T.C. MİLLİ EĞİTİM BAKANLIĞI

YENİLENEBİLİR ENERJİ TEKNOLOJİLERİ

ENERJİ MEKANİĞİNDE VİDALAMA
522EE0328

ANKARA, 2012
Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

- Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.
- PARA İLE SATILMAZ.
IÇİNDEKİLER

ACIKLAMALAR ... ii
GİRİŞ .. 1
1. VIDALARLA KÖR DELİKLİ BİRLEŞTİRME .. 3
 1.1. Vidalı Birleştirirmeler .. 3
 1.1.1. Birleştirme Çeşitleri ... 4
 1.1.2. Kullanılma Yerlerine Göre Vidalar ... 9
 1.2. Vıda İle Kör Delikli Birleştirme ... 25
 1.2.1. Vıda İle Kör Delikli Birleştirilmenin Kullanım Alanları 25
 1.2.2. Kör Delikli Birleştirilmelerin Resimleri ... 26
 1.2.3. Vidaları Takma ve Sökmede Kullanılan Takımlar .. 31
 1.2.4. Anahtar Takımlarını Amacına Uygun Kullanma .. 31
UYGULAMA FAALİYETİ ... 32
ÖLÇME VE DEĞERLENDİRME .. 35
ÖĞRENME FAALİYETİ-2 ... 36
2. VİDA İLE SOMUNLU BİRLEŞTİRME .. 36
 2.1. Vıda İle Somunlu Birleştirmeğin Kullanım Alanları ... 37
 2.2. Somunlu Birleştirilmelerin Resmi ... 38
 2.2.1. Altı Köşe Başı Somunların Resmi ... 38
 2.2.2. Altı Köşe Başı Cıvata ve Somunla Yapılmış Birleştirme Resimleri 40
 2.2.3. Somunlu Vidalı Birleştirme Yapma ... 42
UYGULAMA FAALİYETİ ... 43
ÖLÇME VE DEGERLENDIRME ... 46
ÖĞRENME FAALİYETİ-3 ... 47
3. SAC VIDALARı İLE BİRLEŞTİRME YAPMA .. 47
 3.1. Sac Standartları ve Ölçüleri .. 47
 3.2. Sac Vidası Standartları ve Çeşitleri ... 48
 3.3. Sac Vidasının Kullanım Alanları .. 49
 3.4. Sac Vidası İle Birleştirme Resimleri .. 49
 3.5. Vida Sembolleri ... 50
 3.5.1. Vida Sembollerin Tanıtılmış .. 50
 3.5.2. Vida Sembollerinin Resim Üzerinde Uygulanması ... 51
UYGULAMA FAALİYETİ ... 51
ÖLÇME VE DEĞERLENDIRME ... 53
MODÜL DEĞERLENDİRME ... 56
CEVAP ANAHTARLARI ... 58
KAYNAKLAR ... 60
KOD | 522EE0328
ALAN | Yenilenebilir Enerji Teknolojileri
DAL/MESLEK | Ortak Alan
MODÜLÜN ADI | Enerji Mekanlığında Vidalama
MODÜLÜN TANIMI | Vidalama ile ilgili bilgi ve becerilerin verildiği öğrenme materyalidir.
SÜRE | 40/16
ÖN KOŞUL | Bu modülün ön koşulu yoktur.
YETERLİK | Vidalı birleştirme yapmak

MODÜLÜN AMACI
Genel Amaç
Gerekli ortam ve ekipman sağlandığında teknige uygun olarak, ince sac ve benzeri levhaları sac vida, kör delikli (saplama) ve somunlu birleştirme yapabileceksiniz.
Amaçlar
1. Tekniğe uygun olarak vidalarla kör delikli birleştirme yapabileceksiniz.
2. Tekniğe uygun olarak vidalarla somunlu birleştirme yapabileceksiniz.
3. Tekniğe uygun olarak ince sacları sac vida ile yapabileceksiniz.

EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI
Ortam: Atölye ortamı veya gerçek çalışma ortamı
Donanım: El breyzi veya matkap tezgâhi, matkap ucu, sac gereç, vida tornavida, anahtar takımları, çekiç, tokmak

ÖLÇME VE DEĞERLENDİRME
Bu modül içerisinde her öğrenme ve uygulama faaliyetinden sonra yapılan ölçüme ve değerlendirmeler ile kendi kendinizi değerlendirebileceksiniz.
Modül sonunda öğretmeniniz tarafından yapılan uygulama testlerle, kazandığınız bilgi ve beceriler değerlendirilecektir.
Sevgili Öğrenci,

Günümüzde herhangi bir mesleği öğrenmek mutlaka uygulamalı, bilimsel eğitimden geçmeyi zorunlu hale getirmektedir. Artık hiçbir meslek ilk öğrenildiği şekilde kalmamaktadır, sürekli alanında yenilenmeyi gerektirmektedir.

Vida ile birleştirenebilir enerji sektörünün her alanında uygulama imkânını bulmaktadır. Bu modülü tamamladığınızda vidalama konusunda birleştirme elemanlarını tanıyarak ölçüh almayı, wida ile birleştirme işi yapmayı kavramış olacaksınız. Ayrıca, bu alanda resim çizme ve okuma kurallarını öğreneceksiniz.

Ülkemizin ve sanayimizin nitelikli insan gücü ihtiyacını bir birey olarak karşılammanız yanında ülkenize, çevrenize, ailenize ve kendinize faydalı olma mutluluğunu ve sevincini yaşayacaksınız.
ÖĞRENME FAALİYETİ–1

AMAÇ

Bu faaliyet sonunda gerekli ortam ve ekipman sağlandığında tekniğe uygun vidalarla kör delikli birleştirmeyi yapabileceksiniz.

ARAŞTIRMA

- Kör delikli birleştirimelerin uygulama alanlarını araştırarak not ediniz.
- Kör delikle birleştirmede uygulama aşamalarının nelerden oluştuğunu araştırarak not ediniz.
- Çevrenizde bu alanla uğraşan işletmelerden, mesleki eğitim-öğretim kurumlarından, konu ile ilgili bütün yazılı kaynaklardan, kütüphanelerden veya internet ortamından araştırmalarınızı gerçekleştirebilirsiniz.

1. VIDALARLA KÖR DELİKLİ BİRLEŞTİRME

1.1. Vidalı Birleştirirmeler

İki veya daha fazla parçayı birbirine bağlamak, daha sonra parçaları tahrip etmeden sökmek için özel şekillendirilmiş elemanlar kullanılır. Bu elemanların görevlerini yerine getirebilmeleri için silindirik olan gövdelerine özel profilli dişler açılır. İşte bu gövdesi üzerine dış açılmış bağlama (birleştirme) elemanları yardımıyla sökülebilir şekilde yapılan birleştirme “Vidalı Birleştirme” olarak tanımlanır.

Vidalı birleştirimeler metal işleri ve yenilenebilir enerji sektöründe genellikle sökülebilir birleştirme için uygulanan bir metottur.

Şekil 1.1: Cıvata ve somun kullanarak yapılan birleştirme
1.1. Birleştirme Çeşitleri

Birleştirme işlemleri genel olarak iki yöntemle yapılmaktadır. Bunlar, sökülebilir ve sökülemeyen birleştirmeçidir.

1.1.1. Sökülebilir Birleştirme Çeşitleri

Sökülebilir birleştirme elemanları aşağıdaki detaylı olarak verilmiştir. Evde, işyerlerinde ve endüstride kullandığımız araç gereç ve makinelerde bu elemanları sık olarak görmekteyiz.

- Sökülebilir Birleştirme Çeşitleri
 - Kamalar
 - Pimler
 - Saplamalar
 - Rondela ve emniyet sacları
 - Emniyet segmanları
 - Vidalar
 - Cıvata ve somunlar
 - Hareketsiz geçmeler

Şekil 1.2: Cıvata ile yapılmış sökülebilir bir birleştirme
Kama: Makine parçalarını sökülebilir şekilde birleştiren ve kuvvet iletmeye yarayan elemanlardır (Şekil 1.3).

Pim: Birbirine takım makine parçalarının, karşılıklı konumlarının sağlanmasında kullanılan sökülebilir birleştirme elemanlarıdır (Şekil 1.4).

