerdir, araştırınız.
- Yaptığınız araştırmaları sınıfta arkadaşlarınızla tartışınız.

2. SPEKTROSKOPİ

2.1. Spektroskopî ile İlgili Terimler

Bir örnekteki atom, molekül veya iyonlardaki elektronların bir enerji düzeyinden diğerine geçişleri sırasında absorplanan veya yayılan elektromanyetik ışımının, ölçülmesi ve yorumlanmasıyla spektroskopî denir.

Atom, molekül veya iyonun elektromanyetik ışım ile etkileşimi sonucu dönme, titreşim ve elektronik enerji seviyelerinde değişiklikler spektroskopinin temelini oluşturur.

İşin manyetik ve elektriksel iki bileşeni (alan) bulunur. Bu iki bileşen sinüsoidal özellikte olup, yayılma yönüne ve birbirine dik konumdadır.
Şekil 2.1: X yönünde yol alan elektromanyetik dalganın elektrişel ve manyetik bileşenleri, dalga boyu (λ)

İşin tanecik ve dalga olmak üzere iki özelliği bulunmaktadır. Elektromanyetik işin, dalga boyu, frekans, hız ve genlik gibi parametreleri içeren sinüs dalga modeli ile açıklanabilir.

Dalga boyu (λ) Bir işin dalga hareketinin ard arda gelen iki maksimumu veya minimumları arasındaki doğrusal uzaklıkları ve λ ile gösterilir. Dalga boyu metre, santimetre, milimetre, mikrometre, nanometre, angströn gibi çeşitli birimlerle verilebilir.

1 cm = 10 mm = 10^4 μm = 10^7 nm = 10^8 Å

Frekans (ν): Bir işin saniyedeki periyot sayısı olup birimi s-1 veya buna eşdeğer Hertz (Hz) dir. Frekans, dalga boyu ve işin yayılma hızı arasında,

$$\lambda \cdot \nu = v$$

bağntısı vardır.

İşin havadaki hızı, her çeşit işin vakumdağı hızı aynıdır ve c ile gösterilir. Dolayısıyla yukarıdaki eşitlik,

$$c = \lambda \nu = 3.10^{10} \text{ cm/s}$$

şeklinde yazılabilir.

Bir işin sayıdaml ortamlardan (maddelerden) geçer ve hızında azalma olur. Bu azalma ortamin kırma indisiyle ilgiliidir ve ortamda işin hızı ne kadar azalrsa kırma indisi o kadar büyür. Örneğin, işin vakumdağı hızı c, ortamdaki hızı c_1, ise, kırma indisi (n_1):
\[n_1 = \frac{c}{c_1} \] olur.

Dalga sayısı (\(\nu\)) cm cinsinden dalga boyunun tersi olup, birimi \(\text{cm}^{-1}\) dir.

\[\nu = \frac{1}{\lambda}. \]

Elektromanyetik ışın türleri,

- Gözle algılayabildiğimiz görünür ışık ve ısı şeklinde algılayabildiğimiz infrared (kırmızı ötesi) ışınları;
- X-ışınları,
- Ultraviyole (mor ötesi),
- Mikrodalgalar
- Radyo ışınlarıdır.

Spektroskopide yaygın bir şekilde kullanılan spektrum bölgesinde dalga boyu ve frekans aralıkları aşağıda (Şekil 2.2) belirtilmiştir.

![Spektrum bölgeleri](image)

Şekil 2.2: Elektromanyetik spektrum bölgeleri

Etkileşim maddenin özelliğine bağlı olarak radyasyon (ışınım):

- ya geçer gider
- ya absorbe edilir
- ya yansıır
- ya da dağılmaya uğrar. Bu durum Şekil 2.2’de gösterilmiştir.
Şekil 2.3: Radyasyonun(ışımanın) madde ile etkileşimi

<table>
<thead>
<tr>
<th>Radyasyonun (ışımanın) madde ile etkileşim şekilleri:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Radyasyonun maddeyi geçmesi</td>
</tr>
<tr>
<td>a) Dispersiyon (Işıkın frekans veya dalga boyuna karşılık bir maddenin kırılma indeksindeki değişme)</td>
</tr>
<tr>
<td>b) Refraksiyon (Kırılma)</td>
</tr>
<tr>
<td>2) Radyasyonun absorpsiyonu (soğurulması)</td>
</tr>
<tr>
<td>a) Atomik absorpsiyon</td>
</tr>
<tr>
<td>b) Moleküler absorpsiyon</td>
</tr>
<tr>
<td>3) Radyasyonun yansıma ve dağılanması</td>
</tr>
<tr>
<td>4) Radyasyonun döndürülmesi</td>
</tr>
<tr>
<td>5) Radyasyonun Kırımı (engelin kenarından ışığın hafifçe büklmesi)</td>
</tr>
<tr>
<td>6) Radyasyonun emisyonu</td>
</tr>
</tbody>
</table>

Tablo 2.1: Radyasyonun (ışımanın) madde ile etkileşim şekilleri
2.2. Spektroskopik Yöntemler

Spektroskopik yöntemler temelde iki gruba ayrılır:

- Atomik Spektroskopı
- Moleküler Spektroskopı

1. Atomik Spektroskopı

Atomik spektrum sadece elektronların bir enerji düzeyinden diğerine geçişleri içerir. Bu geçişler sırasında absorplanan veya yayılan ışının enerjisi, atomun potansiyel enerjisindeki değişim ile orantılıdır.

\[\Delta E = h\nu \]

bu eşitliği ile verilir. Bir atomun elektronlarının yüksek enerjili düzeylere uyarılmasında absorplanan veya uyarılmış bir atomun temel düzeyeye dönüşü sırasında yayılan ışına enerjileri, elektromanyetik spektrumun ultraviyole veya görünür bölge sınırlarını içindedir.

2. Moleküler Spektroskopı

Moleküler spektrum, elektronik düzeyler arasındaki geçişlere ek olarak dönme ve titreşim enerji düzeyleri arasındaki geçişlerde içerir. Bu geçişler sırasında bir molekülün toplam enerjisi şu eşitlikle verilir:

\[E_{\text{toplam}} = E_{\text{elektronik}} + E_{\text{titreşim}} + E_{\text{dönme}} \]

Bu nedenle moleküllerin spektrumları atom spektrumlarına oranla daha karmaşıktır.

2.3. Ultraviyole (UV) ve Görünür Bölge Moleküler Absorpsiyon Spektroskopisi

UV ve görünür bölgede spektrofotometrik ölçümler gidaların nitel ve nicel analizlerinde en çok kullanılan yöntemlerden birisidir.

Maddenin ışığı soğurma (absorplama) derecesini ölçmek ve bundan yararlanarak derişimi saptamak için, absorpsiyon (soğurma) ile derişim arasındaki ilişki bilinmelidir.

Bir ışın demeti katı, sıvı veya gaz tabakasından geçerse belirli bir frekansındaki ışınların şiddeti seçilmiş olarak azalır. Bu olaya absorpsiyon denir.

Absorbsiyonda elektromanyetik enerji maddenin atomlarına veya moleküllerine aktarılır.

Ayırma gücü çok yüksek olmayan cihazlarda, birbirine çok yakın olan bu absorpsiyon pikleri bir band şeklinde görülür. Bu tip spektruma “sürekli spektrum” denir.

Atomların veya tek atomlu ıyonların absorpsiyonu sonucu meydana gelen spektrum ise kesikli yani hat spektrumudur.

Monokromatik (tek dalga boylu ışıma) ve I, ışık demeti, kalınlığı b cm olan bir tüpte bulunan çözeltideki herhangi bir molekül tarafından absorplandığında ısdetti azalır ve tüp I ısdettinde terkeder.

Geçirgenlik (T): Geçen ısdettiğin gelen ısdetiye oranıdır. Genellikle yüzde geçirgenlik olarak ifade edilir.

\[
\%T = \frac{I}{I_0} \times 100
\]

Absorbans ile geçirgenlik arasında,

\[
A = - \log T = \log I / T = \log 100 / \%T
\]

\[
A = \log 100 - \log \%T
\]

\[
A = - \log T = 2 - \log \% T \quad \text{ilişkisi vardır.}
\]

\[A = \log(\frac{I_0}{I})\]

Bir çözeltinin geçirgenliği ve absorbansı; ışığın geçtiği yolun kalınlığına (küvet kalınlığı), çözeltinin konsentrasyonuna ve her bileşik için sabit olan molar absorpsiyon katsayısına bağlıdır. Molekülerin seçilen dalgaboyundaki ısmayı absorplaması sonucu ortaya çıkan azalma Beer-Lambert eşitliği ile verilir. Bu eşitlik:

\[
\log \frac{I}{I_0} = \varepsilon bc = A \quad \text{şeklinde ifade edilir.}
\]

 Burada:

\[I_0:\] Örnek kabına giren ısdetti
\[I:\] Örnek kabını terkeden ısdetti
\[\varepsilon:\] Molar absorpsiyon katsayısı (lt / mol.cm)
\[b:\] Örnek kabının kalınlığı (cm)
\[c:\] Derişim (mol / lt)
\[A:\] Absorbans
Molar Absorpsiyon Katsayısı (Absorptivite (ε)): Birim konsantrasyonda birim kalınltkaki numunenin absorbansıdır. Birimi, b ve C 'ye bağlıdır. Çözeltinin konsantrasyonu molarite (mol/litre) cinsinden verilmişse, absorptiviteye "Molar absorpsiyon katsayısı" adı verilir. Absorbans, ışın demetinin geçtiği çözeltinin genişliği ve absorblayıcı türlerin konsantrasyonu ile doğrudan orantılıdır.

\[A \propto b \cdot C \quad \text{yani} \quad A = \varepsilon \cdot b \cdot C \]

Çözeltide, uygulanan dalgaboyundaki ışığı absorplayacak birden fazla molekül varsa, absorbs toplamsal olduğundan,

\[A = A_1 + A_2 + \ldots = \varepsilon_1 b c_1 + \varepsilon_2 b c_2 + \ldots \]

\varepsilon her madde ve her dalgaboyu için farklı değerlerdir.

Bu eşitlikle ifade edilen kanuna Lambert – Beer Kanunu denir. Absorpsiyon ölçümlerinin temel kanunudur.

Lambert-Beer kanunu seyreltik çözeltiler için geçerlidir. 0.01 M 'dan daha seyreltik çözeltiler için uygundur.

Lambert-Beer Yasasından Sapmalar

- **Derişim Etkisi (Tabii sapma)**: 0.01 M 'dan daha derişik çözeltilerde sapma olur. Nedeni artan tanecik sayısı nedeniyle taneciklerin etkileşimleri artar ve molar absorpsiyon katsayısını değiştirirler. Ortamda absorpsiyon yapmayan türler fazla ise de sapma olur. Kırılma indisi derişimle artar. Ancak bu düzeltilebilir. 10^{-2} M 'dan daha derişik çözeltilerde kırılma indisi önemszidir.

