MOTORLU ARAÇLAR TEKNOLOJİSİ

DOĞAL GAZ YAKIT SİSTEMLERİ

Ankara, 2014
Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

- Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.
- PARA İLE SATILMAZ.
ÖLÇME VE DEĞERLENDİRME ..68
MODÜL DEĞERLENDİRME ..70
CEVAP ANAHTARLARI ...72
KAYNAKÇA ..73
<table>
<thead>
<tr>
<th>ALAN</th>
<th>Motorlu Araçlar Teknolojisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAL/MESLEK</td>
<td>Otomotiv Elektromekanik</td>
</tr>
<tr>
<td>MODÜLÜN ADI</td>
<td>Doğal Gaz Yakıt Sistemleri</td>
</tr>
<tr>
<td>MODÜLÜN TANIMI</td>
<td>Motorlu araçlarda doğal gazlı yakıt sistemlerinin montajı, kontrolleri, bakım ve onarımı ile ilgili yeterliklerin kazandırıldığı öğrenme materyalidir.</td>
</tr>
<tr>
<td>SÜRE</td>
<td>40/16</td>
</tr>
<tr>
<td>ÖN KOŞUL</td>
<td>Bu modülün ön koşulu yoktur.</td>
</tr>
<tr>
<td>YETERLİK</td>
<td>Araçlarda kullanılan doğal gazlı (CNG) yakıt sistemlerin çalışma prensiplerini kavramak, montajını, bakımını, onarımını ve ayarlarını yapmak.</td>
</tr>
<tr>
<td>MODÜLÜN AMACI</td>
<td>Genel Amaç</td>
</tr>
<tr>
<td></td>
<td>Araçlarda kullanılan doğal gazlı (CNG) yakıt sistemlerin çalışma prensiplerini kavrayabilecek, montajını, bakımını, onarımını ve ayarlarını yapabileceksiniz.</td>
</tr>
<tr>
<td></td>
<td>Amaçlar</td>
</tr>
<tr>
<td></td>
<td>1. Doğal gazlı (CNG) yakıt sisteminin montajını yapabileceksiniz.</td>
</tr>
<tr>
<td></td>
<td>2. Doğal gazlı (CNG) yakıt sisteminin ayarlarını yapabileceksiniz.</td>
</tr>
<tr>
<td>EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI</td>
<td>Ortam: Teknolojisi sınıfı ve atölye</td>
</tr>
<tr>
<td></td>
<td>Donanım: Atölye, kontrol cihazları, test cihazları, sökme-takma takımları, bilgisayar, projeksiyon cihazı, çeşitli görsel malzemeler</td>
</tr>
<tr>
<td>ÖLÇME VE DEĞERLENDİRME</td>
<td>Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçme araçları ile kendinizi değerlendireceksiniz. Öğretmen, modül sonunda ölçme aracı (çoktan seçmeli test, doğru-yanlış testi, boşluk doldurma, eşleştirme vb.) kullanarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek sizi değerlendirecektir.</td>
</tr>
</tbody>
</table>
GİRİŞ

Sevgili Öğrenci,

Günümüzde, modern toplumların ekonomilerinin ve büyümelerinin temelini oluşturan sanayileşme, sağladığı yararların yanı sıra çözüm bekleyen pek çok problemi de beraberinde getirmektedir. Hızla ilerleyen teknolojiyle birlikte artan çevre kirliliği ve oluşan sera etkisi tüm canlı hayati tehdit etmeye başlamış ve bu hızla devam etmesi hâlinde dünyanın yaşanamayacağı bir gezege hâline gelecektir. Çevre kirliliğine karşı yeni alınan önlemler ve potürevi yakıtların hızla tüketilmesi, otomotiv alanındaki firmaları alternatif motor ve yakıt arayışına yönlendirmiştir. Üreticiler bu kapsamda yıllardır sürdürdükleri araştırmalarını artırarak, alternatif yakıtlara yönelmektedir ve üretimlerini bu duruma göre planlamışlardır.

Doğal gazın taşıtılar benzin ve motorine göre düşük emisyonlu bir alternatif olarak yaygınlaşması özellikle son senelerde dikkat çekmektedir. Birçok ülkede zengin doğal gaz kaynaklarının olması ve birçok ülkeye de bu hatlar ile yaygınlaştırılmasına rağmen taşıtlarda yakıt olarak kullanılması, diğer uygulamalarına göre biraz yavaş kalmıştır. Son senelerde ise gerek doğalgazın yaygınlaşması, gerekse ekonomik ve çevresel faktörlerin tercihi, taşıtlarda doğal gaz kullanımını bir alternatif olarak gündeme getirmiştir.

Sıkılaştırılmış doğal gaz (CNG- Compressed Natural Gas) politikasına sahip ülkeler çevre, sağlık, petrole alternatif olduğunu için; Irak, yüksek petrol fiyatlarından kurtulmak için; ABD, çevre etkileri ve petrolle alternatif olduğu için; Türkiye, yüksek petrol fiyatlarından kurtulmak için; AB ülkeleri AB genel politikası olarak; Arjantin, Brezilya ve Pakistan, petrol fiyatlarına karşı önlem olarak CNG’yı tercih etmişlerdir.

Teknolojinin giderek ilerlemesi ile yeni teknolojilerin ve alternatif yakıtların içten yanmalı motorlarda kullanımı 20 yılda bu yana giderek artmıştır.

CNG yakıtının diğer petrol ürünlerinden ucuz olması ve çevreyi daha az kırleticil etkisi uzun yıllar kullanılmaya devam edeceğini göstermektedir.

Bu modül sonunda edineceğiniz bilgi ve beceriler ile araçlarda CNG yakıt sistemlerinin montaj, bakım ve onarımını yapabileceksiniz.
AMAÇ

Doğal gazlı (CNG) yakıt sisteminin montajını yapabileceksiniz.

ARAŞTIRMA

➤ Doğal gazlı (CNG) motorlu araçların kullanım avantajları nelerdir?
➤ Doğal gazlı (CNG) yakıt sistemi hangi tür araçlara uygulanabilir?
➤ Doğal gazlı (CNG) yakıt sistemi elemanları nelerdir?
➤ Doğal gazlı (CNG) yakıt sisteminin montajı nasıl yapılır?

1. DOĞAL GAZ (CNG) YAKIT SİSTEMLERİ

1.1. Tanımı

Doğal gaz (NG- Natural Gas), 200 milyon yıl önce yaşamış olan küçük bitki ve deniz canlılarının çürümüş artıklarından oluşmuş ve yeryüzünde alt katmanlarda bulunan ağırlıklı Metan (CH₄) olmak üzere çeşitli hidrokarbonlardan meydana gelen yanıcı bir gaz karışımıdır.

Doğal gazın büyük bölümü %90-96 CH₄ (metan) gazı oluşturur. Geri kalan bölümünü ise %2.411 C₂H₆ (etan), %0.736 C₃H₆ (propan), %0.371 C₄H₁₀ (butan), %0.776 N₂ (azot), %0.164 C₅H₁₂ (pentan) ve % 0.085 CO₂ (karbondioksit) oluşturur.

Metan’ın (CH₄) bilinen en basit hidrokarbon yapısı olması, doğal gazın yanma verimini artıran en büyük etkendir.

Şekil 1.1: Metan
Doğal gaz (NG) iki farklı şekilde kullanılmaktadır.