Saplama: Her iki ucuna vida açılmış başsız bağlantı elemanlarıdır. Saplamalar genellikle bir taraflı kör delikli bağlantılar için kullanılır (Resim 1.1).
Rondela: Sıkılan yüzeydeki sıkma kuvvetini azaltıp işin yüzeyini korumak için somun altına konulan elemanlardır.

Resim 1.2: Rondelalar

Segman: Dönerek hareket eden makine parçalarının birleştirilmesinde ve emniyete alınmasında kullanılan ara elemanlardır.

Resim 1.3: Emniyet segmanı

Vida: Sac ve benzeri malzemelerden yapılan araç gereç ve makinelerin birleştirilmesinde kullanılan birleştirme elemanlardır.

Resim 1.4: Vida ve vidali bağlantı
Cıvata ve somun: Belli bir baş biçimi olan makine parçalarının birleştirilmesinde sökülebilir olarak kullanılan elemanlardır.

Resim 1.5: Cıvata ve somun

Hareketsiz geçme: Makine elemanlarının siki olarak bir birlerine bağlanması işlemidir.

1.1.1.2. Sökülemeyen Birleştiriler

Metal ve otomotiv sanayi ile çelikten yapılan çatı, köprü, parmaklık, merdiven, vitrin, dekorasyon ve bunlar gibi daha birçok alandaki birleştirme uygulamalarının sökülmesi istenmez. Bu sebeple kaynaklı, perçinli veya lehimli olarak yapılan birleştiriler sökülemeyen birleştirilerdir.

- Sökülemeyen Birleştirme Çeşitleri
 - Perçinler
 - Kaynaklı birleştiriler
 - Lehimler
 - Sıcak geçmeler

Perçinler: Bir başı hazır olan ve diğer başi birleştirme anında oluşturulan sökülemez bağlantı elemanıdır (Şekil 1.5).
Şekil 1.5: Perçinli birleştirme

Kaynaklı birleştirme: Metalleri uygun bir enerji ve yöntemle ek yerlerinden sökülemez olarak birleştirilmesi kaynaklı birleştirme olarak adlandırılır (Resim 1.6).

Resim 1.6: Kaynaklı birleştirme

Lehimleme: İş parçalarının birbirine katı durumda iken, bir metal ergiyik aracılığı ile kaynatılarak birleştirilmesidir.

Sıcak Geçme: Makine parçalarının genişleme ve büzülme olayından yararlanarak gerilmeli olarak birleştirilmeleri sıcak geçme olarak adlandırılır.

Şekil 1.8: Sıcak geçmeli birleştirme
1.1.2. Kullanılma Yerlerine Göre Vidalar

Kullanım yerlerine göre vidalara geçmeden önce vidanın tanımının bilinmesi gerekir.

Vida: Parçaları sökülebilir olarak birleştiren, başı kare, altıgen veya değişik biçimlerde olan, silindirik yüzey üzerine (gövdesine) belirli adımlarda helisel oluklar açılmış makine elemanları vida olarak tanımlanır.

Vidalar diş profiline, ölçü sistemine, kullanım yerlerine göre, ağız sayısına ve helis yönüne göre sınıflandırılır.

Kullanım yerlerine göre vidalar ise bağlama ve hareket vidaları olmak üzere iki çeşittir.
1.1.2.1. Bağlama Vidaları

Parçaların birleştirilmesinde kullanılan ara elemanlardır. Bu vidalar “metrik, whitwort” vb vidalardır. Metrik vidanın ölçü birimi mm, whitwort vidanın ölçü birimi parmak (inç) tır.

- Metrik vidalar

Diş profil açısı 60° olup dişlerin kesiti eşkenar üçgen biçimindedir. Vidanın diş uçları, düzeltilmiş olduğundan boşlukludur. Cıvata diş dipleri, üçgen yüksekliğinin 1/6’sına eşit bir yarıçapla kavislendirilmiştir (Yuvarlatılmıştır). Böylece dişlerin, yüklenmelere karşı dayanımı artırılmıştır (Şekil 1.8 a ve b).

Vidanın en önemli elemanı olan adım (P), bir diş dolusu ile bir diş boşluğundan oluşur. Metrik vidalarda adım mm cinsinden belirtilir. Vidanın elemanları adına göre hesaplanır. Metrik vidanın adsal ölçüsü, diş üstü çapına göre verilir.

Vida boyu, kullanıldığı birleştirme nin kalınığına göre belirlenir. Sabit bir boy kullanılmaz (Resim 1.9). Metrik vidalar “M” harfi ile gösterilir ve piyasada bu şekilde ifade edilir. Örneğin, M20; çap (diş üstü çapı) 20 mm olan metrik vada gibi.
Şekil 1.8. (a,b): Metrik veda diş biçimi ve veda özellikleri

- **Metrik İnce Diş Vidalar**

Örneğin M 20 normal vidanın, veda adımı (P) 2,50 mm iken, M20 ince vidanın adımı (P) 2 mm’dir.

Metrik ince vidalardan, çok kuvvetli bağlantı yapmaya elverişlidir. Vidalamanın yapıldığı yerde sıvı veya gaz özelliğinde akışkan bir maddenin sıçrama olasılığı varsa mutlaka ince diş veda kullanılmalıdır.

- **Whitwort vidalardı**

Ölçü birimi parmak (inç). “Whitwort” vidalarda adım, parmaktaki diş sayısı olarak verilir. Örneğin Şekil 1.9 (B)’deki vidanın adımı parmakta 5 diş olarak tanımlanır.
Şekil 1.9: Whitwort veda diş biçim ve veda özellikleri

1 parmak = 25,4 mm’dir. Yani bir parmaktaki diş sayısıdır.

Şekil 1.10: Boru vidası
Whitwort İnce Diş Vidaları

Normal whitwort vidanın adımından daha küçük adımlı üretilen vidalara whitwort ince diş vida denir. Bu vidanın parmaktaki diş sayısı normal whitwort vidaya göre daha çiktur. Bu vidalar da metrik ince diş vidalarda olduğu gibi sızmazlık istenen yerlerde kullanılır.

Boru Vidaları

Boru üzerinde vida, özel boru paftaları ile açılır. Ölçüler parmak cinsinden verilir. Boru vida simgesi “R” harfi ile gösterilir. Örnek: BR ¾”, BR ½” ... gibi (Şekil 1.10).

1.1.2.2. Hareket Vidaları

Hareket vidaları genel olarak, makinelerde güç (bağlama) ve hareket iletmede kullanılan vidalardır. Hareket vidaları trapez, testere, yuvarlak ve kare vida olarak çeşitlendirilir.

Trapez Vidaları

Trapez vidaların vida biçimi, ikizkenar yamuk şeklinde olup yanal yüzeyleri arasındaki açı (tepe açısı) 30 derecedir. Trapez vidalarda diş dipleri boşluklu olduğundan yükleri yanal yüzeyler taşır. Diş kesitleri, dip taraflar doğru kalınlaştırıldığında trapez vidalar kare vidalara göre daha sağlamdır.

Bu vidalar, kuvvet ve hareket iletim vidası olarak takım tezgahlarındaki ilerleme mühendisinde, preslerde, kaldırma araçlarında vb sistemlerde kullanılır.

Trapez vidalar adımlarına göre ince, orta ve büyük adımlı trapez vida olarak adlandırılır.

Şekil 1.11: Trapez vida ve özellikleri
Trapez vidaların ölçü birimi mm olup simgesi Tr’dir (Şekil 1.11).

Örnek: Tr 24x5 TS 61/23: Anma çapı (diş üstü) 24 ve adım (P) 5 olup ölçü birimi mm’dir.

Cıvata diş üstü çapı: d
Adım: P
Cıvata diş dibi çapı: d3 = d-(P+2.ac)
Somun diş üstü çapı: D4 = d+2.ac

Böğür çapı: d2 = D2 = d-0,5.P
Cıvata diş yüksekliği: h3 = H4 = 0,5.P+ac
Diş Çalışma yüksekliği: H1 = H4-ac = 0,5.P
Boşluk: ac, R1, R2
Diş dibi genişliği: b = 0,366.P-0,54.ac
Diş profil açısı: 300

➤ **Testere Vidalar**

![Şekil 1.12: Testere vida](image)

Örnek: Tv 48x 8: Anma çapı (diş üstü) 48 ve adım (P) 8 olup ölçü birimi mm' dir. Simgesi Tv dir.