- **Kimyasal Sebepler (Kimyasal sapma)**: Absorplayıcı türlerin çözücü ile kimosyal reaksiyonları sonucu gözlenen sapmadır. Absorpsiyon yapan türün derişimi kimosyal reaksiyonlar sonucu değişiyorrsa absorbans da değişir. Ortamda asitler ve çözücü önemli etkendir.

Beer’den sapma olduğunda A (Absorbans) ve C (Konsantrasyon) arasındaki ilişki lineer değildir.

Beer- Lambert eşitliğinin geçerli olması için şunlar sağlanmalıdır:

- Uygulanan ışık monokromatik olmalıdır.
Örnek homojen olmalıdır. (absorpsiyonun örneğin her yerinde eşit olması için)
Birden fazla bileşen varsa, her bir bileşen diğerlerinin absorpsiyonunu etkilememelidir.
Absorbans ölçümü sırasında numunede herhangi bir reaksiyon olmamalıdır.

2.3.1. UV ve Görünür Bölge Absorpsiyon Spektrofotometreleri

Spektrofotometri renkli maddelerin, bir ayrıca renklendirilen maddelerin ve bazı renksiz maddelerin absorpladığı (soğurduğu) ışık şiddetini ölçerek yapılan bir analiz yöntemidir.

Resim 2.1: Spektrofotometre

Bir çözeltinin absorbansını ve ya geçirgenliğini ölçmek için spektrofotometre adı verilen bir cihaz kullanılır. Spektrofotometrelerde dalga boyu değiştirilek dalga boyuna karşı absorbans veya transmittans ölçümü alınır.

Her bir renkli çözelti, normal ışığı oluşturan ışıklardan bir ya da birkaçı absorblo. Öbürlerini de az ya da hiç absorblamaz, olduğu gibi geçirir. Buna göre kırmızı bir çözeltiyi ölçmek için spektrofotometride kulanılacak ışık, yeşil bir ışık olmalıdır.

<table>
<thead>
<tr>
<th>Dalga Boyu(nm)</th>
<th>Bölge</th>
<th>Göze Görünen Renk</th>
</tr>
</thead>
<tbody>
<tr>
<td><380</td>
<td>UV</td>
<td>Görünmez</td>
</tr>
<tr>
<td>380-440</td>
<td>Görünür</td>
<td>Mor</td>
</tr>
<tr>
<td>440-500</td>
<td>Görünür</td>
<td>Mavi</td>
</tr>
<tr>
<td>500-580</td>
<td>Görünür</td>
<td>Yeşil</td>
</tr>
<tr>
<td>580-600</td>
<td>Görünür</td>
<td>Sarı</td>
</tr>
<tr>
<td>600-620</td>
<td>Görünür</td>
<td>Turuncu</td>
</tr>
<tr>
<td>620-750</td>
<td>Görünür</td>
<td>Kırmızı</td>
</tr>
<tr>
<td>750-2000</td>
<td>IR</td>
<td>Görünmez</td>
</tr>
</tbody>
</table>

Çizelge 2.1: Bir çözeltinin absorpladığı ışın dalga boyu, bölgesi ve gözle görünen rengi
İnsan gözünün yanıt verdiği ışınsal enerji 400-750 nm arasındaki bölgeyi kapsar.

Şekil 2.4: Spektrofotometrenin başlıca kısımları

2.3.1.1. Spektrofotometrenin Başlıca Kısımları

- **İşık kaynağı:** İstenilen dalga boylarını içerisine alan bir ışık kaynağıdır. 180–375 nm (nanometre) arasındaki çalışmalar için döteryum lambası, 350–800 nm arasındaki çalışmalar için ise tungsten lamba gerekli olur. UV – Görünür bölge spektrofotometrelerinde her iki lamba da bulunur.

- **Dalga boyu seçici (Monokromatör):** Monokromatik ışın (tek bir dalga boyundaki ışın) meydana getiren bir prizma sistemidir. Monokromatörün önunde bulunan slim (yarık) yardımıyla istenilen dalga boyundaki ışının örnek ve şahit çözücü küvetine ulaşması sağlanır.

- **Örnek ve şahit çözücü küveti:** İçerisine örneğin renklendirilmiş çözeltisi ile şahit çözücünün konulduğu küvettir. Buna absorbans hücresi de denir. Küvetler cam veya kuvartından yapılmıştır.

- 200–350 nm arasındaki dalga boyunda çalışacaksa kuvart Küvetler kullanılabılır. Çünkü bu dalga boyları aralığında kuvart ultraviyole ışığı geçirebilir.

Resim 2.2: Örnek ve şahit çözücü küveti
Işık dedektörü (Fotosel): Spekrofotometrede ışık enerjisinin elektrik enerjisine dönüştüren düzenektir. Çözeltiden geçen ışınlar ışık dedektörüne (fotosel) gelecek ışık yoğunluğu ile orantılı olarak bir elektrik akımı oluştururlar.
- UV ve görünür bölge spektrofotometrelerde fototüpler ve fotoçoğaltıcı tüpler dedektör olarak kullanılmaktadır.

Gösterge (Okuyucu): Fotoselde oluşan elektrik akımının milivolt cinsinden ölçülüğü aygıt. Buradan absorbans (A) veya geçirgenlik (T) okunur. Bazı cihazlarda doğrudan konsantrasyon (C) okumada yapılabilmektedir. Spektrofotometrelerde bu ana bileşenleri başka ışığı toplamak, yansıtmak, bölmek amacıyla mercekler, aynalar, ışık bölücüleri de kullanılır.

2.3.1. Spektrofotomtrik Analizler

Nitel analizler: Geniş uygulama alanları, yüksek duyarılık, seçimlilik ve tekrarlanabilirliğinin iyi olması, uygunlanabilirlik ve hızının iyi olması gibi nedenlerle tercih edilirler.

Nitel analizlerde, gıdalardaki saf maddelerin yapısının saptanmasında, fonksiyonel grubun bulunup bulunmadığını incelenmesinde, bir fonksiyonel grubun bileşikteki yerinin saptanmasına kullanılır.

Sonra bilinmeyenin (örneğin) absorbansı okunarak grafikten absorbansının kalibrasyon eğrisini kestiği yerden x eksenin dikme indirilerekte aynı şekilde bilinmeyenin konsantrasyonu tayin edilir.

2.3.1.3. Nitel Numune Analizi (Krom Tayini) İşlem Basamakları Şunlardır:

- **Kullanılan Cihaz ve Malzemeler**
 - Görünür Bölge Spektrofotometresi, tek ışın yolu
 - İki adet cam küvet
 - Pipet
 - 25 ml'lik 5 adet balon joje

- **Kullanılacak kimyasallar**
 - 0.05 M Cr⁺³ Stok çözeltisi, Cr(NO₃)₃ den hazırlanmış
 - Cr⁺³ Standart seri çözeltileri (0.01, 0.02, 0.03 ve 0.04 M'lik Cr⁺³ çözeltileri), stok çözeltiden hazırlanmış
İşlem Basamakları

Absorbsiyon Dalga Boyunun Belirlenmesi

Bir bileşinin hangi dalga boyunda absorbsiyon yaptığıını bulmak için absorbsiyon eğrini saptamak gerekir. Bunun için söz konusu bileşinin değişik dalga boylarındaki uygun aralıklarla absorbsiyonu y eksenine, dalga boyu ise x eksenine işaretlenerek bir eğri elde edilir. Bu eğriye absorbsyons eğrısı denir. Kantitatif ölçümlerde \(\lambda_{\text{max}} \) (maksimum dalga boyu) ölçülmek için kullanılır. \(\lambda_{\text{max}} \) değerinin dışında bir dalga boyunda çalışılması absorbsiyonun az olması yol açar.

Aşağıdaki absorbsyons eğrisinden de anlaşılacağı gibi \(\lambda_{\text{max}} \) değerinde maksimum absorbsyondan elde edileceği görülür. Absorbsyons eğrisinin sağında veya solunda \(\lambda \) değerlerindeki oynamanın, \(\lambda_{\text{max}} \) değeri yakınındaki oynamalardan daha çok absorbsyona yansıyaçağı grafik üzerinde görülmektedir.

Şekil 2.5: Absorbsyons eğrısı

Analizde absorbsiyon dalga boyunu belirlemek için aşağıdaki işlem basamakları gerçekleştirilir:

- Ön Hazırlık için cihaz analize başlamadan 15 dakika önce çalıştırılarak ısıtılmalıdır. Bunun için şu işlemler yapılır:
 - Açma düğmesi(Power) açılır.
 - Dalga boyu sayısı 400 nm’ye ayarlanır.
 - Duyarılık (Sens) düğmesi 325-390 nm değerleri arasında “HİGH” konumuna getirilir. Ve Cihazın isınması için 15 dakika beklenir.

- Daha önceden hazırlanmış olunan 0.02 M Cr\(^{+3}\) çözeltisi absorbsyondan okunur. Absorbsyondan ölçülmüşi için şu işlemler yapılır:
 - Aralık seçme (RANGE) düğmesi “0-%100 T”ye getirilir.
 - Numune kompartmanı kapağı açılır ve %0 T yi %0 T Ayar (ADJ) düğmesi ile ayarlanır.
 - %0 T yi %0 T Ayar (ADJ) düğmesi ile sayısallaştırarak 0’a ayarlanır.
 - %0 T yi %0 T Ayar (ADJ) düğmesi ile sayısallaştırarak 0’a ayarlanır.

0.02 M Cr\(^{+3}\) çözeltisini küvete doldurup, numune tutucuya yerleştirerek çekilir.
Sayısal parametrede okuma yapılır. Şayet panel metrede değer sürekli yanıp sönyorsa “Aralık seçme (RANGE)” düğmesi ABSO-3’e getirilir.

20 nm’lik artışlarla 700 nm’ye kadar her dalga boyunda %100 ayar tekrarlanarak (çözücü ile) numunenin(0.02 M Cr⁺³) absorbansı okunur.

Elde edilen absorbans değerleri dalga boyuna karşı grafiğe geçirilerek Cr⁺³ iyonunun absorbans eğrisi çizilir. Elde edilen absorbans eğrisine göre maksimum absorbansı olduğu dalga boyu analizde kullanılabilecek dalga boyu olarak belirlenir.