- **Sıvaştrılmış doğal gaz (LNG):**

Doğal gaz, atmosfer basıncında -162°C’a kadar soğutulduğunda yoğunarak sıvı faza geçmekte ve “Sıvı Doğal Gaz” (LNG-Liquified Natural Gas) olarak adlandırılmaktadır.

LNG, kokusuz, renksiz ve zehirli olmayan, sıvı fazda bir yakıttır. Sıvı fazında taşınmakta ve depolanmaktadır. Tüketime, gaz fazında sunulmaktadır.

LNG ile yüksek miktardaki doğal gaz, düşük basınçlar altında hacmini yaklaşık 600 kez küçültürerek sıvı halde saklanabilmektedir. Bu özellik, doğal gazın boru hatlarıyla taşınmasının teknik ve ekonomik anlamda mümkün olmadığı yerlere, gemi, kamyon ve tankerlerle nakliyesini uygun hale getirmektedir.

LNG, enerji ihtiyacını farklı yakıtlarla sağlayan ve yüksek yakıt tüketimine sahip tüm işletmelerde ilgili talimat, standart ve yönetmeliklerde geçen şartların sağlanması durumunda kolaylıkla kullanılabilmektedir.

LNG, ağırliklı olarak her ölçekteki sanayi tesislerinde, seramik ve cam sanayinde, ticari işletmelerde, turistik tesislerde;

- Sıcak su ve kızgın su elde edilmesi,
- Buhar elde edilmesi,
- Sıcak hava elde edilmesi,
- Kızgıgın yağ elde edilmesi,
- Pişirme ve kurutma fırınları,
- Metal işleme (döküm, ergitme, ısıl işlem vs.),
- Elektrik üretimi amacıyla kullanılmaktadır.

- **Sıkıştırılmış doğal gaz (CNG):**

CNG (sıkıştırılmış doğal gaz), ulusal iletim şebekesi veya şehir içi dağıtım sisteminden gaz olarak ya da LNG terminallerinden sıvaştrılmış doğal gaz (LNG) şeklinde tedarik edilen doğal gazın, yaklaşık 200-250 bar basınç altında sıkıştırmasıyla elde edilmektedir. CNG, kokusuz, renksiz ve zehirli olmayan gaz fazında bir yakıttır.

Yüksek basınç altında gaz fazında taşınmakta ve depolanmaktadır. Basıncının düşürülmesiyile yine gaz fazında tüketime sunulmaktadır.

1.2. Doğal Gazın Özellikleri

Doğal gazın, Otto motorlarında yakıt olarak kullanılmakta yarar sağlayacak en önemli özelliği oktan sayısının yüksek olmasıdır. Ayrıca is valore değerinin benzin ve alkole göre yüksek olması da bir avantaj sağlamaktadır. Doğal gaz benzine oranla daha yüksek hava
fazlalık katsayısı değerlerinde tutuşma olanağına sahiptir. Böylece motorun fakir karışımla çalıştırılıp, yakıt ekonomisi ve egzoz gazları emisyonu açısından yarar sağlanması da mümkün olmaktadır.

Motorlu araçlarda kullanılan yakıtların bazı özelliklerinin karşılaştırılması Tablo1.1’de görülmektedir.

<table>
<thead>
<tr>
<th>YAKITLARIN KARŞILAŞTIRILMASI</th>
<th>DOĞAL GAZ CH₄</th>
<th>BENZİN C₁₀H₂₀</th>
<th>LPG C₃H₈</th>
<th>MOTORİN C₁₄H₃₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>YANMA VERİMLERİ(%)</td>
<td>92</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>OKTAN SAYILARI</td>
<td>95-105</td>
<td>95-105</td>
<td>89</td>
<td>95</td>
</tr>
<tr>
<td>KENDİNDEN TUTUŞMA SICAKLIKLARI(°C)</td>
<td>600</td>
<td>440</td>
<td>418</td>
<td>225</td>
</tr>
<tr>
<td>HAVA KARIŞIM ORANLARI (%)</td>
<td>4-16</td>
<td>1,3-7,6</td>
<td>2-8,7</td>
<td>0,3-10</td>
</tr>
<tr>
<td>KALORİFİK DEĞERLERİ (KCAL/KG)</td>
<td>11.150</td>
<td>7.676</td>
<td>11.000</td>
<td>11.200</td>
</tr>
</tbody>
</table>

Tablo 1.1: Yakıtların karşılaştırması

Ancak stokiyometrik karışım içindeki yakıtın hacimsel oranının yüksek oluşu (benzin için % 1.65, metan için %9.47) nedeniyle, motorun birim hacmindeki stokiyometrik karışımın ısıl değeri benzine göre %10 mertebesinde daha az olmaktadır. Ayrıca laminar alev hızının da benzin-hava karışımına göre düşük olması, performans açısından olumsuz etkiler yaratmaktadır. Ancak doğal gazın motor performansı üzerindeki bu olumsuz etkisi, sahip olduğu yüksek oktan sayısı avantajlı kullanılarak motorun sıkıştırma oranının artırılması sonucunda giderilebilmektedir.

Doğal gazın difüzyon katsayısının benzine oranla iki kat fazla olması, hava ile daha kolay ve hızlı karışımı, çift yakıtlı motorlarda kullanımı açısından yarar sağlamaktadır. Dizel ilkesine göre çalışan motorlarda doğal gaz, ortam içerisinde yapılan pilot püskürme yardımcı tutuşturulabilmektedir. Bu özelliği nedeniyle doğal gaz, benzin ve dizel motorlarda önemli değişiklik yapılmadan kullanılabilmemektedir.

Resim 1.1: Çeşitli araçlarda CNG yakıt sistemi uygulaması

Sıkıştırma oranını artırılması ile motorda benzin yerine doğal gaz yakılması sonucu oluşacak güç kayıplarının üstesinden gelinebilir. Doğal gaz daha hafif moleküler yapıya sahiptir ve silindire giren havanın %10’unu teşkil etmektedir. Hava miktarının azaltılması genellikle güç kaybında neden olurken, sıkıştırma oranının arttırılması bu durumu azaltabilir. Ayrıca doğal gazın yanması sonucu oluşan maksimum basınç ve sıcaklık benzin motorundan daha düşük olduğundan, sıkıştırma oranının arttırılması sonucu artacak olan basınç ve sıcaklıklar tehlikeli boyutlara ulaşmaya, ancak benzin motorundaki değerlerle gelecektir.

Dizel motorların yüksek sıkıştırma oranlarında çalışması ve doğal gaz oktan sayısının yüksek olması nedeni ile sıkıştırma oranının yüksek tutulabilmesinden dolayı, eğer dizel motorlarında uygun değişiklikler yapılarlsa, doğal gazın dizel motorlarında rahatlıkla kullanılabiliceğine yaygın olarak inanılmaktadır.

Doğal gazın korozif (aşındıracı) özellikleri yoktur. Fakat bazen dünyada değişik bölgelerde edilen doğal gaz içerisinde nem olabilme; bu da motoru aşındırıcı etki göstermektedir. İçten yanmalı motorlarda, yakıt olarak doğalgazın kullanılması durumunda yanma sonu sıcaklığında düşme olmaktadır. Yanma sonu sıcaklığında düşmesi NOx emisyonlarında azalma sağlayacaktır. Bunun yanında doğal gazın kullanımı, motorlu taşıtların gürültü düzeyinde azalmalar temin edecektir.