Civata diş üstü çapı : d=D
Adım : P
Civata diş dibi çapı : d₃=d-1,736P
Somun diş dibi çapı : D₁=d-1,5P
Bögür çapı : d₂=D₂=d-0,75P
Civata diş yüksekliği : h₃=0,868P
Somun diş yüksekliği : H₁=0,75P
Boşluk : R=0,124P
Diş üstü genişliği : w=0,264P
Diş profil açısı : 33°

Yuvarlak Vidalar

Şekil 1.13: Yuvarlak vida

Bu tür vidalar vagonların birbirine bağlanmasında, tozlu ve pis yerlerde, rutubetli ortamlarda, kirli su vana millerinde, hortum rkorlarında ve sac parçaların birleştirilmesinde (kutu kapakları, ampul sap kısımları vb yerlerde) yuvarlak vidalar yaygın olarak kullanılır.

Yuvarlak vidanın simgesi Yv’dir. TS 61/37 olarak standart numarası verilmiş olup ölçü birimi mm ve parmaktr. Örnek: Yv 40x6. Yv 40x1/6”: Anma çapı (diş üstü)40, adım (P) 6 veya 1/6” parmaktr.
NOT: Aşağıdaki veriler için Şekil 1.13’e bakınız.

Cıvata diş üstü çapı: \(d\)

Adım: \(P = \frac{25.4}{z}\) (\(z=\)Parmaktaki diş sayısı)

Cıvata diş dibi çapı: \(d_1 = d - 2.h_1 = d - P\)

Cıvata diş üstü çapı: \(D = d + 2.a = d + 0.2.P\)

Somun diş dibi çapı: \(D_1 = D - P = d - 0.9.P\)

Böğür çapı: \(d_2 = d - 0.5.P\)

Cıvata diş yüksekliği: \(h_1 = H_1 = 0.5.P\) \(r = 0.2385.P\)

Somun diş yüksekliği: \(H_1 = 0.75.P\) \(R = 0.256.P\)

Boşluk: \(a = 0.05.P\) \(R_1 = 0.221.P\)

Diş profil açısı: \(30^0\)

➢ Kare Vidalar

Kare vidalar diş profilleri (diş kesitleri) kare biçiminde olan vidalarıdır. Bu vidalarda dişlerin yanal yüzeyleri vida eksenine diktr.

\[\text{Şekil 1.14: Kare vida}\]

Kare vida yapımının kolay olması nedeniyle hassas olmayan ve orta derecede zorlanmaya elverişli vidalardır. El ile çalışan pres milleri ile mengene millerinde ve benzeri yerlerde yaygın olarak kullanılır. Ölçü birimi mm ve parmak olup simgesi Kr’dir.

Örnek: Kare vida Kr 36x1/3”: Anma çapı 36 ve adımı 1/3” (parmaq)”dür. Simgesi Kr’ dir.

Diş adımı: \(P = a + b\)

Diş derinliği: \(H_1 = 0.5.P\)

Diş üstü çapı: \(d = d_1 + 2.H_1\)

Diş dibi çapı: \(d_1 = d - 2.H_2 = d - P\)

Diş genişliği: \(a = 0.5.P - 0.025….0.05mm\)

Diş boşluğu: \(b = 0.5.P + 0.25….0.05mm\)
1.1.2.3. Cıvata ve Somunlar

Cıvata ve somunlar makine ve iş parçalarının birbirine sökülebilir şekilde bağlanmalarında kullanılan elemanlardır. Cıvata sadece başlarına bağlama elemanı olarak kullanıldığı gibi, somun ile de beraber bağlanti elemanı olarak kullanılır.

Cıvata ve somunlar, sade karbonlu sementasyon ve ıslah çeliklerinden yapılır. Ayrıca bakır, pirinç ve alüminyum alaşımlı malzemelerden de cıvata ve somun üretimi yapılır.

Cıvatanın Tanımı

Somun kullanılarak parçalar sökülebilir şekilde birleştiren genellikle sıkma kuvveti somuna uygulanan, başı kare, altıgen veya değişik şekillerde olan, gövdelere vida dişi açılmış bağlama elemanlardır.
Cıvata Çeşitleri

Cıvatalar, cıvata başlarına göre adlandırılır.
- Altı köşe başlı cıvatalar (Şekil 1.16-A)
- Dört köşe başlı cıvatalar (Şekil 1.16-B)
- Silindir başlı cıvatalar (Şekil 1.16-C)
- Mercimek başlı cıvatalar (Şekil 1.16-D)
- Yuvarlak başlı cıvatalar (Şekil 1.16-E)
- Havsa başlı cıvatalar (Şekil 1.16-F)
- Halka başlı cıvatalar (Şekil 1.16-H)
- Tırtılı cıvatalar (Şekil 1.16-I)
- Temel cıvatalar (Şekil 1.16-J)
- Tapalamak cıvatası
- Çekiç başlı cıvatalar
- Sac cıvataları
- Ağac cıvataları
- Özel üretilen cıvatalar
- Kelebek başlı cıvatalar (Şekil 1.16-G)

Endüstride kullanılan cıvata şekillerinden bazıları (Şekil 1.16) da görülmektedir.

Şekil 1.16: Değişik biçimlerde cıvata resimleri
Şekil 1.17: Somun

- **Somunun Tanımı**

 Ortasına vida açılmış deliklerden civata, saplama vb takılmak suretiyle parçaları birbirine bağlayan, anahtar, tornavida veya elle sökülüp takılacak şekillerde yapılan elemanlara somun adı verilir.

- **Somun Çeşitleri**

 Somunlar genel olarak yapılarına göre adlandırılır.

 ![Resim 1.12: Çeşitli biçimlerde somunlar](image)

 - Altı köşe somunlar
 - Dört köşe somunlar
 - Şapkalı somunlar
 - Taçlı somunlar
 - Kelebek somunlar
 - Tırtıllı somunlar
 - Yuvarlak somunlar
 - Kaynak edilebilen somunlar
 - Halka başlı somunlar
 - Özel üretilen somunlar
1.1.2.4. Çıvata ve Somunların Sıkılmasında Tork Hesabı

Şekil 1.18: Çıvatanın anahtar ile sıkılması

\[F_1 = \text{El kuvveti} \]
\[F_1 \text{in bir devirlik yolu} \ s = 2. \pi . r \]
\[F_2 = \text{Sıkma kuvveti} \]
\[r(L) = \text{Anahtar uzunluğu (kuvvet kolu)} \]
\[F_2 \text{nin bir devirlik yolu} \]
\[\text{Yani vida adımı} = P \]

Şekil 1.18’i incelersek, somunu veya çıvatayı sıkarken uygulanan el kuvveti \(F_1 \) ile kuvvet kolu (anahtar uzunluğu) \(r(L) \) ile gösterilmiştir. Buna göre döndürme momenti (DM) \(= \text{Tork} = F_1 \times r(L) \) dir.

\[M = \frac{F_1 \times r(L)}{r} = \text{kgf} \]

Örnek

Anahtar ucuna \(F_1 = 18 \text{ kg’lık kuvvet uygulandığında}, r(L) \) mesafesi de 20 cm iken meydana gelen torkun (DM) değeri ne olur?

Çözüm

\(r \) (L) = 20 cm = 0,2 m

Tork (DM) = \(F_1 \times r(L) = 18 \times 0,2 = 3,6 \text{ kgm} \) bulunur.

Sıkma kuvveti \(= \frac{F_2}{P} = \frac{F_1 \times 2.\pi . r}{P} \text{ kgf bağıntısı} \) ile bulunur.
Örnek: M 16 (adımı 2 mm) somunun sıkılması için gerekli moment 1.5 kgm olup kullanılan anahtarın kolu 100 mm’dir. Bu durumda birleştiriyi (somunu) sikan F_2 kuvveti ne kadardır?