Kalibrasyon Grafiğinin Çizimi

- 0.05 M stok Cr⁺³ çözeltisinden 25 ml’lik balon jojelere 0.01M, 0.02 M, 0.03 M ve 0.04 M’lik Cr⁺³ çözelti hazırlanır. (Standart seri Cr⁺³ çözeltileri)
- Her çözeltinin absorbansı, belirlenen maksimum dalga boyunda, şahit çözelti (burada saf su) ile %100 ayarı yapıldıktan sonra ölçülür ve kaydedilir.
- Konsantrasyonlar yatay (y) eksenide, absorbans değerleri dik (x) eksenide olacak şekilde bir absorbans eğrisi çizilir.

Şekil 2.6: Kalibrasyon grafiklerinde örnekler

Bilinmeyen Örneğin (Numunenin) Analizi

- Yukarıda sözü edilen dalga boylarında, konsantrasyonu bilinmeyen numunenin absorbansı okunarak absorbans eğrisinden Cr⁺³ konsantrasyonu bulunur.
NOT: Spektrofotometrenin sinyal göstergesinde yüksek absorbans değerleri okunurken büyük hatalar yapılabilir. Bu durumda geçirgenlik değerleri okunmalı ve geçirgenlikten absorbans hesaplanmalıdır.

Şekil 2.7: Spektrofotometrik bir analize ait kalibrasyon grafiğinden yararlanarak absorbansı okunan numunenin konsantrasyonunu bulma
Spektrofotometrik yöntemle Demir (Fe^{2+}) Tayini yapmak için aşağıdaki verilen işlem basamaklarını uygulayınız.

Deneyin ilkesi: Demir (Fe^{2+}) çözeltisine asetat tamponu, hidrokinon ve 2,2 dipiridil çözeltisi ilave edip böylece elde edilen renkli çözeltinin 520 nm dalga boyundaki absorbansları ölçülerek hazırlanmış grafik yardımıyla numunedeği (örnekteki)demir (Fe^{2+}) miktarının bulunması esasına dayanır.

Kullanılacak Araç Gereçler
- Görünür Bölge Spektrofotometresi, tek ışıın yollu, cam küvetli
- İki adet cam küvet
- Hassas terazi
- Su banyosu
- Pipetler
- 100, 200, 500, 1000 ml’lik balon jojeler
- Porselen krozeler
- 8 Adet deney tüpü

Kullanılacak Kimyasallar
- **Asetat Tamponu:** 100 °C’ de su banyosunda kurutulmuş 16.6 gram susuz CH₃COONa (Sodyum asetat) bir miktar saf suda çözdürülür. Üzerine 24 ml saf asetik asit (CH₃COOH) ilave edilir. Bu çözelti saf su ile 200 ml.ye tamamlanır.
- **Hidrokinon çözeltisi:** 2.5 gram hidrokinon az saf suda çözdürülür. Üzerine 0.5 ml derişik HCl ilave edilir. Saf su ile 100 ml.ye tamamlanır.
- **2,2 dipiril:** 2,2 dipiril sudaki bindebirlik (%0.01’lik) 100 ml çözeltisi hazırlanır.
- **Standart demir (Fe^{2+}) çözeltisi:** 3.512 gram Fe(NH₄)₂(SO₄)₂.6H₂O (demir amonyum sülfat) az saf suda çözdürülüp üzerine 2 damla 5 N HCl ilave edilir. Bu çözelti saf su ile 500 ml.ye tamamlanır. Standart seri çözeltisi hazırlanak için bu çözeltiden 10 ml alınarak 1 litreye seyreltilir. Seyretilen bu çözeltinin ml.sinde 0.01 miligram Fe^{2+} bulunur.
- Saf asetik asit (CH₃COOH)
- Derişik HCl
- 5N HCl
- Fe(NH₄)₂(SO₄)₂.6H₂O (demir amonyum sülfat)
<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Analiz öncesi hazırlıkları yapınız.</td>
<td>➢ Laboratuar kıyafetlerini giyiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Ellerini her çalışma öncesinde yıkınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Çalışma ortamını temizleyiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Kullanılan araç ve gereçleri listeleyerek, temizleyiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Kullanılacak kimyasalları listeleyerek, belirtilen şekilde hazırlayınız.</td>
</tr>
<tr>
<td>⦿ Kalibrasyon grafiğini hazırlamak için aşağıdaki işlemleri yapınız.</td>
<td></td>
</tr>
<tr>
<td>➢ 6 tane deney tüpü alıp numaralandırınız.</td>
<td>➢ Deney tüplerinizi temiz ve kuru olmalıdır.</td>
</tr>
<tr>
<td></td>
<td>➢ Numaralandırmada etiketler kullanıma bilirsiniz. Veya numaralandırmada yerine aktaracağımız Fe⁺² çözelti miktarlarını yazabilirsiniz.</td>
</tr>
<tr>
<td>➢ Deney tüplerine sırasıyla seyreltilmiş olan standart Fe⁺² çözeltisinden 0 (standart Fe⁺² çözeltisi konulmayacak-Şahit), 1, 2, 3, 4, 5 ml koyunuz.</td>
<td>➢ Pipetle akarma tekninini hatırlayarak uygulayınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Hacim miktarlarını tam olarak akarmaya gayret gösteriniz. Bunun için pipette okumayı doğru yapınız.</td>
</tr>
<tr>
<td>➢ Her bir tüpü saf su ile 100 ml. ye seyreltiniz</td>
<td>➢ Eklenecek su miktarını hesaplayıp ekleyiniz.</td>
</tr>
<tr>
<td></td>
<td>Bu işlem için 100 ml balon jojeleri kullanmanız en doğrusudur, unutmayın.</td>
</tr>
<tr>
<td>➢ Her bir tüpe 3 ml asetat tamponu, 2 ml hidrokinon çözeltisi ve 2 ml dipiril çözeltisinden ilave edinip çalkalayınız.</td>
<td>➢ Ekleme işlemlerini sırasıyla yaparsanız, karışıklığı engellemiş olursunuz, unutmayın.</td>
</tr>
<tr>
<td></td>
<td>➢ Her okumadan önce absorbansı şahit numune ile “0”layınız, sonra deney tüplerindeki çözelti absorbansını okuyunuz.</td>
</tr>
<tr>
<td></td>
<td>➢ Küvetlere çözelti ası doldurun ve numune tutucuya doğru yerleştiririniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Küvetlerin okuma yapılan yüzeylerini elinizle tutmayınız, hataya neden olursunuz.</td>
</tr>
<tr>
<td></td>
<td>➢ Her okumada ayrı küvet kullanınız ve küvete koyduğunuz çözelti konsantrasyonu karışıtmayız. En iyisi doldurma yaparken hangi konsantrasyonda çalıştığınızı not alıp, karşısına absorbans değerini okuyup yazmanızdır.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fe⁺² (mg/ml)</th>
<th>0.0</th>
<th>0.1</th>
<th>0.02</th>
<th>0.03</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbans</td>
<td>0.0</td>
<td>0.06</td>
<td>0.14</td>
<td>0.22</td>
<td>0.28</td>
<td>0.35</td>
</tr>
</tbody>
</table>

gibi yazabilirsiniz.
- **Ordinate(y eksenine) absorbansı, apsise(x eksenine) konsantrasyonu** yerleştirerek kalibrasyon eğrisi çiziniz.

- Birimlendirme yaparken rahat okuma sağlanacak şekilde aralıkları ayarlamayı unutmayın.

```
<table>
<thead>
<tr>
<th>Konsantrasyon</th>
<th>Absorbans</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>0.03</td>
<td>0.15</td>
</tr>
<tr>
<td>0.04</td>
<td>0.20</td>
</tr>
<tr>
<td>0.05</td>
<td>0.25</td>
</tr>
</tbody>
</table>
```

- **Numunenin (Örneğin) hazırlanması için:**

 - **Fe+2 tayini** yapılacak numuneyi (örneği) kül firınında yakınız.

 - **Krozedeki çözelti** bir baget ve bir miktar saf su yardımcıla 100 ml.lik balon jojeye aktarın.

 - **Adi süzgeç** kağıdan süzerek süzüntüden 10 ml deney tüpüne alınız.

- **Konsantrasyonu bilinmeyen numunenin (Örneğin) absorbans ölçümü için:**

 - **Üzerine 3 ml asetat (CH₃COONa) tamponu, 2 ml hidrokinon çözeltisi ve 2 ml 2,2 dipiril ilave edinip çalkalayınız.**

 - **Spektrofotomete cihazı 520 nm’ye ayarlanarak kuvete sahit çözeltisinden doldurup numune tutucuya yerleştirerek cihazın O ayarı yapınız.**

 - **Çözelti:** sirastıla, belirtiklen miktarda, unutmadan ilave etmeye özen gösteriniz.

 - **Burada şahittan çıkaran çözeltinizin sütünü koymadan sadece 3 ml asetat (CH₃COONa) tamponu, 2 ml hidrokinon çözeltisi ve 2 ml 2,2 dipiril çözeltisi eklenen tüp olduğunu unutmayın.**
Daha sonra tank çözeltiyi çıkarıp yerine üzerine asetat, hidrokinon ve 2,2, dipiril çözeltisi ilave edilmiş süzüntüden koyularak absorbansı (A) okuyunuz.

Bu işlemler mümkün olduğu kadar çabuk yapılmalıdır.

Okunan absorbansı mutlaka kaydediniz.

Numunenin (Örneğin) konsantrasyonu belirlemek için:

Okunan absorbans değeri grafikte ordinatn (y ekseninden) bulunan kalibasyon eğrisiyle kesişen şekilde yatay çizgi çekiniz.

Buradan apsise(x eksenine) dikey çizgi çekerek kesişen değeri konsantrasyon olarak okuyunuz.

Aşağıdaki örnekte olduğu gibi konsantrasyonu bulabilirsiniz.

Konsantrasyon bulmamak için aşağıdaki orantıdan yararlanabilirsiniz.

Bu okunan konsantrasyon değeri örneğin 10 ml sindeki \(Fe^{2+} \) miktarıdır. Buradan orantı yoluyla 100 gram örnekteki \(Fe^{2+} \) miktarını bulunuz.

Sonucu rapor ederek analiz sonrası işlemler yapınız.

Sonucu rapor olarak düzenleyiniz.

Çalışma ortamını temizleyiniz.

Kullanılan araç ve gereçleri temizleyiniz.

Laboratuar son kontrollerinizi yapınız.

Farklılıklar varsa nedenlerini araştırınız.

Laboratuar önülüünüzi çıkarıp asınız.

Ellerinizi her çalıştır sonlarında yıkayınız.

Çalışma ortamını temizleyiniz.

 défini dokusunun (Örneğin) konsantrasyonu belirlemek için:

Okunan absorbans değeri grafikte ordinatn (y ekseninden) bulunan kalibasyon eğrisiyle kesişen şekilde yatay çizgi çekiniz.

Buradan apsise(x eksenine) dikey çizgi çekerek kesişen değeri konsantrasyon olarak okuyunuz.