Doğal gaz saf halde iken renksiz, kokusuz ve tatsız bir gazdır. Güvenlik amacı ile kokulandırılmıştır.

Resim 1.2: Otobüse CNG ikmali
CNG, uluslararası standartlara uygun olarak üretilen yüksek basınçlı tüpler ve özel taşıma araçları ile tüketici lerin kullanımına sunulmaktadır.

Resim 1.3: Araç tüp yerleşimi

Doğal gazın dağıtım tüplerden, borularla kullanım yerine kadar yapılabilmektedir. Çok temiz ve özellikleri sabit olan bir yakıt türüdür ve çevre kirliliği yapmaz. Ayrıca doğal gazın depolanması, bıhariştırılması, karbürasyonu, sıvı yakıtı gaz haline getirmek, basıncını düşürmek ve motora uygun şartlarda vermek için özel ekipmanlara ihtiyaç vardır.

1.3. Araç Tiplerine Göre Özellikleri

Doğal gaz sistemleri farklı araç tiplerine göre uygulamaları şu şekilde sıralanak mümkündür:

- **Buji ile ateşlemeli (Otto) motorlarda doğal gaz sistemleri**

 Bir benzin motoruna gaz/hava karbüratörünün ilavesi ve ateşleme sisteminin motora uygun olarak yeniden düzenlenmesi ile motorun doğal gaz motoru olarak kullanılabilmesi mümkündür. Bunların dışında doğal gazın depolanması ve depodan motora sevki için gerekli basınç regülatörü, emniyet supabı gibi elemanlar ile sistemin donatılması gerekmektedir.

 Yüksek basınçta depolanmış doğal gazın basıncının regülatörlerde düşürülmesinden sonra gaz karbüratöründe hava ile karışım sağlanmaktadır. Gaz karbüratörlerinin karışımını homojen bir şekilde ve istenen yakıt/hava oranında hazırlamasi, motor gücünü düşürmeyecek şekilde akış direncinin mümkün olduğu kadar az olması, motorun tüm çalışma şartlarında emniyetli çalışması, bütün silindirlerde aynı yakıt/hava oranında karışım göndermesi, motorun...
tüm çalışma şartlarında emniyetli çalışması ve kirletici egzoz emisyonunu düşük seviyede tutacak şekilde karışımın hazırlanması gerekmektedir.

Doğal gaz kullanımda maksimum momenti sağlayabilmek için ateşleme avansının artırılması gerekmektedir. Hava fazlalığının daha fakir değerlerinde bu fark daha da belirgin olmaktadır.

- **Doğal gaz karbürasyon sistemi (karbüratörlü motorlarda)**

Bu mekanik sistemler;
- Elektromanyetik CNG açma-kapama valfı,
- Basınç regülatörü,
- Karışım ünitesinden(mikser) meydana gelir.

Çift yakıtlı bir taşıtta bu sistem kullanıldığında benzin hattına ayrıca bir elektromanyetik açma-kapama valfi de yerleştirilir. CNG ile çalışma durumunda bu valf kapalı, benzinle çalışma durumunda ise açıktr.

Basınç regülatörü motor suyu ile ısıtılır. CNG’nin genişlemesi sıcaklıkta büyük bir düşüşe sebep olacağınından dolayı, bu ısıtma işlemi, regülatörün donmasını önlemiş olur.

Doğal gaz karbürasyon sistemi

- **Elektronik kontrollü doğal gaz sistemleri**

Kapalı devre karburatorlı taştlarda, tek nokta enjeksiyonlu taştlarda, nozul tipi enjeksiyonlu taştlarda kullanılan sistemleri. Kapalı devre lamba kontrolü bulunan ve karışım ayarı otomatik olarak yapılabilen bir sistemdir.

Bu sistemlerde gaz akışının ayarı basınç regülatörü ve karışım ünitesi tarafından gerçekleştirilir. Bununla birlikte analog veya dijital olarak kontroller yapılmaktadır. Bu sistem emme manifloduna püskürtme yapar ve lamba sensörü ile 3 yollu katalitik konvertör içeren taştlarda kullanılır.

- **Doğal gaz püskürtme sistemleri**

Kapalı devre çok nokta enjeksiyonlu taştlarda kullanılan sistemlerdir. Sistemde mikser bulunmamakta, doğal gaz doğrudan emme manifloduna püskürtülmektedir.
Çok noktalı CNG sistemleri doğal gazı sıvı veya gaz fazda emme kanalına (emme supabına üzerine doğru) veya yüksek basınçta doğrudan silindire püskürtübilirler. CNG’nin gaz fazında püskürtildiği çok noktalı elektronik püskürtme sisteminde, tek noktadan püskürtmede karşılaşılan geri tepme (karışının emme manifoldunda yanması) olayına rastlanmaz.

- **Dördüncü nesil doğal gaz sistemleri**

Sistem Euro 3 ve Euro 4’ü karşılayabilmekte olup, kapalı devre fakir yanmalı motorlarda kullanılmaktadır.

Şekil 1.3: Doğal gaz püskürtme sistemleri

CNG ECU’su

Yakıt seçici anahtar

Manometre

Dolum ağzı

CNG tankı

CNG multivalfi

Lamda sondası

Benzin enjektörü

CNG multivalfi

MAP sensörü

Enme manifoldu gaz giriş

CNG Enjektörü

CNG Regülatör

Benzin ECU’su

Dördüncü nesil doğal gaz sistemleri

Sistem Euro 3 ve Euro 4’ü karşılayabilmekte olup, kapalı devre fakir yanmalı motorlarda kullanılmaktadır.
Çok noktadan enjeksiyonu içeren sistem, modern motorlara, farklı çalışma şartlarına cevap verebilecek, uyum sağlayabilecek teknolojiye sahiptir.

Şekil 1.4’te çok noktadan enjeksiyonlu modern motorlarda kullanılan dördüncü nesil CNG yakıt sistemi devre şeması görülmektedir.

Şekil 1.4: Dördüncü nesil doğal gaz sistemi devre şeması

- **Dizel motorlarda doğal gaz sistemleri**

 Gaz yakıtlarının dizel motorlarında kullanımı, dizel çevriminin özelliği nedeniyle, beraberinde çözümü gerektiren bazı problemleri getirmektedir. Bu nedenle, bu Consortium'ların başlıca gaz...

Resim 1.4: Dizel araçlarda CNG dönüşümü için elemanlar

Doğal gazın dizel motorlarında kullanılması iki türlü gerçekleştirilmektedir:

- **Motor modifikasyonu**

- **Çift yakıt uygulaması**

Resim 1.5: Gaz yakıt enjektörü ve pilot yakıt

Pilot püskürtme demetinin enerjisi, bujide sağlanan enerjinin 10^2-10^4 katı kadardır. Böylece hava fazlalık katsayısının 1,4-2’lik değerlerinde de ilk tutuşma garanti edilmektedir. Bundan daha önemlisi, pilot püskürtme ile oda şekline uygunsuz hava hareketinin de yardımcıla yanmanın odanın her noktasında aşağı yukarı aynı anda başlaması sağlanmaktadır. Bu şekilde 16-17’lik sıkıştırma oranlarında vuruntusuz yanma elde edilebilmektedir.