Çözüm
M=1.5 kgm
r=100 mm = 0,10m
Adım=P=2mm

Sıkma kuvveti, $F_2 = \frac{F_1 \cdot 2 \cdot \pi \cdot r}{P}$ dir. Burada F_1 bilinmediğinden önce onun bulunması gerekir.

$$F_1 = \frac{M}{r} = \frac{1.5 \text{kgm}}{0,10m} = 15 \text{kgf}$$

Bulunan F_1 değerini yukarıdaki formülde yerine koyarsak, sıkma kuvveti, $F_2 = \frac{F_1 \cdot 2 \cdot \pi \cdot r}{P} = \frac{15 \cdot 2 \cdot 3.14 \cdot 100}{2} = 4710 \text{kgf}$ olur.

Döndürme momenti öyle ayarlanmalıdır ki F_2 kuvveti vida dışlerini sıyırmasın veya birleştirilen parçaları ezmesin.

Şekil 1.19: Cıvata veya somunun doğru bir şekilde sıkılması

1.1.2.5. Vidaların Emniyete Alınması

Cıvata ve somunlar titreşimlerden dolayı zamanla gevşeyebilir, dolayısıyla makine parçalarının bozulmasına ve kırılmasına neden olabilir. Birbirine bağlı makineler, cıvata ve somunun titreşimden dolayı gevşemesiyle birbirinden ayrılar.

Yukarıda belirtilmiş tehlikeli durumların olmaması için özellikle sarsıntılı, darbeli ve titreşimli çalışan makine ve iş parçalarının birleştirilmesinde kullanılan somun ve cıvataların emniyete alınması gereklidir. Bunun için rondela veya emniyet sacları kullanılır.
Ø Rondela ve Emniyet Saçları

Resim 1.13: Rondela

Ø Rondela

Birden fazla parçanın cıvata, somun vb elemanlarla bağlanması sırasında, oturma yerlerindeki yüzeylerin zedelenmesini önlemek, bağlantıların kendiliğinden gevşemesini engelleyerek veya bağlantı yerlerindeki vida başlarını kapatmak için kullanılan metalden yapılan makine elemanlarına rondela adı verilir.

Şekil 1.20: Rondela takılarak yapılan birleştirme

Rondelalar takıldıkları makine parçasının gereç yapısından yumuşak olmalıdır. Rondelalar yumuşak çelik, bakır, piriç alüminyum, kursun ve mukavvadan yapılır.

Rondelalar:

- Sık sık sökülüp takılan bağlantı yerinde,
- Parça yüzeylerinin korunmasında,
- Somun ve cıvata başının baskı kuvvetini daha geniş bir yüzeye dağıtılmasında (özellikle yumuşak metal, ağaç ve PVC malzemelerde),
- Cıvata ve somunun oturduğu yüzey pürüzlü ve bozuk olabilir. Dolayısıyla cıvata ve somun başının bozulmasının önlenmesinde,
- Bağlanacak parçalardaki cıvatanın geçeceği delik çapı normalden büyük olan yerlerde,
Somun veya cıvatanın oturacağı yüzeyin eğik olması durumında kullanılır.

Resim 1.14: Rondela çeşitleri

- Düz rondela (a)
- Yaylı rondela (b)
- Bombeli rondela (c)
- Dalgıç rondela (d)
- Kulaklı rondela (e)
- Konik U rondela (f)
- Tırnaklı rondela (g)
- Konik I rondela (h)

Şekil 1.21: Yaylı rondela uygulaması

Emniyet Saçları

Darbeli ve titreşimli çalışan makinelerde, somunların çözülmemesi için somunların altlarına konulan rondelalardır (Şekil 1.22).
Çeşitleri
- İçten tırnaklı emniyet sacları
- Dıştan tırnaklı emniyet sacları
- Bir kulaklı emniyet sacları
- İki kulaklı emniyet sacları
- Kanallı somunlar için emniyet sacları

Şekil 1.22: Çeşitli emniyet sacları

Somunların Kısmi Frenlenmesi

Cıvata ve somunların beraber ya da cıvataların ayrı bağlantılarında darbe ve titreşim sonucu çözülme meydana gelir. Bu durumlarla çözülmeyi önlemek için belli (kısımlı) bölgelerde amaca uygun rondela kullanılır. Bunların bir kısmı sürtünmeyi artırarak, bir kısmı da dönmeyi önleyerek görev yapar.

Şekil 1.23: Somunların kısmi frenlenmesinde kullanılan rondelalar
> Somunların Kesin Frenlenmesi

Cıvata ve somunların sarsıntı, vuruntu veya yük altında hiç çözülmemesi için güvenliğinin sağlanması gerekir. Bu işlem için işe uygun malzemeler kullanılır.

Somunların kesin frenlenmesi emniyet sacları, gupilya ve benzeri şekillerde olur. Aşağıdaki şekillerde somunların frenlenmesi ile ilgili resim çizimleri uygulamalı olarak iş üzerinde görülmektedir.

Şekil 1.24: Maşalı pim ve vidalı sac ile somunların kesin frenlenmesi

Şekil 1.25: Tek ve çift kulaklı emniyet sacları ile frenleme

1.2. Vida İle Kör Delikli Birleştirme

1.2.1. Vida İle Kör Delikli Birleştirme Menen Kullanım Alanları

Vida ile kör delikli birleştirme işleminde cıvata ve genellikle saplamalar kullanılır. Kör deliklerde kullanılan saplamalar çelik, bakır ve alüminyum saplama olmak üzere üç gruba ayrılır.
Somunlu, kaynaklı ve perçinli birleştirmeimin yapılması mümkün olmayan parçaların birleştirilmesinde vida (saplama) ile kör delikli birleştirme kullanılır. Bunların yanı sıra çatlık ve kırık parçaların kaynatılamasında ve birleştirilmesinde de kullanılmaktadır.

Resim 1.15: Kör delikli birleştirmede kullanılan saplama

1.2.2. Kör Delikli Birleştirmelerin Resimleri
Altı Köşe Başlı Civataların Resmi
Aşağıda altı köşe başlı civatanın çizimi ile ilgili örnek resimler verilmiştir. Verilen bu örnekleri inceleyiniz.

Örnek çizim 1

Şekil 1.26: Civata çizimleri P: Adım

d: Diş üstü çapı
d₁: Diş dibi çapı…..(d₁=d-1,2269.P)
e: Civata başı köşegeni..(e=2d)
AA: Anahtar ağzı…. (AA=0,866e)
l: Civata boyu (değişken).. (l≈4,5.d)
b: Vida boyu (değişken)…(b≈2,5.d)
k: Civata başı kalınlığı…(k=0,7-0,8.d)
Örnek çizim 2

(Aşağıdaki hesaplamalar Örnek 2’de gösterilen M16x60 standardındaki cıvata için yapılmıştır. d=16)

\[R2 = \text{Cıvata başı kavis çizimi mesafesi, } R2 = \frac{3}{4} \times e \text{ alınır,} \]
\[R2 = \frac{3}{4} \times 32 = 24 \text{ mm’dir.} \]
\[e = \text{Cıvata başının köşegen çapı olup yaklaşık } e = 2 \times d \text{ alınır,} \]
\[e = 2 \times 16 = 32 \text{ mm’dir.} \]
\[d = \text{Vidanın diş üstü çapı} \]
\[k = \text{Cıvata başı yüksekliği, } k = 0,7 \times d \text{ alınır, } k = 0,7 \times 16 = 11,2 \text{ mm’dir.} \]
\[S = \text{Anahtar ağız} \]
\[d_t = \text{Vidanın diş dibi çapı} \]
\[b = \text{Vida boyu} \]
\[L = \text{Cıvatanın boyu} \]
\[R_l = \text{Cıvata başının kavis çiziminde kullanılan önden görünüş ölçüsü,} \]
\[R_l = \frac{1}{8} \times e = \frac{1}{8} \times 32 = 4 \text{ mm’dir.} \]

Çizimi gerçek ölçü'lere göre yapmak gerektiğiinde ilgili standart çizelgelerden yararlanılır (Tablo 1.1).