Aşağıdaki örnekte olduğu gibi konsantrasyonu bulabilirsiniz.

Konsantrasyon bulmamak için aşağıdaki orantıdan yararlanabilirsiniz.

Bu okunan konsantrasyon değeri örneğin 10 ml sindeki \(Fe^{2+} \) miktarıdır. Buradan orantı yoluyla 100 gram örnekteki \(Fe^{2+} \) miktarını bulunuz.

Sonucu rapor olarak düzenleyiniz.

Çalışma ortamını temizleyiniz.

Kullanılan araç ve gereçleri temizleyiniz.

Laboratuar son kontrollerinizi yapınız.
ÖLÇME VE DEĞERLENDİRME

ÖLÇME SORULARI

Aşağıdaki şıklardan doğru olanı işaretleyiniz.

1. Aşağıdakilerden hangisi spektroskopik yöntemlerden biridir?
 A) Kromotografi
 B) Elektroskopi
 C) Moleküler Spektroskopi
 D) Volumetri

2. Bir örnekteki atom, molekül veya iyonlardaki elektronların bir enerji düzeyinden diğerine geçişleri sırasında absorplanan veyaAWS
 yayınlan elektromanyetik ışının ölçülmesi ve yorumlanması aşağıdakilerden hangisidir?
 A) Kromotografi
 B) Potansiyometri
 C) Absorbsiyon
 D) Spekroskopi

3. Aşağıdakilerden hangisi Lambert-Beer yasasından sapmalarından biri değildir?
 A) Kişisel sebepler (Şahsi hatalar)
 B) Derişim Etkisi (Tabii sapma)
 C) Kimyasal Sebepler (Kimyasal sapma)
 D) Cihazdan Kaynaklanan Sebepler (Aletsel sapma)

4. Aşağıdakilerden hangisi Spektrofotometrenin başlıca kısımlarından biri değildir?
 A) İşık kaynağı
 B) İşin dedektörü (Fotosel)
 C) Elektrot
 D) Dalga boyu seçici (Monokromatör)
5. I. Analiz edilecek maddenin absorplayacağı ışığın dalga boyu belirlenir.
 II. Konsantrasyona karşı absorbans eğrisi yani kalibrasyon grafiği çizilir.
 III. Bilinmeyenin (örneğin) absorbansı okunarak kalibrasyon grafiğinden bilinmeyenin konsantrasyonu tayin edilir.
 VI. Belirlenen dalga boyunda hazırlanan standart çözeltilerin absorbansları ölçüldür.

Yukarıda verilen spekrofotometre ile nicel analiz aşamalarının doğru dizilişi aşağıdakilerden hangisidir?

A) I-III-II-IV
B) I-IV-II-III
C) I-III-IV-II
D) IV-II-III-I

DEĞERLENDİRME

Cevaplarınızı cevap anahtarı ile karşılaştırınız. Yanlış cevap verdiniz ya da cevap verirken tereddüt yaşadığınız sorularla ilgili konuları tekrar ediniz.

Tüm sorulara doğru cevap verdiyse uygulamalı teste geçiniz.
KONTROL LİSTESİ

Öğretmeniz tarafından verilecek numuneyi spektrofotometre kullanarak analiz yapınız. Yaptığınız işlemleri aşağıdaki değerlendirmeye tablosuna göre kontrol ediniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçüleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Laboratuar önülügünü giydiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Çalışma ortamınızı temizlediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Analiz öncesi hazırlıkları yaptınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kalibrasyon grafiğini hazırlamak için

1. 6 tane deney tüpü alıp numaraladınız mı?		
2. Deney tüplerine sırasıyla seyreltilmiş olan standart çözeltisinden 0 (standart çözeltisi konulmayacak-Şahit), 1, 2, 3, 4, 5 ml koydunuz mu?		
3. Her bir tüpü saf su ile 100 ml. ye seyreltiniz mi?		
4. Her bir tüpe belirtilen çözeltiye ilave edinip çalkaldınız mı?		
5. Deney tüplerindeki standart çözeltiye belirtilen dalga boyundaki absorbanslarını okuyup kaydettiniz mı?		
6. Ordinata (y eksenine) absorbansı, apsise (x eksenine) konsantrasyonu yerleştirerek kalibrasyon eğrisi çizdiniz mi?		
7. Analiz föyünde belirtilen şekilde numunenizi hazırladınız mı?		

Konsantrasyonu bilinmeyen numunenin (Örneğin) absorbans ölçümü için

| 1. Spektrofotometre cihazını belirtilen dalga boyuna ayarlayarak kuvete şahit çözeltiden doldurup numune tutucuya yerleştirerek cihazın 0 ayarını yaptınız mı? | | |
| 2. Daha sonra şahit çözeltiyi çıkarp yerine numuneneden edelecek konsantrasyon (A) okudunuz mu? | | |

Numunenin (Örneğin) konsantrasyonu belirlemek için

1. Okunan absorbans değeri grafikteordinatın (y ekseninden) bulunup kalibrasyon eğrisiyle kesişcek şekilde yatay çizgi çektiniz mi?		
2. Bu okunan konsantrasyon değeri örneğin 10 ml sindeki miktardır. Buradan oranı yoluya 100 gram örnekteki miktarı bulundunuz mu?		
3. Sonucu rapor ederek analiz sonrası işlemlerini yaptınız mı?		

DEĞERLENDİRME

Seçeneklerinizin hepsi Evet ise bir sonraki öğrenme faaliyetine geçiniz. Cevabı Hayır olan işlemleri tekrar deneyiniz.
ÖĞRENME FAALİYETİ–3

AMACLAR

Bu öğrenim faaliyeti sonunda uygun ortam, araç ve gereç sağlandığında analiz metoduna uygun olarak refraktometre ile gidalarda analiz yapabileceksiniz.

ARAŞTIRMA

Bu faaliyet öncesinde yapmanız gereken öncelikli araştırmalar şunlardır:

- Refraktometreler hakkında gida işletmelerinden, laboratuvarlardan, bu cihazların satışını yapan firmalardan araştırma yapınız.
- Refraktometrik yönteminin avantajları ve dezavantajları nelerdir? Araştırma yapınız.
- Yaptığınız araştırmaları sınıfta arkadaşlarınızla tartışınız.

3. REFRAKTOMETRİ

3.1. Refraktometrinin İlkesi

"Refraktometri", her ortamın kırılma indisinin farklı olması prensibini kullanarak, konsantrasyon ve madde miktarı gibi tüyinleri yapmaya yarayan bir yöntemdir. Kırılma indisi her maddeye özgü bir fiziksel özellikdir, bu sebeple kalitatif ve kantitatif analizlerde kullanabileceğimiz bir metottur. Günümüzde organik bileşiklerin kantitatif analizinde NMR, infrared spektroskopisi gibi yöntemler daha çok tercih edilmektedir.

Saydam bir ortamdan gelen bir ışının diğer bir saydam ortama geçerken doğrultusunu değiştirmesine **ışığın kırılması** denir.

Bir ortamın kırılma indisini, ışığın boşluktaki hızını bu ortama giren ışık demetinin düşey düzlem ile meydana getirdiği havada ve bu ortamdaki açıların sinüslerinin oranı olarak ölçülür. Gelme açısının sinüsünün kırılma açısının sinüsüne oranına **kırılma indisı** denir.

Bir ortamın kırılma indisine \(n \), elektromanyetik ışığın vakumdaki hızına \(c \), elektromanyetik ışığın bu ortamdaki hızına \(v \) dersek, şöyle bir bağıntı elde edilir:

\[
\frac{n}{c} = \frac{v}{c} \]

Benzer maddelerin kırılma indisi birbirine çok yakın olduğundan (\(1.25 - 1.80 \) arası) \(0.01 \) duyarlılıkla ölçüm yapabilir.
Şekil 3.1: Işığın kırılması

Işığın bir ortama geliş açısına \(i \), yansıma açısına da \(r \) dersek eğer, Snell Yasasına göre şöyle bir bağıntı yazılabilir:

\[
\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{n_1}{n_2}
\]

- \(v_1 \): Işığın 1. ortamındaki hızı
- \(v_2 \): Işığın 2. ortamındaki hızı
- \(n_1 \): 1. ortamın indisi
- \(n_2 \): 2. ortamın indisi

Işığın geliş açısı, iştin hızı ve ortaman indisini ile orantılıdır. Işığın geliş ve yansıma açlarının bilmesi halinde, iki ortamın kırılma indislerinin oranları da bulabilirsiniz. Ya da bir ortamın indisini bilirseniz, diğer ortamın indisini de bu bağıntı sayesinde hesaplanabilirsiniz.

Kırılma indisleri farklı olan bölgelerde iştin hareketi iki şekilde gerçekleşir:

- \(n_2 > n_1 \) koşulunda, i geliş açısı, r yansıma açısından daha büyük olacaktır. Geliş açısı büyüdüğü, kırılma açısı da büyür. Buna rağmen geliş açısı, kırılma açısından her zaman daha büyüktür.

- \(n_1 > n_2 \) koşulunda, yüksek yoğunluklu ortamdan düşük yoğunluklu ortama geçiş sırasında yansıma açısı, geliş açısından daha büyütür. Geliş açısı büyüdüğü, yansıma açısı da 90° ye yaklaştır.

Işımanın 90° 'lik bir açı ile kırılmasını sağlayan geliş açısına kritik açı denir. Işığın kritik açıdan daha küçük bir değerle gelmesi halinde, yansıma sonucu aydınlık bölge oluşur. Eğer iştin iki ortam arasındaki yüzeye kritik açıdan daha büyük bir açıyla gelirse, iştin kırılmaya değil, yansımarya uğrar.
Yoğunluğu büyük ortama kritik açıyla gelen bir ışın, 90° lik bir açı ile kırılır. Yoğunluğu küçük ortama 90° lik açı ile gelen bir ışın ise yoğunluğu büyük olan ortama kritik açı ile girer. Snell yasasından yararlanarak şöyle bir bağıntı yazılabilir:

\[
\sin \theta_c = \frac{n_2}{n_1}
\]

Refraktometre cihazının içerisinde prizmalar kullanılır. Gönderdiğimiz ışın örnekten geçip prizmaya değişik açılarla gelir. Eğer;

- Geldiği açılar kritik açıdan küçükse, aydınlık bölge oluşur.
- Geldiği açılar kritik açıdan büyükse, karanlık bölge oluşur.

Karanlık ve aydınlık bölenin sınırı kritik açıya karşılık gelir.

Şekil 3.2: Refraktometrede karanlık ve aydınlık bölgelerin oluşumu

Bir maddenin kırılma indisi şunlara bağlıdır:

- Kullanılan ışımanın dalga boyuna
- Sıcaklığı
- Derişime

3.2. Refraktometre ve Çeşitleri

Refraktometreler, katı (Abbe tip modellerde) veya sıvılarda katı madde miktarı, kırlma indisi, şeker miktarı, refraktif indeks ve briks (Brix) aralıklarını ölçme amacıyla kullanılan cihazlardır.