Delik çapı pilot püskürtmenin yakıt debisine uydurulmuş, daha küçük delikli enjektör kullanılarlsı, yanma verimi ve emisyon açısından bir sorun olmayacaktır. Bu durumda yakıt tüketimi ve emisyon değerleri yaklaşık normal dizel yakıtı ile elde edilen seviyeye, bazen de daha aşağıya inmektedir.

Gaz yakıt enjektörü ve pilot yakıt enjektörünün silindir kafasındaki yerleri Şekil 1.5’de gösterilmiştir.
1.4. Doğal Gaz (CNG)’nin Depolanması

Doğal gazın ulusal iletim şebekesi veya şehir içi dağıtım sisteminden satın alınıp, yaklaşık 200-250 bar basınç altında sıkıştırılması ile araçlarda kullanılabilir hale gelen doğal gaz (CNG) elde edilmektedir.
Doğal gaz taşıtlarda yakıt olarak depolamak ve kullanmak için iki metot kullanılmaktadır.

- **Gaz halinde depolama**

 Doğal gaz genellikle doğal yeraltı rezervuarlarında depolanır. Yeraltı depolamasına uygun olan oluşumlar önce depo olarak kullanılmak üzere şartlandırılır. Sonra doğal gaz enjekte edilir. İstenildiğinde tekrar kullanılabilir.

 Taşıtlarda depolama ise basınç altında sıkıştırılarak (yaklaşık 250 bar) çelik ve basınca dayanıklı tüplerde depo edilmektedir.

- **Sıvılaştırılmış halde (LNG) depolama:**

 LNG daha az yer kaplaması nedeniyle gerek depolamada ve gerekse taşımada tercih edilir. LNG yerüstü veya yeraltına gömülü değişik kapasitedeki büyük tanklarda, normal atmosfer basıncında ve −160 °C sıcaklıkta sıvı olarak depolanır.

Şekil 1.7: LNG deposu ve kısımları

1. Çatı astarı
2. Asma çubuklar
3. Beton çatı
4. Yan duvarlar
5. Taban plakası
6. Destekler
7. Çatı yalıtımı
8. Asma tavan
9. İç kabuk
10. Yan duvar yalıtımı
11. Yan yüzey astarı
12. İkincil bariyer
Depolamada ilk yöntem olarak açıkladığımız basınç altında sıkıştırılmış doğal gazdır (CNG). Bu yöntem por hattında bulunan doğal gazi standartlara uygun olarak filtrelenen, kurutulan ve sıkıştırılan gaz araçlarda kullanılmaktadır.

Doğal gaz basınç altında çok yer kapladığı için tam yükte bir otomobilin kat edeceğine mesafe tüpun basincına ve hacmine bağlıdır.

Sıkıştırılmış doğal gaz (CNG), atmosfer basıncı ve normal sıcaklıkta gaza göre yaklaşık 1/200 hacim kaplar.

Bugün kullanılan teknolojilerde; 200 atmosferde depolanan doğal gazın basıncı, uygulanan teknolojiye göre değişmek üzere kullanılan bir regülatöre 7 bar ile 15 bar arasında bir basınca düşürülmekte ve hava ile karıştırılarak emme manifoldundan motora verilmektedir. Aşırı güç talepleri motorun aşırı isınmasını ve ani basınç artışını önleyen sistemlerle donatılan bu araçlarda, tüpler de darbelere ve kazalara karşı korunmak üzere çelik muhafazalarla taşınmaktadır.

1.5. Doğal Gazlı Motorun Çalışma Prensibi

- **LNG yakıt sisteminin çalışması**

LPG ve Sıvılaştırılmış doğal gaz (LNG) çalışma şekillerine göre benzerlik oluşturduğuundan; LPG ve doğal gazı, taşıtlarda yakıt olarak kullanmak için birbirine benzyeten dönüşüm sistemleri kullanılmaktadır.

Yakıt seçme düğmesinden seçilen yakıt tipine göre sisteme monte edilmiş elektro valfler benzin veya LNG’ye yol vermektedir. Yakıt seçme düğmesi LNG pozisyonuna alındığında benzin hortumu üzerinde bulunan elektro valf benzinin karbüratör veya enjeksiyon sistemine gitmesini engeller.

LNG depo içerisinde bulunan bir elektrik motoru sayesinde sistemde dolaşır
Regülatör üzerinde bulunan elektro valf kontak anahtarına bağlı olduğu için açılır ve LNG regülatör içerisinde bulunan hazneye dolar. Regülatöre dolan gazın basıncı düşürülerek alçak basınç borusu ve gaz ayardanı geçerek mikserde (gaz karıştırıcı) ulaştırılır. Mikserde hava ile karışarak emme manifoldu içine dolar.
17

Şekil 1.8: LNG yakıt sistemi

Motora marş yapılması ile emme manifoldunda bulunan LNG silindir içerisinde yakılarak kullanılır. Eğer belirli bir süre marş yapılması yüksek basınç hattına ve regülatör üzerinde bulunan elektro valf kapanarak gaz geçişi engellenir. Bu durum regülatörün içinde bulunan gazın emme manifolduna dolmasını engellemek ve gaz kaçaklarının önüne geçmek için yapılmaktadır.

CNG yakıt sisteminin çalışması

Basınçlı depo edilen doğal gaz (CNG) daha farklı sistemler kullanılarak otomobil ve büyük araçlarda alternatif yakıt olarak kullanılmaktadır.

Sıkıştırılmış doğal gaz (CNG) ile çalışan araçlarda yakıt tüplerin az yer kaplaması için döşeme altına monte edilmektedir.

Yüksek basınçlı tüplerde bulunan sıkıştırılmış doğal gaz (CNG) yüksek basınç borusunun üzerinde bulunan filtreden geçer. Gaz, basıncın düşürüldüğü yüksek basınç regülatörüne gönderilir.

İkinci bir regüle edici valf olan düşük basınç regülatörü basıncı daha da düşürür ve gaz kontrol valfine uygun bir besleme basıncı düzeysine indirir. Kontrol valfi, gazi motorun soğutma suyuandan yararlanarak ısıtır. Sistemde ani basınç düşüşü, gaz kaçağı gibi durumlar olduğunda sistemi otomatik olarak kapatacak şekilde tasarlanmıştır.

Şekil 1.9: CNG yakıt sistemi şeması
1.6. Doğal Gaz (CNG) Yakıt Sisteminin Avantaj ve Dezavantajları

Motor bakım açısından aracın periyodik bakım zamanı uzamakta, titreşimın azlığı yapınamayı azaltmakta, CNG kirleticiler içermediği için yağ ömrü uzamakta ve performansı artmaktadır. Bu olumlu değerlerin parasal karşılığı CNG fiyatındaki çok önemli avantaja ilave edildiğinde diğer yakıtlara göre tasarruf oranı yükselmektedir.

1 m³ CNG’nin eşiti diğer yakıtlar:
- 1 m³ CNG = 1,05 lt Benzin
- 1 m³ CNG = 1,35 lt LPG
- 1 m³ CNG = 1,00 lt Motorin
- 1 lt Benzin = 1,28 lt LPG

Karşılaştırma, ABD GGE sistemine göredir. Bu karşlaştırma motorin kullanan bir şehir içi otobüse göre yapılır ise tasarruf miktarı hesaplanabilir.