<table>
<thead>
<tr>
<th>Metrik vida diş üstü çapı (d) mm</th>
<th>Diş dibi çapı (d_t) mm</th>
<th>S mm</th>
<th>Parmak vida diş üstü çapı (d) Parmak</th>
<th>Vida çapı mm</th>
<th>Boru vida çapı (d) Parmak</th>
<th>Vida çapı mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3,090</td>
<td>7</td>
<td>1/4</td>
<td>6,350</td>
<td>R 1/8</td>
<td>9,728</td>
</tr>
<tr>
<td>5</td>
<td>3,960</td>
<td>8</td>
<td>5/16</td>
<td>7,938</td>
<td>R 1/4</td>
<td>13,157</td>
</tr>
<tr>
<td>6</td>
<td>4,700</td>
<td>10</td>
<td>3/8</td>
<td>9,525</td>
<td>R 3/8</td>
<td>16,662</td>
</tr>
<tr>
<td>8</td>
<td>6,376</td>
<td>13</td>
<td>1/2</td>
<td>12,700</td>
<td>R 1/2</td>
<td>20,955</td>
</tr>
<tr>
<td>10</td>
<td>8,052</td>
<td>17</td>
<td>3/4</td>
<td>19,052</td>
<td>R 1</td>
<td>33,249</td>
</tr>
<tr>
<td>12</td>
<td>9,726</td>
<td>19</td>
<td>1</td>
<td>25,4</td>
<td>R 1 1/8</td>
<td>37,897</td>
</tr>
<tr>
<td>14</td>
<td>11,402</td>
<td>22</td>
<td>1 1/4</td>
<td>31,751</td>
<td>R 1 1/4</td>
<td>41,910</td>
</tr>
<tr>
<td>16</td>
<td>13,402</td>
<td>24</td>
<td>1 1/2</td>
<td>38,1</td>
<td>R 1 3/8</td>
<td>44,323</td>
</tr>
<tr>
<td>18</td>
<td>14,752</td>
<td>27</td>
<td>1 5/8</td>
<td>41,277</td>
<td>R 1 1/2</td>
<td>47,803</td>
</tr>
<tr>
<td>20</td>
<td>16,752</td>
<td>30</td>
<td>1 3/4</td>
<td>44,452</td>
<td>R 1 3/4</td>
<td>53,746</td>
</tr>
<tr>
<td>22</td>
<td>18,752</td>
<td>32</td>
<td>2</td>
<td>50,8</td>
<td>R 2</td>
<td>59,614</td>
</tr>
</tbody>
</table>

Tablo 1.1: Metrik, parmak ve boru altı köşe cıvata ölçüleri
Altı köşe başlı cıvata resimlerinin çiziminde aşağıdaki işlem sırası takip edilir.

- Cıvatanın görünüşleri öncelikle basit geometrik kısımlar halinde ve ince çizgilerle çizilir.
- Görünüşlere ait kavisler çizilir ve kalın çizgilerle koyulaştırılır.
- Cıvatanın diş üstü ve diş dibi kısımlarına ait daireler tamamlanır.
- Görünüşlerin diğer kısımları tamamlanıp çizim sonuçlandırılır.

Kör Delikli Birleştirme Resimleri

Bu uygulamada kör delik denilmesinin sebebi, somun (vida) görevi yapacak parçaya delinen delik, boydan boyya değil, birleşecek parça içerisinde kalacak şekilde delinerek birleştirilmenin yapılmasındanıdır. Üste kalan parça ise alttakinden 1-1,5 mm geniş delinir. Aşağıda altı köşe başlı cıvata ve saplama ile yapılan kör delikli birleştirme resimleri verilmiştir.

Şekil 1.27: Kör delik açılması

Not: Kör deliğe iç vida açılırken kılavuzun uç biçiminden dolayı yaklaşık olarak 0,5xd kadar boşluk bırakılır.

Şekil 1.28: Cıvatanın kör deliğe vidalanması

Not: Kör delikte bırakılan boşluğun vidalanma sırasında görünmesi.
Şekil 1.29: Somunsuz alt köşe başlı cıvatayla kör delikli birleştirme resimleri

Cıvata ucu, vida sonu ve cıvata başı çizimleri alt köşe başlı cıvataLNm çiziminde anlatıldığı gibi çizilmelidir.

Saplama TL Yapılan Kör Delikli Birleştirme Resimleri

Bu yöntemde parçalardan birine diş üstü çapından büyük delik açılır. Diğerine kılavuzla vida çekilerek saplama yerine yerleştirilir ve somun ile bağlantı yapılır. Şekil 1.30’da saplamayla yapılmış birleştirme resimleri görülmektedir.
Vida ile Parçayı Kör Delik Açarak Birleştirme

Vida ile kör delikli birleştirmede aşağıdaki işlem sırası takip edilmelidir.

- Öncelikle birleştirilecek parçalar delinir. Delme işlemi, birleştirmede kullanılacak civata veya saplamaya göre yapılır. Örneğin iki parça M 10 x 30’luk civata ile birleştirmek için önce, M 10 civatanın diş dibi çapına bakılır (Tablo 1.1). Yaklaşık 8,5 mm matkap ile ikinci parçanın dışına çıkmayacak şekilde delinir. (Delik boyu = civata boyu + 0,5 x civata çapı kadar alınır. Bu da, delik boyu = 30 + 0,5 x 30 = 45 mm olur). 1 no’lu parça ise civata çapından 1 mm veya 1,5 mm büyük deliniz ve civatanın bu parçadan rahat geçmesi sağlanır.
- Matkap havası (matkap ağız açısı) 120 derece olmalıdır.
- Matkap çapına uygun klavuz seçilir. Delinen delik M10 civata uygun delindikinden kullanılan klavuzda M10 olmalıdır.
- Kör deliğe açılan vida, normal olarak delik dibine kadar inmez.
- Üst parçada bırakılacak boşluk, civatanın rahat geçebileceğini şekilde olmalıdır.
- Civatanın ucu vida açılmış kısmının sonuna kadar dayanmaz.
- Kör deliğe klavuz ile diş çıkaranlarken klavuzun uç biçiminden dolayı (0,5 xd) kadar boşluk bırakılır. (Şekil 1.27). Son olarak civata sıkılarak bu iki parça birleştirilmiş olur.
Şekil 1.31: Vida ile parçaya kör delik açılması ve somun ile vidalanması

1.2.3. Vidalari Takma ve Sökme Kullandılan Takımlar

Makine ve iş parçaları üzerinde bulunan cıvata ve somunların sökülmesi ve takılmasında genellikle anahtar takımları kullanılır.

Bunların dışında cıvata ve somunları söküp takmak için anahtar takımlarının yanında tornavida, kurbagacık anahtarı, aylan anahtarı vb aletler kullanılır.

En çok kullanılan anahtar çeşitleri şunlardır:
- Açık ağızlı anahtarlar (TS 81/9)
- Kapalı ağızlı anahtarlar (TS 81/10)
- Yıldız anahtarlar (TS 81/16)
- Lokma anahtarlar (TS 81/15)
- Boru anahtarlar (TS 81/42)
- Çubuk anahtarlar (TS 81/28)
- Ayarlanabilir anahtarlar (TS 81/43)
- Kancalı anahtarlar (TS 81/30)

1.2.4. Anahtar Takımlarını Amacına Uygun Kullanma

Somunların sökülmesi ve yerlerine takılmalarında kullanılan anahtarlar veya tornavidalar amacı dışında kullanılmamalı, anahtar ağız somun ölçüsüne uygun olmalı ve tornavida somundaki kanala tam girmelidir. Ölçüsünden büyük anahtar ya da küçük tornavida kullanılmamalı ve somunların sıkılmasında uygun kuvvet uygulanmalıdır.
Vida ile kör delikli birleştirme uygulamasını aşağıdaki işlem basamaklarına göre yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Kör deliğin açılacağı yeri ve birleştirilecek parçaları markalayınız.</td>
<td>➢ El aletlerini amacına uygun kullanınız</td>
</tr>
<tr>
<td>➢ Delinecek yerlere nokta vurunuz.</td>
<td>➢ Delme işlemi yapılacak yerleri mutlaka markalayınız ve izleyiniz.</td>
</tr>
<tr>
<td>➢ Diş açılacak yere diş dibi çapına uygun matkap ucu ile deliniz.</td>
<td></td>
</tr>
<tr>
<td>➢ Kesimi yapılacak profili kesim makinenize yerleşiriniz.</td>
<td>➢ Çalışma sırasında iş önlüğü ve eldiven giyiniz.</td>
</tr>
<tr>
<td>➢ Üstteki parçayı vida çapından büyük matkapla deliniz, gerekirse havşa açınız.</td>
<td>➢ Makinelerde çalışma kurallarına uyunuz.</td>
</tr>
<tr>
<td>➢ Kılavuzla kör deliğe diş açınız.</td>
<td></td>
</tr>
</tbody>
</table>
Vida (saplama) ile iki parçayı uygun takımla birleştiriniz.