Piyasada gıda, kimya, ilaç vb. alanlarda kullanılmaktadır. Özellikle de gıda alanında şarap, meşrubat, reçel, bal, meyve suları, yemeklik yağlar gibi birçok üretim alanında kullanılmaktadır. Örneğin, çözünebilir yağlar ve yemeklik yağların kırlma indisleri ölçülen, bunların saflık dereceleri ve açılık dereceleri tespit edilebilmektedir (Bir sıvı yağın acılaşma derecesi artıca kırlma indisi de artar).

Refraktometre çeşitleri şunlardır:
- Abbe refraktometreleri (Dijital ve manuel)
- El refraktometreleri (Dürbün ve Dijital)
- Sıcaklık ayarlamalı dijital refraktometreler

3.2.1. Abbe Refraktometresi

Resim 3.1: Manuel abbe refraktometresi

Genellikle Abbe refraktometresi şu kısımlardan oluşur:
- Prizma haznesi
- Su giriş ve çıkış kısımları
- Termometre haznesi
- Oküler
- Vidalar (makro ve mikro vidalar)

Abbe refraktometresi ile ölçüm yapabilmek için aşağıdaki işlem basamakları takip edilir:
Önce cihaz gün ışığına yönlendirilir (ya da ışık kaynağına bağlanır). Cihazın aynası sağa sola çevirerek oküllerden bakan göze ışığın en fazla gelmesi sağlanmalıdır.

Prizmaların temiz olup olmadığı kontrol edilir. Temiz değişilse alkolle islatılmış, yumuşak bir bezle temizlenir ve kurulur. Bunun için cihazın orta kısmındaki kilitleme düğümesi açıklı ve prizmalar birbirinden ayrılıp, temizlenip tekrar eski haline getirilir.

Termometresi yerine takılır. Prizmaların etrafında sıcaklık sabit olan su dolaştırmak suretiyle sabit bir sıcaklık (20 °C) elde edilir. (bazılarda termostat bulunmaktadır.) Bu durumda termotat 20°C’ a ayarlanır.

Saf su ile “0” ayarı yapılır. Bunun için:
- Önce birkaç dakika prizmaların etrafında su dolaştırılarak prizmaların sıcaklığının 20°C’ye getirilmesi sağlanır.
- Sonra alttaki prizmaya birkaç damla saf su damlatılır.
- Saf su ile ayarlama yapılrken netleştirme işleminden sonra büyük vida ile sıcaklık 20°C’de iken skalının üst bölümünde kırılma indisini rakamlarında 1.333 değerine ait takımat çizgisini, skala görüş alanının artasında skalaya dik kesen sabit çizgi ile üst üstte getirilir. Böylesce kuru madde değeri de “0” (sifir) gösterir.
- 20°C’nin dışındaki sıcaklıklarda yapılan ayarlamalarda sıcaklığa karşı gelen kırılma indisi ile sabit çizgi kesistiğinde % kuru madde sıfırdan farklı değer gösterebilir. Eğer örneğin kırılma indisini okunacaksa; öncelikle olan belli sıcaklıklta saf suyun kırılma indisini ayarlamak. Eğer % kuru madde miktarı okunacaksa saf su ile %0 kuru maddeye ayarlamaktır.
Refraktometredeki skalalardan üsttekinden ağırlıkça % derişim (kuru madde), alttaki skaladan da kırılma indisi okunur.

- Numune ile ölçüm yapılması için:
 - Homojen hale getirilmiş örnek çözeltiden birkaç damla pipetle refraktometrin prizmasına damlatılır ve hemen üstteki prizma yavaşça kapatılır.
 - Oküllerden bakılarak netleştirme işlemi yapılır. Oküllerden bakıldığında yuvarlak olarak görülen görüş alanında karanlık alanın yukarıda kaldığı gözlenir.
 - Çakışma yapmak için en alttaki büyük vida döndürülence skala sola doğru hareket eder. Karanlık ve aydınlık sahaların tam eşitleniğinde sabit çizginin çıktığı % kuru madde ve kırılma indisi değeri okunur.

Şekil 3.3: Okuma yaparken karanlık ve aydınlık sahanın netleştirilmesi ve çıkışırtılması

![Şekil 3.3](image)

- Okunan % kuru madde değeri ve kırılma indisi değerine sıcaklık ve diğer faktörlерden gelen düşeltmeler uygulanarak gerekli ise gerçek değer bulunur.
 - Farklı dalga uzunluklu ışıkta ölçülen kırılma indisleri, birbirinden çok farklı olmayan maddelerin kırılma indisleri ölçülen kendisi karanlık ve aydınlık sahaların

3.2.2. El Refraktometreleri

El Tipi Refraktometreler kolay ölçüm olanı sağlayan refraktometrelerdir.

Pratik uygulamalarda, küçük hacimli, haif olması nedeniyle meyve suyu, süt, salça, reçel gibi çeşitli gıda endüstrilerinde rahatlıkla kullanılan, sıvı solüsyonların kirlenmesi, % kuru madde miktarları ile Brix aralıklarını ölçen cihazlardır.

Dijital Refraktometreler: basit ölçüm yöntemiyle kullanım kolaylığı sağlayan, yüksek hassasiyetli, güvenilir ölçümler için tasarlanmış refraktometrelerdir. Bu refraktometrelerde ölçüm sonuçlarının kolay okunabilmesini sağlayan dijital okuma alanı bulunmaktadır.

Resim 3.2: Dijital el refraktometreleri

Resim 3.3: Dürbün tipi el refraktometresi
El refraktometresinin bölümleri şunlardır:

- Oküler
- Ayar vidası
- Tütme kolu
- Kalibrasyon vidası
- Prizma haznesi (Işık toplama kapağı ve prizma yüzeyi)

El refraktometresi ile ölçüm yaparken aşağıdaki işlem basamakları takip edilir:

- Öncelikle prizma haznesi açılarak temiz, yumuşak bir bezle prizma temizlenir ve kurulanır.
- Prizma üzerine 20°C’deki saf sudan 2-3 damla damlatılarak kapak yavaşça, saf su sıkramayacak şekilde kapatılır. Burada dikkat edilecek husus sıvının prizma yüzeyine homojen bir şekilde kaplaması, hava kabarcığının oluşmamasıdır.

![Prizma Temizleme Anıtı](image1.jpg)

Şekil 3.5: Prizmaya sıvıyı yerleştirme şekilleri

- Daha sonra ışık kaynağına doğru tutulup, okülerden skala okunur.

![Prizma Okuma Anıtı](image2.jpg)

Şekil 3.6: El refraktometresi ile okuma yapma
“0” ayarı için saf su damlatılduktan sonra kırılma indisi 1.3330 veya % kuru madde skalarının “0” olması için kalibrasyon vidası tornavida ile döndürülecek gölgeli sahanın, skala ile bu noktalarda çıkışıması sağlanır. Numune ölçümü için aşağıdaki işlem basamakları takip edilir:

- Prizma yüzeyi temiz, yumuşak bir tülent bezi ile temizlenip, kurulur.
- Homojen hale getirilmiş örnek çözeltiden 2-3 damla pipetle el refraktometresinin prizmasına damlatılır ve hemen üstteki kapak yavaşça kapatılır.
- Okülerden bakılarak netleştirme işlemi (oküler üzerinde bulunan vidan sağa sola döndürülmesi ile) yapılır. Okülerden bakıldığında yuvarlak olarak görülen görüş alanında gölgeli alanın yukarıda kaldı güç gözlenir.

![El refraktometresinden okuma yapma](image)

Şekil 3.8: El refraktometresinden okuma yapma
Okunan % kuru madde değerine ve kırılma indisi değerine sıcaklık ve diğer faktörlerden gelen düzeltiler uygulanarak gerekli ise gerçek değer bulunur.

3.3. Refraktometrik Analizler

Refraktometrik analizler nitel ve nicel olmak üzere iki amaçla yapılır.

3.3.1. Nitel Analizler

Her maddenin ışığını kırmak özelliği farklı olduğundan kırılma indisleri de farklıdır. Bu nedenle maddeler için kırılma indisleri ayırt edici bir özelliğidir.

Saflığından emin olunan bir örneğin refraktometre de kırılma indisi ölçülen ve okunan değer kırılma indislerine ait tablo ile karşılaştırılır. Böylece bilinmemeyen örneğin hangi madde olduğu tespit edilir. Ya da ne olduğu bilinen bir maddenin, saf olup olmadığını belirlemek veya yabancı madde katılması katılmadığı belirlemek amacıyla kırılma indisinden faydalanılır.

<table>
<thead>
<tr>
<th>MADDE</th>
<th>KİRİLMA İNDİSLERİ (n°20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etil alkol</td>
<td>1.3290</td>
</tr>
<tr>
<td>Saf su</td>
<td>1.3330</td>
</tr>
<tr>
<td>Ayçiçek yağı</td>
<td>1.472-1.474</td>
</tr>
<tr>
<td>Zeytin yağı</td>
<td>1.469-1.474</td>
</tr>
<tr>
<td>Laktik asit</td>
<td>1.423</td>
</tr>
<tr>
<td>Gliserin</td>
<td>1.470-1.474</td>
</tr>
</tbody>
</table>

Tablo 3.1: Bazı maddelerin kırılma indisleri

Örneğin, yemeklik yağların kırılma indisleri ölçülen, bunların saflık derecelerini ve acılk derecelerini tesbit edilebilmektedir (bir sıvı yağın acılaşma derecesi artışça kırılma indisini de artar).

Maddenin yoğunluğu ile kırılma indisinin arasındaki ilişkiden faydalanarak molar kırılma değeri (R) bulunur. Molar kırılma değeri, maddenin saflık derecesinin bir ölçüsüdür.

Molar kırılma değerini bulmak için aşağıdaki eşitlikten faydalanılır.

\[R = \left(\frac{n^2 - 1}{n^2 + 2} \right) \times \frac{M}{d} \]

Burada:
- \(R \) = Özgül (spesifik) kırılma değeri
\(n = \) Kırılma indisı
\(M = \) Örnek maddesin molekül ağırlığı
\(d = \) Yoğunluk’tur.

Ölçülen kırılma indisı ve örnek yoğunluğu şüphe edilen bileşinin molekül ağırlığı değeri ile birlikte yukarıdaki eşitliğe konularak \(R \) değeri bulunur.