Günlük mesafe: 350 km Yıllık Mesafe: 125.000 km

100 km’de 45 lt motorin tüketimi olur ise yıllık harcamalar
- Motorin : 56.000 lt ve 168.000 TL
- CNG : 56.000 m³ ve 81.200 TL
- TASARRUF : 86.800 YTL ve % 51

Tasarrufa CNG kullanımdan kaynaklanan diğer avantajlar eklenmemiştir. Bu aracın değerinin 230.000 TL olduğu düşünülürse alınan yeni araç 2 yıl 8 ayda kendisini motorin – CNG fiyat farkından değerini geri ödeyecektir.

Resim 1.6: CNG’li büyük araçlar

Doğaz gaz kullanımının avantaj ve dezavantajlarını şu şekilde özetleyebiliriz:

- **Avantajları**
 - Benzin ve motorine göre ucuzdur. CNG benzinle çalışan araçlara göre % 70-80, LPG ile çalışan araçlara göre % 40-50 daha tasarrufudur.
- Gaz fazında olduğu için yağlama yağına karışmaz bu sebeple 35-40 bin km’de yağ ve yağ filtresi değiştirilir (benzine ve motorine göre az 2 katı).
- Silindir cidarlarda karbon birikimine sebep olmaz.
- Egzoz sistemi uzun ömürlü olur.
- En az kirletici emisyon yayan yakıttır. (sera gazi hariç)

➢ Dezavantajları

Dolum istasyonları yaygın değildir ve kuruluşası pahalıdır.
- Büyük hacimli yakıt tüpleri fazla yer kaplar ve bagaj hacmini küçürtür.
- Taşınması sıvı HC yakıtlara göre daha zor ve pahalıdır. Çünkü yüksek basınç, düşük sıcaklık, kompresörler, soğutucular ve ağır kaplar gerektirir.
- Metanın (CH₄) sera etkisi CO₂’e göre 20 kat daha kötüdür.
- Taşıtlardaki dönüşüm maliyetleri özellikle dizel motorlarında daha yüksektir.
- Motor performansında düşüşe neden olur.
- Gerek depolama gerekse düşük enerji yoğunluğundan dolayı benzin ve motorin ile aynı depolama hacmine sahip doğal gaz kullanılan taşıtların kat edebileceğini menzil daha azdır.
- Zor kaynaklardır, teknoloji henüz bu alanlara girmemiştir veya çok pahalıdır, dolayısıyla buralar, gaz elde edilmesi henüz ekonomik olmayan yataklardır.

1.7. Doğal Gaz (CNG) Yakıt Sisteminde Emniyet Kuralları ve Güvenlik

Tablo 1.2’de CNG’in diğer yakıtlara göre yanıcılık özellikleri karşılaştırılmıştır.

<table>
<thead>
<tr>
<th>ÖZELLİK</th>
<th>DOĞALGAZ (CNG)</th>
<th>BENZİN</th>
<th>MOTORİN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yanabilirlik sınırları (Havada Hacimsel Olarak %)</td>
<td>5-15</td>
<td>1,4-7,6</td>
<td>0,6-5,5</td>
</tr>
<tr>
<td>Kendi Kendine Tutuşma Sıcaklığı (°C)</td>
<td>456</td>
<td>300</td>
<td>230</td>
</tr>
<tr>
<td>En az Ateşleme Enerjisi (10⁶ Kj)</td>
<td>0,26</td>
<td>0,22</td>
<td>0,22</td>
</tr>
<tr>
<td>Maksimum Alev Sıcaklığı</td>
<td>1886</td>
<td>1977</td>
<td>2054</td>
</tr>
</tbody>
</table>

Tablo 1.2: CNG’de yanıcılık
Doğal gaz montajında kullanılan elemanların ECER-67-01 ve TSE standartlarına uygun olmalıdır.

Doğal gaz tankın üzerinde bulunan multivalf, tankın %80 oranında doldurulmasına sağlayacak şekilde ayar yapılmadır.

Doğal gaz borusu, 1mm kalınlığında çelik boru ve üzeri PVC ile kaplı olmalıdır.

Doğal gazlı araçlar kapalı alan ve ateşe yakın bir yere kesinlikle park edilmemelidir.

Eğer araç uzun süre kullanılmayacaksa depo üzerinde bulunan multivalfın giriş ve çıkış vanaları kapatılmalıdır.

Araçın doğal gazlı olduğunu belirten uyarıcı etiketler mutlaka aracın ön ve arka camına yapıtırılmalıdır.

1.8. Doğal Gaz (CNG) Yakıt Sistemi İçin Yasal Düzenlemeler

Doğal gaz (CNG) yakıt sistemi için Türkiye'de yürürlükte olan ve hükümlerine uylaması zorunlu olan yasal düzenlemeler şunlardır:

- TS ISO 15501-1:2 - Sıkıtırılmış Doğal gaz (CNG) Yakıt Sistemleri - Bölüm 1-2
- TS ISO 15500 - 1:19 Sıkıtırılmış Doğal gaz (CNG) Yakıt Sistemi Bileşenleri - Bölüm 1-19
- TS 12873 Yetkili Servisler - Pompalar (Atık ve Temiz Su, Yağ, Akaryakıt, LPG, CNG) - için Kurallar.
- TS 12664-2 İş yerleri - Karayolu Taşıtları Yakma Sistemlerinin, Sıkıtırılmış Doğal gaz (CNG) Kullanımı
- ISO 14469-1 Karayolu Taşıtları - Sıkıtırılmış Doğalgaz (CNG) doldurma bağlantısı - Bölüm 1:20 Mpa (200 bar) bağlantı.
- R 115:2006 Motorlu Taşıtlar I. Tahrik Sistemlerinde CNG (sıkıtırılmış doğal gaz) kullanılması amacıyla motorlu taşıtlara monte edilecek sonradan takılan özel CNG sistemlerinin onayı ile ilgili hükümler.
- TSE ECE R 110:2002 Motorlu taşıtlar - Tahrik sisteminde sıkıtırılmış doğal gaz (CNG) kullanılan motorlu taşıtların özel aksamlarının, tahrik sisteminde sıkıtırılmış doğal gaz kullanımı için tip onaylı özel aksamların montajı konusunda taşıtların onayı ile ilgili hükümler.

1.9. Doğalgaz (CNG) Kullanım Alanları

Birçok batı ülkesinde doğal gazın araçlarda kullanımı ile ilgili çalışmalar ve araştırmalar büyük bir hızla devam etmektedir. Dolayısı ile motorlu araçlarda doğal gazın kullanımı da hızla artmaktadır. Doğal gaz buji ile ateşlemeli motorlarda kullanıma uygun olduğu halde son yıllarda dünyada ve ülkemizde dizel motorlu araçlarda ikincil yakıt olarak kullanımı yaygınlaştmaktadır.
CNG Kullanılan Araçlar Şunlardır:
- Otomobiller.
- Şehir içi ve şehirlerarası otobüsler,
- Şehir içi lojistik araçları, araç filoları,
- Çöp kamyonu, yol süpürgesi gibi araçlar,
- Ağır vartalar, askeri ve kamu hizmet araçları,
- Deniz ve kanalda çalışan tekne, feribot, deniz taksileri,
- Trenler, motosikletleri, triportörler,
- Uçaklar ve her türlü apron araçları,
- İş makineleri ve hafriyat kamyon filoları, forkliftler.