İşlem sonrası civata somun başına uygun anahtarla sıkılmalıdır.
Meslekle ilgili etik kurallara uyunuz.
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıdaki listelenen davranışlarından kazandığınız beceriler için **Evet**, kazanamadığınız beceriler için **Hayır** kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kör deliğin açılacağı yeri ve birleştirilecek parçaları markaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Delinecek yerlere nokta vurdunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Diş açılacak yere diş dibi çapına uygun matkap ucu ile deldiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Üstteki parçayı vida çapından büyük matkapla delerek, gerekçiyorsa havşa açtıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Kılavuzla kör deliğe diş açtımınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Vida ile iki parçayı uygun takımla birleştirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. El aletlerini amaçına uygun kullandınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Delme işlemi yapılacak yerleri mutlaka markalayarak izlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Makinelerde çalışma kurallarına uydunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Çalışma sırasında iş önüğü ve eldiven giydiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Mesleğinizle ilgili etik kurallara uygun davranımdınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

ÖLÇME VE DEĞERLENDİRME

Aşağıdaki cümlelerin başında boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

1. () Kör deliğin açılacağı yer ve birleştirilecek parçalar mutlaka markalanmalıdır.
2. () Altı köşe başlı somunun yüksekliği diş dibi çapının 4 katı olmalıdır.
3. () Kör deliğe iç vida açılışken kılavuzun uç biçiminden dolayı yaklaşık olarak 0,5xd kadar boşluk bırakılır.
4. () Silindirik dış yüzeyine vida açılan ve çeşitli şekillerde başı bulunan elemanlara cıvata adı verilir.
5. () İki parça sadece somun ile birleştirilir.

Aşağıdaki cümlelerde boş bırakılan yerlere doğru sözcükleri yazınız.

1. Gövdesi üzerine diş açılmış birleştirme elemanı yardımı ile parçaları sökülebilir şekilde yapılan birleştirme birleştirme olarak tanımlanır.
2. Kamalı, pimli, saplamalı vb birleştirmeler birleştirme çeşitleridir.
3. Metrik ve Whitwort vidası genellikle vidası olarak kullanılır.
5. Somunlu, kaynaklı ve perçinli birleştirmeinin mümkün olmadığı yerlerde İle kör delikli birleştirme kullanılır.

DEĞERLENDİRME

amuç

Bu faaliyet sonucunda gerekli ortam ve ekipman sağlandığında tekniğe uygun vidalarla somunlu birleştirme yapabileceksiniz.

araştırma

Somunlu birleştirmenin hangi alanlarda yapıldığını ve somunlu birleştirmede işlem basamaklarını araştırıp bu konuda rapor hazırlayınız. Bu raporu sınıfta arkadaşlarınızla tartışınız.

Çevrenizde bu alanla uğraşan işletmelerden, mesleki öğretim veren eğitim kurumlarından, konu ile ilgili bütün yazılı kaynaklardan, kütüphanelerden veya internet ortamından araştırmalarınızı gerçekleştirebilirsiniz.

2. vıda ile somunlu birleştirme

Resim 2.1: Farklı biçimlerde somunlar

Delik içine kılavuz ile vida çekilmiş ve dış çevresi genellikle altıgen, dörtgen veya yuvarlak biçimde olan makine elemanlarına somun adı verilir.

Somunlar, civatalarla takılarak kullandığımız araç gereç ve makine parçalarını birbirlerine sökulebilir şekilde bağlayan elemanlardır.
Somunlar biçimlerine veya kullanım alanlarına göre çeşitlenir. Bunlar; metrik alt köşe başlı, metrik dört köşe başlı, whitwort somunlar, kafes somun, flanşlı somun, kaynak somunu, kelebek somun, kontra somun, taçlı somun, şapkalı somun, tablalı somun, mobilya somunu vb’dir.

2.1. Vida ile Somunlu Birleştirmeğin Kullanım Alanları

Başta makine ve metal sanayi olmak üzere elektronik, bilgisayar, motor, gemi, uçak ve mobilya sektöründe yaygın olarak kullanılmaktadır.

Çelikten yapılan somunlar, çekme dayanımı 40 kg/mm² olan çeliklerden yapılır. Bakır alaşımli somunlar, çekme dayanımı 32 kg/mm² olan, elektrik malzemeleri üretiminde kullanılan bakırdan yapılır. Alüminyum ve alaşım somunları, hafif olması istenen yerlerde özellikle uçak sanayinde kullanılır. Fiber ve bakalitten yapılan somunlar elektrik sanayinde kullanılır. Yine gümüş alaşım somunlar, makine ve elektronik sanayinde kullanılmaktadır.

Özellikle rutubetli ve sulu ortamlarda çalışan makine ve araç gereçlerde kullanılan civata ve somunlar paslanmaya karşı dayanıklı metal ve alaşımı ile kaplama yapılırlar (galvaniz ve nikel kaplama) kullanılmalıdır.
2.2. Somunlu Birleştirmelerin Resmi

2.2.1. Altı Köşe Başlı Somunların Resmi

Örnek Resim 1:

Şekil 2.1: Altı köşe somun resmi

P: Adım
D: Diş üstü çapı
D₁: Diş dibi çapı….(D₁=D-1,0825.P)
e: Somun köşegeni …(e=2.D)
AA: Anahtar ağzı…(AA=0,866.e)
M: Somun kalınlığı…(m=0,8-1.D)
Şekil 2.2: Cıvata üzerinde somun resmi

Örnek Resim 2: (Şekil 2.2)'de cıvata üzerinde görülen M 20x35 ölçüsündeki altı köşe başlı somunun çizimi görülmektedir.

- $d = 20 \text{ mm}$
- $k = 0.7 \times d = 0.7 \times 20 = 14 \text{ mm}$
- $m = 0.8 \times d = 0.8 \times 20 = 16 \text{ mm}$
- $R2 = 24 \text{ mm}$
- $e = 2 \times d = 2 \times 20 = 40 \text{ mm}$
- $r = \frac{1}{8} \times e = \frac{40}{8} = 5 \text{ mm}$
- $b = 25 \text{ mm}$
- $L = 35 \text{ mm}$
- $S = 30 \text{ mm}$
2.2.2. Altı Köşe Başlı Cıvata ve Somunla Yapılmış Birleştirme Resimleri

Aşağıda “altı köşe başlı cıvata ve somunla yapımı birleştirme resimleri” görülmektedir.

Örnek resim 1

Şekil 2.3: İki parçanın cıvatah somun ile birleştirme resmi
Örnek resim 2

Örnek resim 3

Şekil 2.4: Cıvatalı ve somunlu birleştirme resimleri

Şekil 2.5: Dört ayrı parçanın cıvata ve somunla birleştirilmesi
2.2.3. Somunlu Vidalı Birleştirme Yapma

Bu bağlantı için birleştirilecek en az iki parça, cıvata, somun ve rondela kullanılır. Somunlu ve cıvatalı birleştirme yapmak için aşağıdaki işlem sırası takip edilmelidir.

Öncelikle birleştirilecek parçalar delinir. Delme işlemi, birleştirmede kullanılacak cıvata ve somuna göre yapılır. Delinecek parçalar cıvata diş üstü çapından biraz büyük olacak şekilde uygun matkapla delinmelidir (Şekil 2.4).