Bulunan bu \(R \) değeri bilinen bileşiklerin \(R' \) değerleri ile karşılaştırılır. \(R' \) değerini tanımlayan genellikle üçlü bağlar ve ikili bağların katkısını ve molekül ağırlığını ile yapida bulunan atomların katkısının toplamıdır. Bu katkılar tabloda görülmektedir. Bu şekilde bulunan \(R' \) değeri hesaplanan \(R \) değeri ile karşılaştırılarak nitel analiz yapılır.

<table>
<thead>
<tr>
<th>Bileşen</th>
<th>Katkı</th>
<th>Bileşen</th>
<th>Katkı</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.418</td>
<td>O (ester)</td>
<td>1.64</td>
</tr>
<tr>
<td>H</td>
<td>1.100</td>
<td>Alifatik amin</td>
<td></td>
</tr>
<tr>
<td>C=C</td>
<td>1.733</td>
<td>primer</td>
<td>2.322</td>
</tr>
<tr>
<td>C≡C</td>
<td>2.895</td>
<td>sekonder</td>
<td>2.502</td>
</tr>
<tr>
<td>F</td>
<td>0.95</td>
<td>tersiyer</td>
<td>2.840</td>
</tr>
<tr>
<td>Cl</td>
<td>5.967</td>
<td>Aromatik amin</td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>8.865</td>
<td>primer</td>
<td>3.21</td>
</tr>
<tr>
<td>I</td>
<td>13.900</td>
<td>sekonder</td>
<td>3.59</td>
</tr>
<tr>
<td>O (hidroksil)</td>
<td>1.525</td>
<td>tersiyer</td>
<td>4.36</td>
</tr>
<tr>
<td>O (ester)</td>
<td>1.643</td>
<td>Üçlü halka</td>
<td>0.71</td>
</tr>
<tr>
<td>O (karbonil)</td>
<td>2.211</td>
<td>Dörtlü halka</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Tablo 3.2: Çeşitli organik bileşenler için molar kırılma değerleri

3.3.2. Nicel analizler

İkili karşılannın tayininde en kolay ve çabuk yöntem; çözeltilerin kırılma indislerinden faydalanmaktır.

Düşük konsantrasyonlarda (seyretilik çözeltilerde), kırılma indisi ve derişim arasında lineer bir bağıntı vardır.

Bu bağıntıdan faydalanarak bir dizi % çözelti hazırlanarak saf su ile refraktometrenin “0” ayarı yapıldıktan sonra bu çözeltilerin kırılma indisleri okunur. Kırılma indisleri ordinata, çözelti % derişimleri ise apsise yerleştirilerek konsantrasyon-kırılma indisi değeri grafiği çizilir. Numunenin % konsantrasyonu hesaplanır.
Şekil 3.9: Örnek % konsantrasyon-ürülma indisi grafiği

3.4. Refraktometrik Analizlerde Numunenin (Örnek) Hazırlanması

3.5. Okuma Yapma ve Sıcaklık Düzeltmesi

Homojen hale getirilmiş ve sıcaklığı 20 ºC olan numuneden bir damla alınır. Refraktometrenin okuma haznesine aktarılır ve hava kabarcığı kalmayacak şekilde kapak kapatılır ve okuma yapılır.

Okumalar 20 ºC’de yapılmalıdır. Eğer bu sıcaklık sağlanamazsa sıcaklık düzeltmesi yapılır.

- Sıcaklık 20 ºC’den yukarıda ise her bir derece için ilgili çizelge 3.1’de belirtilen miktar ilave edilir,
- Sıcaklık 20 ºC’den aşağıda ise her bir derece için ilgili çizelge 3.1’de belirtilen miktar eksik alınır.
Çizelge 3.1. R refraktometrik okuma ile saptanan sakaroz konsantrasyonunda uygulanacak sıcaklık derecesi düzeltmeleri

3.6. Refraktometrik Gıda Analizleri

Gıdalarda brix tayini, kırılma indisi tayini ve suda çözünmeyen madde tayini refraktometrik yöntemle yapılmaktadır. Gıda endüstrisinde meyve suyu, süt, salça, reçel gibi çeşitli gıda endüstrilerinde rahatlıkla kullanılan bir yöntemdir. Aşağıda gidalarda yapılan refraktometrik analizlerden birkaç örneğ verilmiştir.

3.6.1. Zeytin Yağında, Bitkisel Sıvı Yağlarda Kırılma İndisi Tayini

Kullanılan araç-Gereçler

Refraktometre; 20°C’de ayarlanabilen, kırılma indisi, genel laboratuvar araç-gereçleri

İşlemler:

- Prizma haznesi numune ile tamamen doldurulur.
- Sıcaklığın en az beş dakika değişmemesi sağlandıkten sonra kırılma indisi virgülden sonra dördüncü haneye kadar okunur.
- Okumanın yaptığı sıcaklık standart sıcaklıkta (20 °C’den) farklı ise aşağıdaki düzeltme yapılmalıdır. Bu değişik sıcaklık 2°C’den çok farklı olmamalıdır.

\[nt = n_t + (t_t - t) \times F \]

Buradaki ifadelerin açıklımı şöyledir:
\(t = \) standart sıcaklık, 20°C
\(t_1 = \) okumannın yapıldığı sıcaklık, °C
\(n_t = \) standart sıcaklıkta kırılma indis
\(n_{t_1} = \) okunan kırılma indis
\(F = 20^\circ C \) civarında 0.00035 olan düzeltme katsayısı

Refraktometrenin kalibrasyonunda saf suyun 20°C’da kırılma indisi 1.3330 olmalıdır.

Sonuç:

Refraktometreden okunan kırılma indisinin karşılığı çizelge 3.2 yardımıyla kırılma indisi olarak saptanır.

<table>
<thead>
<tr>
<th>Okunan değer</th>
<th>Kırılma indisi nD</th>
<th>Okunan değer</th>
<th>Kırılma indisi nD</th>
</tr>
</thead>
<tbody>
<tr>
<td>60,0</td>
<td>1.4659</td>
<td>65,0</td>
<td>1.4691</td>
</tr>
<tr>
<td>60,5</td>
<td>1.4662</td>
<td>65,5</td>
<td>1.4694</td>
</tr>
<tr>
<td>61,0</td>
<td>1.4665</td>
<td>66,0</td>
<td>1.4697</td>
</tr>
<tr>
<td>61,5</td>
<td>1.4668</td>
<td>66,5</td>
<td>1.47,00</td>
</tr>
<tr>
<td>62</td>
<td>1.4672</td>
<td>67,0</td>
<td>1.47,04</td>
</tr>
<tr>
<td>62,5</td>
<td>1.4675</td>
<td>67,5</td>
<td>1.4707</td>
</tr>
<tr>
<td>63,0</td>
<td>1.4678</td>
<td>68,0</td>
<td>1.4710</td>
</tr>
<tr>
<td>63,5</td>
<td>1.4681</td>
<td>68,5</td>
<td>1.4713</td>
</tr>
<tr>
<td>64,0</td>
<td>1.4685</td>
<td>69,0</td>
<td>1.4717</td>
</tr>
<tr>
<td>64,5</td>
<td>1.4688</td>
<td>69,5</td>
<td>1.4720</td>
</tr>
</tbody>
</table>

Çizelge 3.2. Refraktometre ile okunan değerlerin kırılma indisi olarak karşılıkları

3.6.2. Meyve ve Sebze Mamulleri, Bal, Gazozda Suda Çözünebilen Kuru Madde Tayini

Kullanılan Araç-Gereçler

Refraktometre, 20°C’de ayarlanabilen, kuru madde ve kırılma indisi skalası bulunan genel laboratuvar araç-gereçleri

İşlemler:

- Numune homojen hale getirilir.
- Buradan alınan 1-2 damla ile prizma haznesi doldurulur ve dikkatlice yavaşça kapatılır.
- Sıcaklığının en az beş dakika değişmemesi sağlanıktan sonra okuma yapılır.

Sonuç:

Refraktometreden okunan kırılma indisinin karşılığı çizelge 3.3 yardımıyla kuru madde olarak saptanır.
<table>
<thead>
<tr>
<th>Refraktif indeks</th>
<th>0</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsantrasyon %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.597</td>
<td>1.093</td>
<td>2.085</td>
<td>2.774</td>
<td>3.459</td>
<td>4.140</td>
</tr>
<tr>
<td>1,38</td>
<td>29.413</td>
<td>29.975</td>
<td>30.534</td>
<td>31.090</td>
<td>31.644</td>
<td>32.195</td>
<td>32.743</td>
<td>33.289</td>
<td>33.302</td>
<td>34.373</td>
</tr>
<tr>
<td>1,39</td>
<td>34.912</td>
<td>35.446</td>
<td>35.982</td>
<td>36.513</td>
<td>37.042</td>
<td>37.568</td>
<td>38.092</td>
<td>38.614</td>
<td>39.134</td>
<td>39.651</td>
</tr>
<tr>
<td>1,40</td>
<td>40.166</td>
<td>40.670</td>
<td>41.190</td>
<td>41.698</td>
<td>42.204</td>
<td>42.708</td>
<td>43.210</td>
<td>43.710</td>
<td>44.208</td>
<td>44.704</td>
</tr>
<tr>
<td>1,41</td>
<td>45.197</td>
<td>45.688</td>
<td>46.176</td>
<td>46.663</td>
<td>47.147</td>
<td>47.630</td>
<td>48.110</td>
<td>48.588</td>
<td>49.064</td>
<td>49.530</td>
</tr>
<tr>
<td>1,42</td>
<td>50.011</td>
<td>50.481</td>
<td>50.949</td>
<td>51.416</td>
<td>51.880</td>
<td>52.343</td>
<td>52.804</td>
<td>53.263</td>
<td>53.220</td>
<td>54.176</td>
</tr>
<tr>
<td>1,43</td>
<td>54.629</td>
<td>55.691</td>
<td>55.550</td>
<td>56.008</td>
<td>56.464</td>
<td>56.918</td>
<td>57.371</td>
<td>57.822</td>
<td>58.271</td>
<td>58.719</td>
</tr>
<tr>
<td>1,44</td>
<td>59.165</td>
<td>59.609</td>
<td>60.051</td>
<td>60.493</td>
<td>60.932</td>
<td>61.070</td>
<td>61.807</td>
<td>62.241</td>
<td>62.675</td>
<td>63.107</td>
</tr>
<tr>
<td>1,45</td>
<td>63.537</td>
<td>63.866</td>
<td>64.394</td>
<td>64.820</td>
<td>65.245</td>
<td>65.669</td>
<td>66.091</td>
<td>66.512</td>
<td>66.831</td>
<td>67.043</td>
</tr>
<tr>
<td>1,46</td>
<td>67.766</td>
<td>68.182</td>
<td>68.596</td>
<td>69.009</td>
<td>69.421</td>
<td>69.332</td>
<td>72.142</td>
<td>70.650</td>
<td>71.056</td>
<td>71.464</td>
</tr>
<tr>
<td>1,47</td>
<td>71.869</td>
<td>72.173</td>
<td>72.676</td>
<td>73.878</td>
<td>73.479</td>
<td>73.279</td>
<td>74.278</td>
<td>74.675</td>
<td>75.072</td>
<td>75.469</td>
</tr>
<tr>
<td>1,48</td>
<td>75.864</td>
<td>76.258</td>
<td>76.651</td>
<td>77.044</td>
<td>77.405</td>
<td>77.326</td>
<td>78.213</td>
<td>78.605</td>
<td>78.994</td>
<td>79.371</td>
</tr>
<tr>
<td>1,49</td>
<td>79.768</td>
<td>80.154</td>
<td>80.540</td>
<td>80.925</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Çizelge 3.3. Sakkaroz Çözeltilerinde Refraktif İndex ile Konsantrasyon Arasındaki İlişki (20°C)

Okumanın yapıldığı sıcaklık standart sıcaklıkta (20 °C) değişik ise aşağıdaki düzelteyip alınmalıdır.