Dünyada ve Türkiye’de CNG Politikaları

Dünya’da CNG Araç Parkı (Kasım’07):
- Otobüs : 167.342
- Kamyon : 146.001
- Diğer araçlar : 7.352.294
- Toplam : 8.537.355
- Motorsiklet v.d. : 871.718
2007 yılı tüketilen CNG miktarı: 22,2 milyar Nm³ (Kaynak: The GVR Kasım’07)

Resim 1.7: CNG sistemli belediye otobüsleri

Türkiye’de ilk CNG istasyonu İETT tarafından kurulmuştur. Halen, 3 oto gaz istasyonu, 6 şehir içi otobüs istasyonu, 5 CNG taşıma istasyonu ve CNG istasyonları bulunmaktadır.

Araç üretimi olarak 4 otobüs üreticisi ve 1 panelvan üreticisi ile 3 CNG kiti üreticisi faaliyettedir. Günümüzde Türkiye’de 30.000 den fazla motorlu araçta doğal gaz, yakıt olarak kullanılmaktadır.

Türkiye dünyanın en büyük doğal gaz kaynaklarının % 70’ine boru hatları ile bağlıdır. Bu açıdan doğal gazın arz güvenceliği yüksektir.

Bazı araçlarda sadece CNG kullanılarak bazı uzun mesafe taşıtlarında, kamyon ve transit yolcu taşımacılığı yapan otobüslerde LNG kullanılmaktadır.

1.10. Doğal Gaz Yakıt Sisteminin Elemanları

Resim 1.8: CNG dönüşüm kiti

LPG sisteminde kullanılan dönüşüm kiti ile doğal gazda kullanılan dönüşüm kitleri birbirlerinde kullanılmaz. LPG düşük basınçlı çalıştığı için kullanılan bağlantı elemanları ve regülatör, doğal gazlı yakıt sistemi parçalarına göre daha zayıf yapıdadır. Doğal gazdaki sistem basınçını emniyet altında almak daha dayanıklı ve pahalı malzemeyle sağlanmaktadır.
Araçta CNG yakıt sisteminin kısımları şöyle sıralayabiliriz:

- Dolum sistemi (dolum ağzı)
- CNG Yakıt tankları (tüpleri)
- CNG yakıt tankı Multi valfı
- Termik emniyet valfleri
- Tüplere gazı bağlayan manifold
- Manifold üzerinde basınç sensörü
- Elektrik bağlantı kutusu
- Yüksek basınç boruları
- Yüksek basınç sensörü
- Borulama ve aksesuarları
- CNG regülatörü
- Alçak basınç borusu ve esnek hortum
- Yakıt seçme anahtarı ve elektrik bağlantıları
- Benzin kesici elektro valfı
- Elektronik kontrol ünitesi
- CNG enjektörleri ve rail

Şekil 1.10: Araç üzerinde CNG yakıt sistemi elemanlarının yerleri
1.10.1. Dolum Sistemi (Dolum Ağzi)

Doğal gaz yakıt sistemlerinde tüpler içinde basınçlı gazi pompalayabilmek için dolum ağzı bağlanmıştır. Dolum ağzı depo içerisine girişi sağlar ve depo üzerinde bulunan multi valfe bağlıdır. Multi valf üzerinde depo içerisine gazi aksişını sağlayan tek yönlü bir valften gaz dolumu sağlanır.

Resim 1.9: Binek otomobil CNG dolum ağzı ve bağlantı parçaları

1.10.1.1. Dolum Ağzı

Dolum ağrızları birçok standarta olmaktaydı. Türkiye’de istasyonlarda dolum sorunu yaşatmamak için ağır vasıtalara 12 mm diğer araçlara 6 mm dolum ağzı bağlanmaktadır.

1.10.1.2. Dolum Basıncı Manometresi

Dolum sırasında gaz basıncını göstermek için kullanılır. Ağır vasıtalarda vardı. Fakat binek araçlarında yoktur.

1.10.1.3. Arkada Çek Valf ve Filtre

1.10.1.4. Motor Stop Sensörü

Bazı imalatçıların dolum sırasında motoru mutlaka kapatmak istemeleri nedeniyle burada motor stop sensörü bulunur.

1.10.1.5. Valfler

Bazı firmalar bu bölgeye otobüs motoruna ve tanka gidiş yönünü kapatmak için valfler bağlamaktadır.

Multi valf üzerinde çıkış supabı vardır. Çıkış supabı sisteme giden gazın emniyetli bir şekilde sisteme gitmesini sağlar. Yüksek basınç borusunda meydana gelebilecek kaçak, yırtılma vb. arızalarda çıkış supabı kendini kapatarak sistemi koruma altına almaktadır.

1.10.2. CNG Yakıt Tankları (Tüpleri)

1.10.2.1. Tanımı

CNG yakıt tankı, CNG ile çalışan araçların yakıtlarının depolandığı, dayanımı yüksek ve ağırlıkları düşük, kaliteli malzemeden imal edilen yakıt sistemi elemanıdır.

1.10.2.2. Yapısı

Doğal gazın taşıtlarda depolanması ekonomik ve teknolojik yönden problemler doğurmaktadır. Çünkü ister gaz olarak, ister sıvı olarak depolansın doğal gaz yüksek basınç altında depolanmaktadır. Bu da bir yandan depo ağrılığının artmasına, diğer taraftan emniyet açısından bazı problemlere yol açmaktadır.

CNG tankı ortalama 80 kg’dır. CNG tanklarının daha hafif teknolojileri bulunmasına rağmen maliyetleri çok yüksek olduğundan ticari olarak kullanımları çok kısıtlıdır. Dolum gerçekleştiğinden doğal gaz tanklarının periyodik olarak kalibrasyonunun yapılması bir zorunluluktur. Doğal gaz dolum sırasında 216 bar’lık bir basınca ulaşmaktadır. Uluslararası normlarının getirmiş olduğu standartları çok üstünde bir emniyet sağlamaktadır. Tanklar 300 bar’lık basınca uygun bir şekilde kalibre edilmiştir ve 450 bar’lık basınca dayanabilmesi için tasarlanmıştır.
Bugün kullanılan CNG’li otobüslerde doğalgaz 200 atmosfer basınç altında 8 adet 50 litrelik tüplerde depolanmaktadır. Bu tüplerle araç yaklaşık 150 km. yol kat edilebilmektedir. Yalnız çelik tüplerin en büyük dezavantajları boş tüplerin ağırlığıdır. Her biri yaklaşık 50 kg olan bu tüpler nedeni ile araca ek 400 kg’lık bir yük yüklenmişdir.

1.10.2.3. Çeşitleri

ECE R100 tüzüğündeki aynı ifadeler ile yeni nesil CNG tüplerinin çeşitleri şunlardır.

- CNG-1
- CNG-2
- CNG-3
- CNG-4

Şekil 1.11: ECE R100 tüzüğine göre CNG tankı çeşitleri
1.10.2.4. Özellikleri

- **CNG-1**: Karbon veya hafif çelikten yapılmış tamamen metal malzemeden üretilmiştir. Ağırlığı 100 litrede 95-110 kg arasındadır.

- **CNG-2**: Sentetik reçine ile kaplanmış sürekli iplikle kuvvetlendirilmiş metal sarmal depo (çember sarmalı), Tüpün metal malzemesi silindirik kısmında azaltılır ve bu bölümü cam elyafi veya karbon fiber sarılı bombler metaldır. Ağırlığı 100 litrede 70 kg civarındadır.