Son olarak uygun araçla (anahtar) somun sıkılarak bu iki parça birleştirilmiş olur (Şekil 2.3 - 2.4 - 2.5).
Cıvata ve somunlu birleştirme uygulamasını aşağıdaki işlem basamaklarına göre yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Vidalı ve somunlu birleştirilecek parçanın delik yerlerini markalayınız.</td>
<td>➢ El aletlerini amacına uygun kullanınız</td>
</tr>
<tr>
<td>➢ Delinecek yerlere nokta vurunuz.</td>
<td>➢ Delme işlemi yapılacak yerleri mutlaka markalayınız ve izleyiniz.</td>
</tr>
<tr>
<td>➢ İki parçayı da cıvatanın diş üstü çapına uygun matkap ile deliniz.</td>
<td>➢ Çalışma sırasında iş önlüğü ve eldiven giyiniz.</td>
</tr>
</tbody>
</table>
| ➢ İki parçayı delinen yerden vidaya takınız. | ➢ Makinelerde çalışma kurallarına uyunuz.
| | ➢ Cıvata boyu, her iki parçanın toplam kalınlığından büyük olmalıdır. |
| ➢ Somunun sıkılacağı yere rondela veya pul takınız. | ➢ Meslek ilgili etik kurallara uyunuz. |
| ➢ Somunu cıvataya takılarak sıkılabil diligği kadar el ile sıkma yapınız | ➢ Somunu takılırken vida dişlerine zarar vermeyiniz. |
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için **Evet**, kazanamadığınız beceriler için **Hayır** kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vidalı ve somunlu birleştirilecek parçanın delik yerlerini markaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Delinecek yerleri nokta ile izlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. İki parçayı da cıvatanın dış üstü çapına uygun matkap ile deldiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. İki parçayı delinen yerden vidaya takınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Somunun sıkılacağı yere rondela veya pul takınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Somunu cıvataya ağızlatakarak sıkılabilirdiği kadar el ile sıkma yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Vida ve somunun şekline uygun anahtar ile uygun sıkma kuvveti uyguladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. El aletlerini amacına uygun kullanınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Makinelerde çalışma kurallarına uydunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Çalışma sırasında iş önlüğü ve eldiven kullanınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Mesleğinizle ilgili etik kurallara uygun davranınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Somun başına uygun anahtar ile sıkma yaptınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki cümlelerin başında boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

1. () Delinecek her iki parça da cıvatanın diş dibi ölçüsüne uygun matkap ucu ile delinir.
2. () Somunlu cıvatalı birleştirmede somunun altına, parça yüzeyine uygun pul veya rondela takılır.
3. () Cıvataya somun takılırken, somun el ile tutulup takılarak sıkılır.
4. () Cıvatalı ve somunlu birleştirme uygulaması somuna uygun anahtar ile yapılır.
5. () Cıvata boyu birleştirilecek iki parça kalınlığından kısa olmalıdır.

DEĞERLENDİRME

47

ÖĞRENME FAALİYETİ–3

AMAC

Bu faaliyet sonucunda gerekli ortam ve ekipman sağlandığında tekniğe uygun olarak ince saçları sac vida ile birleştirebileceksiniz.

ARAŞTIRMA

- Sac vida ile birleştirme yapma aşamalarını araştırarak not ediniz ve bu araştırmalarınızı sıfıfta arkadaşlarınızla tartışınız.
- Çevrenizde bu alanla uğraşan işletmelerden, mesleki öğretim veren eğitim kurumlarından, konu ile ilgili bütün yazılı kaynaklardan, kütüphanelerden veya internet ortamından araştırmalarınızı gerçekleştirin.

3. SAC VİDALARI İLE BİRLEŞTİRME YAPMAK

![Sac vida](Resim 3.1: Sac vida)

Sac üzerindeki deliklere kilavuz salmadan, diş dibi çaplarına göre delinmiş delikler üzerine bağlantıları sağlayan elemanlar sac vida olarak adlandırılır (Resim 3.1).

Ayrıca, sac ve benzeri metalleri birbirine çözülebilir şekilde bağlayan mekanik gereçler veya yerlerine tornavidalar aracılığı ile sökülüp takılan vida elemanları olarak da tanımlanır

Sac vidaları, az yük kaldıran ve nadir olarak sökülerek yerlerde kullanılır. Sac vidaları soguk şekillenmiş samentasyon çeliklerinden yapılar.

3.1. Sac Standartları ve Ölçüleri

Endüstride, siyah sac, DKP sac levha ve rulo halinde üretilmektedir Bunların ölçüleri aşağıdaki tabloda gösterilmektedir. Endüstride ihtiyaca göre galvanizli, silisli ve teneke adı verilen sac ve benzeri üretim de yapılmaktadır.
Tablo 3.1: Piyasada kullanılan sac ölçü ve standartları

<table>
<thead>
<tr>
<th>DKP SAC</th>
<th>Cinsi (Kalınlık)</th>
<th>0,35</th>
<th>0,50</th>
<th>0,60</th>
<th>0,70</th>
<th>0,80</th>
<th>0,90</th>
<th>1,00</th>
<th>1,20</th>
<th>1,50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x2 m Boyuta göre Kg</td>
<td>5.5</td>
<td>8</td>
<td>9.5</td>
<td>11.5</td>
<td>13.5</td>
<td>14.5</td>
<td>16</td>
<td>19.5</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>SİYAH SAC</td>
<td>Cinsi (Kalınlık)</td>
<td>1,50</td>
<td>2,00</td>
<td>2,50</td>
<td>3,00</td>
<td>4,00</td>
<td>5,00</td>
<td>6,00</td>
<td>8,00</td>
<td>10,00</td>
</tr>
<tr>
<td>KG / M²</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>64</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

3.2. Sac Vidası Standartları ve Çeşitleri

Sac vida ve civatalar, baş yapılarına göre adlandırılırlar. Türk Standartları Enstitüsü Kurumu tarafından standart hale getirilmiştir.

![Sac vida örnekleri](image)

Resim 3.2: Çeşitli biçim ve şekillerde sac vidaşi

Sac vidaşi standart ölçüleri TSE’den temin edilmektedir. Sac vidaları aşağıdaki şekilde TSE tarafından numaralandırılmıştır.

Örnek: TS 432-2, (3 x 15 sac vidaşi)

Sac Vidası Çeşitleri

- Havşa başlı vidalar (Şekil 3.1d)
- Havşa mercek başlı vidalar
- Silindir başlı vidalar (Şekil 3.1c)
- Silindirik mercimek başlı vidalar
- Silindirik bombe başlı vidalar
- Altı köşe başlı vidalar (Şekil 3.1b)
- Yıldız vidalar (Şekil 3.1a)
- Düz yarıkli vidalar
- Yıldız yarıkli vidalar
- Yarıksız vidalar
- Özel vidalar
Endüstride sac vidaları standart hale getirilmiş olup sac ve benzeri metallerin birleştirilmesinde ve sökülmesinde yaygın olarak kullanılmaktadır. Özellikle, elektrik sayaçları kutusunda, kırılgan ve ateşe karşı olan havalandırma bacaklarında, sabitlemede, plastik, alüminyum, pirinç, çelik sac profillerin bağlanmasında ve benzeri yerlerde yaygın olarak kullanılmaktadır.

3.4. Sac Vidası İle Birleştirme Resimleri

Aşağıda değişik kalınlıktaki sacların, sac vida ile birleştirmeleri görülmektedir.

Aşağıda Sac vida özellikleri ile sac vida ile birleştirme yaparken dikkat edilecek hususlar anlatılmıştır.
Sac vidalarının diş boşlukları trapez şeklinde oluşturuldu, uç kısımları sivri vidalardır.

Sac vidası ve cıvataları semente edilmiş çeliklerden üretimi yapılırak eğe sertliği nde sertleştirilerek piyasaya sürüldür.

Küçük çaplı delik ve cıvatalar resim üzerinde semboller ile gösterilir.

Kolay bağlantı için uçları özel şekilde sivriltilmişdir.

Sac vidası ve cıvataların üzerine kullanma yerine göre nikel krom ve galvaniz kaplanabilir.

Sac vidası ile bağlanacak parçalar, sac vidası diş dibi çapı ve sac kalınlığı dikkate alınarak delinir. Örnek: Sac vidası çapı 3,5 mm ve parça kalınlığı 1,5 mm ise parça yaklaşık olarak 3 mm matkap ile delinmelidir.