- Sicaklık 20 °C’den yukarıda ise her bir derece için 0.00023 ilave edilir.
- Sicaklık 20 °C’den aşağıda ise her bir derece için 0.00023 eksik alınır.
UYGULAMA FAALİYETİ

Refraktometre ile meyve suyu ve suda çözünebilen kuru madde tayini yapmak için aşağıdaki verilen işlem basamaklarını uygulayınız.

Kullanılan araç-Gereçler:
- Refraktometre; 20ºC’de ayarlanabilen, kuru madde ve kırılma indisi skalası bulunan.
- Genel laboratuvar araç-gereçleri

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Analiz öncesi hazırlıkları yapınız.</td>
<td>➢ Laboratuar kıyafetlerini giyiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Ellerini her çalışma öncesinde yıkayınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Çalışma ortamını temizleyiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Kullanılan araç ve gereçleri listeleyerek,</td>
</tr>
<tr>
<td></td>
<td>temizleyiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Kullanılacak kimyasalları listeleyerek,</td>
</tr>
<tr>
<td></td>
<td>belirtilen şekilde hazırlayınız.</td>
</tr>
<tr>
<td>➢ Refraktometrenin prizmasını temizleyiniz.</td>
<td>➢ Temizlikte alkolle işltilmiş, yumuşak,</td>
</tr>
<tr>
<td></td>
<td>temiz tülbent bezi kullanınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Prizmayı çizebilecek bezleri asla kullanmayın.</td>
</tr>
<tr>
<td></td>
<td>➢ Prizmayı kurulamayı unuttuğunuz.</td>
</tr>
</tbody>
</table>

- **Refraktometernin “0” ayarını yapmak için**

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Prizma üzerine 20ºC’deki saf sudan 2-3 damla damlattılarak kapak yavaşça, saf su sıçramayacak şekilde kapatınız.</td>
<td>➢ Ölçüm için sıcaklığın 20ºC’de olup olmadığını kontrol ediniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Kullandığınız refraktometre abbe ise öncelikle sıcak su bağlanışını yapınız, termometreyi yerleştirerek cihazı çalıştırınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Burada dikkat edilecek husus sıvının prizma yüzeyine homojen bir şekilde kaplaması, hava kabarcığının oluşmamasıadir.</td>
</tr>
</tbody>
</table>

52
| Daha sonra ışık kaynağına doğru tutulup, okülerden skala okuyunuz. |
| Okuma yaparken gölgeli sahanın en alt noktası ile çakışan değerleri alınız. |
| Eğer kırılma indisi 1.3330 veya % kuru madde skalası “0” değişse kalibrasyon vidasını tornavida ile döndürülek gölgeli sahanın, skala ile bu noktalarda çakışmasını sağlayınız. |
| Kalibrasyon vidası prizma haznesinin hemen üstündedir. Skalanın istenilen değeri okunmuyorsa bir vida yardımıyla istenilen değeri ayarlanmalıdır. |
| Okuma bitince saf su ile prizma iyice yıkayıp yumuşak bir tülbent bezi ile kurulayınız. |
| Dikkatli olunuz. Prizmayı kurulamayı unutmayın. |

- Numunenin kırılma indisini okumak için
- Numune homojen hale getiriniz
- Homojen hale getirmek için numune özelliğine göre iyice çalkanır veya hafifçe karıştırılır.

- Buradan alınan 2-3 damla numune ile prizma haznesi doldurulup dikkatlice, yavaşça kapağını kapatınız.
- Burada dikkat edilecek husus sıvının prizma yüzeyini homojen bir şekilde kaplaması, hava kabarcığının oluşmamasıdır.

- Okülerden bakılarak netleştirme işlemi (oküler üzerinde bulunan vidanın sağa sola döndürülmesi ile) yapınız.
- Okülerden bakıldığında yuvarlak olarak görülen görüş alanında gölgeli alanın yukarıda kaldığı gözlenir.
- Netlik ve okuma için aşağıdaki fotoğraflardan faydalanınız.
<table>
<thead>
<tr>
<th>Refraktometreden okunan kırılma indisinin karşılığını çizelge 3. yardımıyla kuru madde olarak saptayınız.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okumanın yapıldığı sıcaklık standart sıcakktan (20 °C) değişim ise aşağıdaki düzelte yapılır.</td>
</tr>
</tbody>
</table>
| - Sıcaklık 20 °C’den yukarıda ise her bir derece için 0.00023 ilave ediniz.
 - Sıcaklık 20 °C’den aşağıda ise her bir derece için 0.00023 eksik alınız. |
| **Sonucu rapor ederek analiz sonrası işlemlerini yapınız.** |
| **Sonucu rapor olarak düzenleyiniz.** |
| **Sınıfta sizin ve arkadaşlarınızın buldukları sonuçları karşılaştırınız.** |
| **Farklılıklar varsa nedenlerini araştırınız.** |
| **Laboratuar önüğünüuzu çıkarıp asınız.** |
| **Ellerini her çalışma sonrasında yıkanınız.** |
| **Çalışma ortaminı temizleyiniz.** |
| **Kullanılan araç ve gereçleri temizleyiniz.** |
| **Laboratuar son kontrolleriniizi yapınız.** |
ÖLÇME VE DEĞERLENDİRME

ÖLÇME SORULARI

Aşağıdaki şkılardan doğru olan işaretleyiniz?

1. Bir maddenin ışığı kırmak özelliğine dayanan enstrümental analiz yöntemi aşağıdakilerden hangisidir?
 A) Refraktometri
 B) Potansiyometri
 C) Absorbsiyon
 D) Kromotografi

2. Aşağıdakilerden hangisi saf maddelerin kırmıma indisini, çözeltilerin ise hem kırmıma indislerini hem de çözünen katı maddenin ağırlıkça yüzde derişimini bulmaya yarayan cihazdır?
 A) Spektrofotometre
 B) Refraktometre
 C) Termometre
 D) Kondaktometre

3. Aşağıdakilerden hangisi gıda endüstrisinde refraktometrik analiz yöntemin rahatlıkla kullanıldığı alanlardan biri değildir?
 A) Reçel
 B) Meyve suyu
 C) Et ürünleri
 D) Salça

4. Aşağıdakilerden hangisi el refraktometresinin başlıca kısımlarından biri değildir?
 A) Oküler
 B) Ayar vidası
 C) Tabla
 D) Prizma haznesi
5. Aşağıda şekillerden hangisi el refraktometresinde doğru okuma yapmak için sıvının prizma yüzeyini doğru kaplanmış şeklidir?

I.

II.

III.

A) Yalnızca I
B) I ve II
C) II ve III
D) Yalnız III

DEĞERLENDİRME

Cevaplarınızı cevap anahtarı ile karşılaştırınız. Yanlış cevap verdüğiniz ya da cevap verirken tereddüt yaşadığınız sorularla ilgili konuları tekrar ediniz.

Tüm sorulara doğru cevap verdiyseniz uygulamalı teste geçiniz.
KONTROL LİSTESİ

Öğretmeniz tarafından verilecek olan herhangi bir sebze suyunda refraktometre ile suda çözünebilen kuru madde tayini yapınız.

Yaptığınız işlerle aşağıdaki değerlendirme tablosuna göre kontrol ediniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Laboratuar önülüğunuzu giydiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Çalışma ortamınızı temizlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Analiz öncesi hazırlıkları yaptınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refraktometrenin “0” ayarını yapmak için

1. Refraktometrenin prizmasını temizlediniz mi?		
2. Prizma üzerine 20°C’daki saf sudan 2-3 damla damlatarak kapak yavaça saf su sıçramayacak şekilde kapattınız mı?		
3. Daha sonra ışık kaynağına doğru tutulup, okülerden skalayı okudunuz mu		
4. Kırılma indisizn 1.3330 veya % kuru madde skalanz “0” değişse kalibrasyon vidasını tornavida ile döndürerek gölgeli sahannı, scala ile bu noktalarda çakışmasını sağladınız mı?		
5. Okuma bitince saf su ile prizma iyice yıkıyp yumuşak bir tül bent bezi ile kuruldınız mı?		

Numunenin kuru maddesini tesbit etmek için;

1. Numuneyi homojen hale getirdiniz mi?		
2. Buradan alınan 2-3 damla numune ile prizma haznesi doldurulup dikkatlice, yavaça kapağıni kapattınız mı?		
3. Okülerden bakılarak netleştirmme işlemi (oküler üzerinde bulunan vidanın sağı sola döndürülmesi ile) yaptınız mı?		
4. Refraktometreden okunan kırılma indisinin karşılığı cizelge 3. yardımıyla kuru madde olarak saptadınız mı?		
5. Okumayı yaptığı sıçaklık standart sıçaklıkta (20 °C) değişik ise aşağıdaki düzeltmeleri yaptınız mı?		
6. Sıçaklık 20 °C’den yukarıda ise her bir derece için 0.00023 değerini okuma sonucuna ilave ettiniz mi? Sıçaklık 20 °C’den aşağıda ise her bir derece için 0.00023 değerini okuma sonucundan eksik aldınız mı?		
7. Sonucu rapor ederek analiz sonrası işlemlerini yaptınız mı?		

DEĞERLENDİRME

Seçeneklerinizin hepsi **Evet** ise modül değerlendirmeye geçiniz. Cevabınız **Hayır** olan işlemlerleri tekrar deneyiniz.
Modül Değerlendirme- Yeterlilik Ölçme

Aşağıda verilen tayin metoduna uygun olarak öğretmeniniz tarafından verilen meyve suyu numunesinde spektrofotometrik analizi yapınız.

Ayrıca bu meyve suyuunda refraktometre ile suda çözünebilen kuru madde tayini yapınız.