- **CNG-3**: Sentetik reçine ile kaplanmış sürekli iplikle kuvvetlendirilmiş metal sarmal depo (tamamen sarmalı), Tüpün metal bölümü çok hafif ve ısıyı hızla yaynan bir malzemeden (alüminyum) yapılır bir tüp ve tamamina karbon fiber sarılı olan tüptür. Ağırlığı 100 litrede 32-35 kg civarındadır.

- **CNG-4**: Sentetik reçine ile kaplanmış sürekli iplikle kuvvetlendirilmiş metal olmayan sarmal depo. Tüpün içindeki alüminyum tüp yerine plastik tüp kullanılmıştır ve üstü karbon fiber sarılıdır. Ağırlığı 100 litrede 30-35 kg arasındadır.

Araç üzerinde eş değer benzin deposunun kat edeceği miktarda doğal gaz deposu konulmak istenirse aracın bagajında hiç yer kalmayabilir. Bu nedenle doğal gazlı sistemler daha çok büyük araçlarda kullanılır.

![Resim 1.11: Otomobillerde CNG tank yeri](image)

Sıvılaştırılmış doğal gaz (LNG), sıkıştırılmış doğal gaz (CNG)'dan daha az yer kapladığı için küçük araçlarda sıvı doğal gaz kullanımı daha yaygındır. Bu tip depolar genellikle araçlarda döşeme altına konulmaktadır. Bu şekilde aracın bagajında herhangi bir küçülme olmamaktadır. LNG doğal gaz depolari diğer depolara nazaran daha pahalıdır.
1.10.2.5. Uyulması Gereken İşletme Şartları

Aşağıdaki işletme şartlarına mutlaka uyulmalıdır:

- CNG tüpleri, motorlu taşınanın etrafında oluşan genel kiriliklere maruz kalabilirler. Yüksek tahrip gücüne sahip asitlerden ve çözeltiriden korunmalıdır.
- Koruyucu mantolamalar mevcut değildir ve öngörülmemiştir, yani liflerde meydana gelecek yapısal hasarlar kolayca görülebilir. Kaplamanın yüzeyindeki ince epoksi reçine tabakası uygun bir yüzey koruması sağlar.
- Tupler kıymık, meçr veya benzeri maddeler yoluyla ağırmaya bırakılmamalıdır.
- Tüplerin içine normal su veya çeşme suyu (yağmur suyu, geriye akan su vs.) kesinlikle girmemelidir. Çünkü bu durum tüplerin dayanıklılık süresini olumsuz etkiler.

Doğal gaz tüplerinde 65°C (149°F) üzerindeki sıcaklıklar, ya lokal olarak sınırlı kalmalı, ya da kısa süreli olmalıdır ki tüpün içindeki gazın sıcaklığı hiçbir zaman 65°C (149°F)’yi geçmemelidir. Dolup ve boşaltma esnasında, sıcaklıklar yukarıda belirtilen alt ve üst sınırları arasında değişebilir.

Resim 1.12: Büyük araçlarda CNG tankları yerleri

Resim 1.13: CNG’de emniyet
1.10.2.6. Montaj Kuralları

Araçlarda CNG dönüşümlerinde araca montajı yapılan yakıt tankının üzerinde, CNG dönüşümünü yapan Firmanın adı, adresi ve dönüşüm tarihi, CNG tankı imalatçısı firmanın adı, adresi ve imal yılı beliren bir etiket, sökülmemeyecek şekilde bulunacaktır.

1.10.2.7. Tüplerin ve Sabitleme Sistemlerinin Denetim ve Bakımı

Kullanıma hazır duruma getirilme tarihi itibariyle, yıllık dolum sayısına ve tüplerin kullanıldığı ülkede ilgili yönetmeliklere bağlı olarak, tüplerin azami kullanım süresi 10 yılıdır. Araçlarda bulunan CNG tankı her 10 yılda bir değiştirilmelidir.

Son kullanım tarihi tüp etiketleri üzerinde belirtilmiştir. Etiketin okunamaz olması durumunda kullanıcı tüpün boynundaki damga etiketleri üzerinde belirtilmiştir. Eğer tüp kullanım süresine ulaşıldığında tüp hurdaya çıkarılmalıdır. Eğer tüp kullanım süresine ulaşmadan önce kullanım yılı x 1000 kez doldurulduysa da hurdaya ayrılır zorunludur.

Tanklar –400°C ile +650°C arasında bir problem yaratmayacek ve 250 atmosfer basınca 10.000 defa doldurulsa da emniyetinden bir şey kaybetmeyecik, darbelere ve yangınlara dayanıklı olacaktır.

1.10.2.8. Dolum ve Boşaltma

Dolum sırasında dikkat edilecek hususlar şunlardır:

- Tehlikeli bölge tecrit edilmedi.
- Ateşli veya tutuşma tehlikesine sahip lambalarla çalışılması yasaktır.
- Doğal gaz depolarının dolumdan önce, gözle görülebilen eksiklikler kontrol edilmelidir.
- Kaçağın olduğu bölgenin patlama tehlikesine anlamlı gelir ve hemen bertaraf edilmelidir.
- Dolum yapılacak olan aracın hareket etmesi engellenir, motor durdurulur ve kontak anahtarı üzerinden alınır.
- Uygun yangın söndürücüler (Yanma Sınıfı A, B, C) ve diğer söndürme teribatları kolay erişilebilir olmalıdır. Yanma sınıfı C tipi, metan için özellikle uygundur.
- Basınçlı gaz tüpleri ve borular açık atmosfere tahliye edilemez.
1.10.3. CNG Yakıt Tankı Multi Valfi

CNG tankı multi valfi ve araç üzerindeki yeri Resim 1.14’de görülmektedir.

Resim 1.14: Multivalf ve araç üzerindeki yeri

Tüplerin üzerinde bulunan multivalf şu parçalardan oluşur:

1.10.3.1. Manuel Valf

Gazın elle manuel olarak açıp kapatılmasını sağlar.

1.10.3.2. Selenoid Valf

Motor ECU’suna bağlıdır ve aracın çalıştırılması ve stop edilmesi sırasında gazın açıp kapatılmasını sağlar.

1.10.3.3 Aşırı Akım Valfi

Araç elektrik sisteminde aşırı akım oluşmasına güvenlik açısından gazın kapatılmasını sağlar.

1.10.3.4. TPRD Termik Emniyet Valfi

Termik emniyet valfi, yüksek sıcaklıklarda sistemi koruma altında alır.

1.10.3.5. Gaz Girişi / Çıkışı Bağlantısı

Gaz girişi ve çıkış bağlantısı Şekil 1.12’de görülmektedir.
1.10.3.6. TPRD Bağlantı Ağzı

Eğer tüp 1,65 m’den uzunsa tüp ortasına uzatmak için Termik emniyet valfı (TPRD) bağlantısı ağzı kullanılır.

1.10.3.7. TPRD Tahliye Ağzı

Termik emniyet valfinin (TPRD) üzerinde gazın tahliyesini sağlamak için tahliye ağzı bulunur.

1.10.4. Termik Emniyet Valfleri (TPRD)

![Termik Emniyet Valfleri](image)

Şekil 1.12: Multivalf ve termik emniyet valflı

Multi valf üzerinde bulunan termik emniyet valflı (TPRD)’nin görevi yüksek sıcaklık durumunda sistemi korumaktır. Bu valf 110°C da aktif hale gelir (Çalışması Şekil 1.13’de görülmektedir).