Sac vidası ve cıvataları yerine takımırken baş şekillerin uygun düz, yıldız tornavidalar veya uygun anahtar ile sıkılmalıdır.

Delmede kullanılacak matkap çapının belirlenmesi, kullanılacak sac vidasının diş dibi çapı kadar olmalıdır.

3.5. Vida Sembolleri

3.5.1. Vida Sembollerinin Tanıtılması

Şekil 3.3: Vida sembollerini gösterir çeşitli vida resimleri

3.5.2. Vida Sembollerinin Resim Üzerinde Uygulanması

Yukarıda anlatılan vida sembollerinin aşağıda resim üzerinde uygulanması gösterilmektedir.
Şekil 3.4: Vida sembollerinin resim üzerinde uygulanması
UYGULAMA FAALİYETİ

Sac vidası ile birleştirmeye uygulamasını aşağıdaki işlem basamaklarına göre yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sac vidasının takılacağı yerleri markalayınız.</td>
<td></td>
</tr>
<tr>
<td>Vida yerlerini nokta vurarak işaretleyiniz.</td>
<td></td>
</tr>
</tbody>
</table>

- Çalışma sırasında iş önlüğü ve eldiven giyiniz.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sac vidasının diş dibi çapına uygun matkap ucu ile sacları beraber ya da ayrı ayrı deliniz</td>
<td></td>
</tr>
<tr>
<td>Üstte kalan saçın delik çaplarını vida diş üstü çapına getiriniz veya deliniz.</td>
<td></td>
</tr>
</tbody>
</table>

- Altta kalan saçı vida diş dibi, üstte kalan saç en az vida diş üstü çapında delinmelidir. Sac vidasını uygun ağızlı tornavida ile sıkılmalıdır.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sac vidasını tornavida ile sıkarak birleştirmeyi gerçekleştiriniz.</td>
<td></td>
</tr>
</tbody>
</table>

- Saç vidasını uygun açıda sıkınız.
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendireiniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütüleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sac vidasının takılacağı yerleri markaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Vida yerlerini nokta vurarak işaretlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Sac vidasının diş dibi çapına uygun matkap ucu ile saçları beraber ya da ayrı ayrı deldiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Üstte kalan saçın delik çaplarını vida diş üstü çapına getirdiniz veya deldiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Sac vidasını tornavida ile sıkarak birleştirmeyi gerçekleştirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. El aletlerini amacına uygun kullandınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Makinelerde çalışma kurallarına uydunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Çalışma sırasında iş önüğü ve eldiven kullanınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Mesleğinizle ilgili etik kurallara uygun davrandınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki cümlelerin başında boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

Aşağıdaki soruların cevaplarını doğru ve yanlış olarak değerlendiriniz.

1. () Sac vidası genellikle iki malzeme sökülemez olarak birleştiren makine elemanlarıdır.

2. () İki parça delinirken üstte kalan parçanın delik çapı vida dış üst çapı ölçüsüne göre delinir.

3. () Sac vidası boru anahtarı ile sıkılabilir.

4. () Sac vıdaları ile bağlanacak parçalar, anma çapı ve sac kalınlığı dikkate alınmadan da delinir.

5. () Sac vida ve çıvataları semente edilmiş çeliklerden üretimi yapılarak ege sertliğinde sertleştirerek piyasaya sürülür.

DEĞERLENDİRME

Aşağıdaki soruların cevaplarını doğru ve yanlış olarak değerlendiriniz.

1. () Somunların kısmi frenlenmesinde rodelar kullanılır.
2. () Kare ve trapez vida hareket ileten vidalardır.
3. () Somunların kesin frenlenmesi maşalı pim ile de olur.
4. () Altgen başlı cıvata ve somunların sıkılmasında boru anahartları kullanılır.
5. () Yaylı rondela somunlu birleştirmelerde kısmi frenleme yapar.
6. () M 12 x 40’in anlamı, cıvata ve somunun diş üstü çapının 12 mm olduğunu bize bildirir.
7. () Somunlar, kullandığımız araç gereç ve makine parçalarını birbirlerine sökülebilir şekilde bağlayan, elemanlardır.
8. () Sac vida ve cıvatalar, baş yapılarına göre adlandırılır.
9. () Sac vidaları, sac ve benzeri malzemelerin birleştirilmesinde yaygın olarak kullanılmaktadır.
10. () Sac vidaları cıvatalı somunların kullanıldığı yerlerde de kullanılır

DEĞERLENDİRME

UYGULAMALI TEST

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için **Evet**, kazanamadığınız beceriler için **Hayır** kutucuğuna (X) işaret koyarak kendinizi değerlendirmeiniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>EVET</th>
<th>HAYIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kör deliğin açılacağı yer ve birleştirilecek parçaları markaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Delinecek yerlere nokta vurarak, diş açılacak yere diş dibi çapına uygun matkap ucu ile deldiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Üstteki parçayı vida çapından büyük matkapla delerek, gerekiyorsa havşa açtıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Kılavuzla kör deliğe diş açıp, vida (saplama) ile iki parçayı uygun takımla birleştiriniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Vidalı ve somunlu birleştirilecek parçanın delik yerlerini markalayp delinecek yerleri nokta ile izlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. İki parçayı da civatının diş üstü çapına uygun matkap ile delerek, iki parçayı delinen yerden vidaya taktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Somunun sıkılacağı yere rondela veya pul taktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Somunu civataya takarak sıkılabilirliği kadar el ile sıkma yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Vida ve somunun şekline uygun anahtar ile uygun sıkma kuvveti uyguladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Sac vidasının takılacağı yerleri markaladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Vida yerlerini nokta vurarak işaretlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Sac vidasının diş dibi çapına uygun matkap ucu ile sacları beraber yada ayrı ayrı deldiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Üste kalan sacın delik çaplarını vida diş üstü çapına getirdiniz veya deliniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Sac vidasını tornavida ile sıkarak birleştirmeyi gerçekleştiriniz mi?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

ÖĞRENME FAALİYET-1’İN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Doğru</td>
</tr>
<tr>
<td>2</td>
<td>Yanlış</td>
</tr>
<tr>
<td>3</td>
<td>Doğru</td>
</tr>
<tr>
<td>4</td>
<td>Doğru</td>
</tr>
<tr>
<td>5</td>
<td>Yanlış</td>
</tr>
<tr>
<td>6</td>
<td>Vidalı</td>
</tr>
<tr>
<td>7</td>
<td>Sökülebilir</td>
</tr>
<tr>
<td>8</td>
<td>Bağlama</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Saplama</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYET – 2’NİN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yanlış</td>
</tr>
<tr>
<td>2</td>
<td>Doğru</td>
</tr>
<tr>
<td>3</td>
<td>Doğru</td>
</tr>
<tr>
<td>4</td>
<td>Doğru</td>
</tr>
<tr>
<td>5</td>
<td>Yanlış</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYET–3’ÜN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yanlış</td>
</tr>
<tr>
<td>2</td>
<td>Doğru</td>
</tr>
<tr>
<td>3</td>
<td>Yanlış</td>
</tr>
<tr>
<td>4</td>
<td>Yanlış</td>
</tr>
<tr>
<td>5</td>
<td>Doğru</td>
</tr>
</tbody>
</table>
MODÜL DEĞERLENDİRME CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Doğru</td>
</tr>
<tr>
<td>2</td>
<td>Doğru</td>
</tr>
<tr>
<td>3</td>
<td>Doğru</td>
</tr>
<tr>
<td>4</td>
<td>Yanlış</td>
</tr>
<tr>
<td>5</td>
<td>Doğru</td>
</tr>
<tr>
<td>6</td>
<td>Doğru</td>
</tr>
<tr>
<td>7</td>
<td>Doğru</td>
</tr>
<tr>
<td>8</td>
<td>Doğru</td>
</tr>
<tr>
<td>9</td>
<td>Doğru</td>
</tr>
<tr>
<td>10</td>
<td>Yanlış</td>
</tr>
</tbody>
</table>
KAYNAKÇA

- KÜÇÜK, Mehmet. *Makine Bilgisi*, MEB
- ULUSOY, Ali, *Makine Ressamlığı Bölümü İş ve İşlem Yaprakları Sınıf 2*, MEB