Meyve Sularında Spektrofotometre ile Askorbik Asit (C Vitamini) Tayini

Prensip: Askorbik asit, oksidasyon-redüksiyon boyasının (2,dikloroindofenol boyasının) renksizliğe indirger. Reaksiyon sonunda, indirgenmemiş boyanın fazlası asit çözeltide gül pembe-sorba renk gösterir.

Askróbik asit, otoksıdasyonunun engellenmesi ve reaksiyonda uygun asitliğin sağlanması için fosforik asit+asetik asit veya fosforik asit+asetik ait+sulfürik asit veya okzalik asit çözeltisi varlığında boya ile reaksiyona sokulur. Boyanın fazlasından oluşan renk spektrofotometrede 518 nm ´de okunur.

Çözeltiler:

- **Stabilizan Çözelti:** 4 g okzalik asit 1 litre soda çözülmür. (%0.04)
- **Stok Askorbik Asit Çözeltisi:** 100 mg askorbik asit 100 ml %0.04 lük okzalik asitte çözülmür. (%0.1)
- **Çalışma için Askorbik Asit Çözeltisi:** Stok askorbik asit çözeltisinden 100 ml lik balonjelere 1, 2, 3, 4’er ml konur. Üzerlerine stabilizan olarak % 0.04 lük okzalik asit çözeltisi ilave edilerek hacim 100 ml’ye tamamlanır. Böylece 1-4 mg/100 ml konsantrasyonda çalışma çözeltileri hazırlanmış olunur.
- **Boya Çözeltisi:** 12 mg 2, 6 dikloroindofenolNa tuzu 1 litre saf suda çözülmür.

Standart Kurvenin Çizilmesi için Hazırlıklar:

- Bir tüpe 1 mg/100 ml çalışma çözeltisinden 1 ml askorbik asit çözeltisi ve 9 ml saf su konur. (Şahit 1 çözeltisi)
- Diğer bir tüpe 1 mg/100 ml çalışma çözeltisinden 1 ml askorbik asit çözeltisi ve 9 ml boya çözeltisi konur. (Standart 1 çözeltisi)
- Bu şekilde çalışma askorbik asit çözeltilerinden 2, 3, 4’er ml alınarak, şahit 2, 3, 4 çözeltileri ve standart 2, 3, 4 çözeltileri hazırlanır.

Örnek Çözeltilerin Hazırlanması: 10 ml meyve suyu 90 ml stabilizan çözeltiyle karıştırılır ve filtre kâğıdından süzülür. Böylece örnek 10 misli seyreltilmiş ve C Vitamini asit ortamdada korunmuş olur.

- Bir tüpe örnek çözeltisinden 1 ml alınır, üzerine 9 ml su konur.(Şahit ÖRNEK çözeltisi)
- Diğer tüpe 1 ml örnek çözeltisi alınır, üzerine 9 ml boya çözeltisi konur. (Örnek çözeltisi)
İşlem Basamakları Şunlardır:

- Cihaza elektrik verilerek cihazın kalibrasyonu ve ısımması için 15 dakika beklenir.
- Dalga boyu 518 nm ye ayarlanır.
- Mode tuşu ile Absorbsans seçilir.
- Şahit 1 çözeltisi küvete doldurulur, küvet cihaza yerleştirilir ve absorbsans sıfırlanır (0.000 A).
- Standart 1 çözeltisi küvete doldurulur, küvet cihaza yerleştirilir ve satandart 1 çözeltisinin absorbsansı okunarak kaydedilir (A_{STD 1}).
- Benzer şekilde sırasıyla şahit 2, 3, 4 çözeltileriyle absorbsans sıfırlanarak standart 2, 3, 4 çözeltilerinin absorbsans değerleri okunur ve kaydedilir (A_{STD 2}, A_{STD 3}, A_{STD 4}).
- Şahit_{ÖRNEK} çözeltisinden küvete doldurulur, küvet cihaza yerleştirilir ve absorbsans değeri okunup kaydedilir (A_{ÖRNEK}).
- Örneğe ait absorbsans değeri (A_{ÖRNEK}) karşılık gelen konsantrasyon standart kurveden okunur. Örnek 10 misli seyreltilmiş olduğundan bulunan konsantrasyon 10 ile çarpılır. Sonuç, meyve suyunda, mg/100 ml askorbik asit olarak verilir.

Standart Kurvenin Çizimi:

A_{STD 1}, A_{STD 2}, A_{STD 3}, A_{STD 4} değerleri ve C Vitamini konsantrasyonları (1, 2, 3, 4 mg/100ml) bir milimetrik kâğıda geçirilerek standart kurve elde edilir.

Yaptığınız işlemleri aşağıdaki değerlendirme tablosu ile kontrol ediniz.
KONTROL LİSTESİ

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meyve sularında Spektrofotometre ile Askorbik Asit (C Vitamini) tayininde analiz öncesi hazırlıkları yapmak için</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Laboratuar önliğinizi giydiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Çalışma ortamınızı temizlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Analiz foyunun dikkatlice okuyup kullanılacak kimyasal maddeleri listelediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Kullanılacak malzemeleri de listelediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Listelediğiniz kullanılabilecek kimyasallar belirtilen şekilde hazırlanız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Listelediğiniz kullanılabilecek malzemelerden cam ve porsele malzemeleri temizleyip kuruttunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Analiz metodunda belirtilen şekilde örnek çözeltisini hazırlanız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Analiz metodunda belirtilen şekilde stabilizan Çözelti hazırlanız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Analiz metodunda belirtilen şekilde stok askorbik asit çözeltisi hazırlanız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Analiz metodunda belirtilen şekilde çalışma için askorbik asit çözeltisi hazırlanız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Analiz metodunda belirtilen şekilde boya çözeltisi hazırlanız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Analiz metodunda belirtilen şekilde şahit 1 çözeltisi hazırlanız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Analiz metodunda belirtilen şekilde şahit 2, 3, 4 çözeltileri hazırlanız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Analiz metodunda belirtilen şekilde standart 1 çözeltisi hazırlanız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Analiz metodunda belirtilen şekilde standart 2, 3, 4 çözeltileri hazırlanız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standart kurvenin çizilmesi için

<table>
<thead>
<tr>
<th>Standart kurvenin çizilmesi için</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cihaza elektrik vererek cihazın kalibrasyonu ve isınması için 15 dakika beklediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Dalga boyu 518 nm ye ayarladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Mode tuşu ile Absorbans seçtiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Şahit 1 çözeltisini küvete doldurup küveti cihaza yerleştirip absorbansı sıfırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Standart 1 çözeltisini küvete doldurup küveti cihaza yerleştirip</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
satlandır 1 çözeltisinin absorbansını okuyarak kaydettiniz mi?

6. Benzer şekilde sırasıyla şahit 2, 3, 4 çözeltileriyle absorbans sıfırlayıp standart 2, 3, 4 çözeltilerinin absorbans değerleri okuyup kaydettiniz mi?

7. A_{STD} 1, A_{STD} 2, A_{STD} 3, A_{STD} 4 değerlerini ve C Vitamini konsantrasyonlarını (1, 2, 3, 4 mg/100ml) bir milimetre kâğıda geçirip standart kuvre elde ettiniz mi?

Örnekteki C Vitamini miktarını belirlemek için

1. Şahit_{ORNEK} çözeltisinden küvete doldurup, küveti cihaza yerleştirerek absorbans değerini okuyup kaydettiniz mi?

2. Örneğe ait absorbans değerine (A_{ORNEK}) karşılık gelen konsantrasyonu standart kurveden okudunuz mu?

3. Örnek 10 misli seyrtilmiş olduğundan bulunan konsantrasyon 10 ile çarparak sonucu meyve suyunda, mg/100 ml askorbik asit olarak verединiz mi?

Meyve suyunun refraktometre ile suda çözünebilen kuru madde miktarını belirlemek için

1. Refraktometrenin “0” ayarını yaptınız mı?

2. Numuneyi homojen hale getirdiniz mi?

3. Buradan alınan 2-3 damla numune ile prizma hazırlığı doldurulup dikkatlice, yavaşa kapağını kapatınız mı?

4. Okülerden bakılarak netleştirme işlemi (oküler üzerinde bulunan vidanın sağa sola döndürülmesi ile) yaptınız mı?

5. Refraktometreden okunan kırılma indeсинin karşılığını çizelge 3. yardımıyla kuru madde olarak saptadınız mı?

6. Okumunun yaptığı scaklık standart scaklıktan (20 ºC) değişik ise;
 - Sıcaklık 20 ºC den yukarıda ise her bir derece için sonuç değerine 0.00023 değerini ilave ettiniz mi?
 - Sıcaklık 20 ºC dan aşağıda ise her bir derece için sonuç değerinden 0.00023 değerini eksilttiniz mi?

7. Sonucu rapor ederek analiz sonrası işlemlerini yaptınız mı?

8. Laboratuvar son kontrollerinizi yaptınız mı?

DEĞERLENDİRME

CEVAP ANAHTARLARI

ÖĞRENME FAALİYETİ -1’ İN CEVAP ANAHTARI

<table>
<thead>
<tr>
<th>No</th>
<th>Cevap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ -2’ NİN CEVAP ANAHTARI

<table>
<thead>
<tr>
<th>No</th>
<th>Cevap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ -3’ÜN CEVAP ANAHTARI

<table>
<thead>
<tr>
<th>No</th>
<th>Cevap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
</tbody>
</table>
KAYNAKÇA

- DEMİR, Nesrin, Bekir DİKKAYA, Laboratuvar Teknikleri Modülü, Kız Teknik Öğretim Genel Müdürlüğü, METGE Projesi, Atatürk Teknik Anadolu Meslek ve Meslek Lisesi Yayınları, ANKARA, 2002
- GÜNDÜZ Turgut, **İnstrümental Analiz**, Gazi Kitabevi, 5. baskı Ankara, 1999
- GÜNDÜZ Turgut, **İnstrümental Analiz**, Gazi Kitabevi, 6. baskı, Ankara, 2002
- HIŞIL Yaşar, **Enstrümental Gıda Analizleri – II**, Ege Üniversitesi Basımevi, Ege Üniversitesi Mühendislik Fakültesi Ders Kitapları Yayınları No:30, Bornova-İzmir, 1999
- HIŞIL Yaşar, **Enstrümental Gıda Analizleri – III**, Ege Üniversitesi Basımevi, Ege Üniversitesi Mühendislik Fakültesi Ders Kitapları Yayınları No:41, Bornova-İzmir, 1999
- HIŞIL Yaşar, **Enstrümental Gıda Analizleri – Laboratuar Deneyleri**, Ege Üniversitesi Basımevi, Ege Üniversitesi Mühendislik Fakültesi Ders Kitapları Yayınları No:45, Bornova-İzmir, 2004