Tüpün uzunluğuna göre ön, arka veya orta termik emniyet valfı (TPRD) olarak birden fazla kullanılabilir. Bu tip termik emniyet valfli (TPRD) sistemlerde ayrıca yüksek basınç tahliye valfı yoktur.

![Termik Emniyet Valfinin Çalışması](image)

Şekil 1.13: Termik Emniyet Valfinin Çalışması
1.10.5. Türplerde Gazi Bağlayan Manifold

Türplerde gaz dolumunu ve tüpler arası bağlantıyı sağlamak için kullanılan boru sistemine manifold sistemi denir. Yüksek dayanıklı paslanmaz çelik borulardan imal edilmiştir.

Resim 1.15: Türplerde gazi bağlayan manifold

Sistemde bağlantı için kullanılan boruların et kalınlıkları, dolum ağızi - tüpler arası 16 mm, dolum ağızi - motor arası 12 mm, manifold - tüp vanalarına bağlantı için 10 mm özel paslanmaz dikişsiz boru olmalıdır.

1.10.6. Manifold Üzerinde Basınç Sensörü

Türp ya da tüplerin içerisindeki gazın seviyesini ölçmek için elektronik sistemlerde tüpleri birbirine bağlayan manifoldun üzerinde basınç sensörü bulunur. Özellikle CNG ile çalışan büyük araçlarda kullanılır.

Resim 1.16: Basınç sensörünün bağlantıları

1.10.7. Elektrik Bağlantı Kutusu

Sistemde statik yüklenmeyi engellemek için, araç ile tüp (monte edilmiş parçalar dahil) arasında elektrik ileten, kalıcı bir bağlantı kurulmalıdır. Statik yük, uçan veya kaçan gazın ateş almasına yol açacak bir kıvılcım oluşturabilir.
1.10.8. Yüksek Basınç Boruları

1.10.9. Yüksek Basınç Sensörü (Şamandıra)

Yukarıda bahsedildiği gibi yüksek basınç sensörü CNG tankı içerisinde bulunan gazın seviyesini ölçmek için kullanılır. Yüksek basınç sensörü bulunmayan otomobillerde kullanılan CNG sistemlerinde bu görevi; multivalf üzerine monte edilmiş depo içerisindeki gazın miktarını ölçmek ve deponun %80’den fazla dolmasını engellemek için şamandıra sistemi kullanılmıştır. (Resim 1.17)

Resim 1.17: CNG şamandırası

Deponun içerisinde dolum ucundan giren gaz giriş supabını geçerek şamandıranın açık tutulduğu kanaldan deponun içerisine dolar. Depo içerisinde seviyenin yükselemediği ise şamandıra yukarı kalkar. Depo içerisinde gaz miktar %80’e geldiğinde şamandıra, depo içerisinde gaz alanın kanalı kapatarak içeri gaz girişini engeller. CNG depolarında şamandıra devresi bulunmamaktadır. Sistemdeki basınca göre depo içerisinde mevcut gaz seviyesi belirlenir.
1.10.10. Borulama ve Aksesuarları

Resim 1.18: CNG aksesuarları

Sistemde kullanılan tüm malzemenin ECE R110 sertifikası olmak zorundadır.

Borulama yolcu kabininden geçerse üst ucu havaya açık bir borunun veya özel bir sertifikalı hortumun içinden geçmelidir.

1.10.10.1. Bağlanti Parçaları

Borular birbirine boru sistem ile yani çift yüksüklü sıkılan bağlantı parçaları ile bağlanır. Bağlanti parçaları ve kullanılan tüm malzeme paslanmazdan imal edilmiştir. Dişleri özel gaz dışındır.

1.10.10.2. Basınç Sensörü

Yukarıda bahsedildiği gibi basınç sensörleri depodaki ve sistemdeki gazın basıncını tespit etmek ve CNG ECU’suna bildirmek için kullanılır.

Gösterge ise depodaki gaz miktarını sürücüye bildirmek için kullanılmaktadır.

1.10.10.3. Manometre

CNG sitemlerinde depo içerisindeki gaz miktarı sistemde bulunan bir manometre vasıtası ile yapılmaktadır. CNG yakıt sistemlerinde manometredeki basınç bize depodaki gaz miktarını vermektedir. Depodaki gaz miktarı maksimum 250 bari göstermektedir. Sistem basınçını 25 barın altında düştüğü zaman otomatik olarak diğer yakıt sistemi çalışmaya başlamaktadır.
1.10.10.4. Filtre

Filtre, motor-gaz yolundadır ve motor ile regülatör istikametine gidenгазıfiltre eder.

1.10.10.5. Çek Valf

Çek valf dolum ağzından giren gazın geri kaçmasına engel olur.

1.10.10.6. Braketler

Braketler CNG sistem elemanlarını aracın uygun bölgelerine bağlanısta yapmak için kullanılır.

1.10.11. CNG Regülatörü

1.10.11.1. Görevi

Regülatörler araç motora yakın konulur ve yüksek basınç ile gelen CNG burada motor çalışmasına kadar indirilir. Regülatörler, motor çalışma basınç aralığında önceden ayarlanmış ve sabitlenirler.

Resim 1.19: Farklı yapılarındaki CNG regülatörü

1.10.11.2. Yapısı

Regülatörün elektronik ve vakumlu olarak iki tipi vardır.

Vakumlu regülatörler LPG sisteminde kullanılan regülatörler ile yapı olarak fazla bir fark yoktur.

Resim 1.20: Otomobil üzerinde CNG regülatörü ve basınçölçer manometre

1.10.11.3. Özellikleri

Elektronik regülatörde, karbüratore giden hat kontak ile birlikte çalışır. Gaz hattı açık olsa bile elektro valf ile gazın motora akışı kesilir.

Gaz akış sisteminde, gaz basınç regülatöründen önce bir yüksek basınç manyetik kapama valfı vardır. Bu valf, motor elektronik sistemi tarafından, devir sayısı alt sınır değere ulaştığında ya da ek ısıtma sistemi tarafından çalıştırılır.

ECE R110’a uygun sistemlerde, bu valfin yerine, her gaz tüpünü açıp kapayan valf vardır. Bu valfler, farklı üreticilere ait olabilir. Emniyet tapalı elektromanyetik kapama valfı, akış sınırlayıcı, elle kapama vanası ve patlama plakası bu valflere entegre edilmiştir.

Regülatörün aktif hale geçebilmesi için üzerinde bulunan selenoid valfe tüp üzerindeki selenoid valfe gelen aynı akım uygulanır. Normal pozisyonları kapalıdır.

Regülatör motor soğutma suyunun sıcak devresine bağlanır ve motora giden doğal gazın mümkün olduğu kadar 15°C civarında gitmesi sağlanır. Ancak, motor soğuk olsa bile doğal gaz, gaz fazında bir yakıt olduğu için dış hava sıcaklığı ne olursa olsun motor çalışır. Ön ısıtmaya gerek yoktur.
Şekil 1.14: CNG elektronik regülatörünün kısımları

1. Basınç regülatörü
2. Isın değiştirici
3. Selenoid valfi kapatma
4. Yüksek basınç vericisi
5. Fiş (alçak basınç verici noktası)
6. Emniyet valfi
7. Çıkış sıkıştırma halkalı rekor
8. İntel sıkıştırma halkalı rekor

Motorun talep ettiği basıncı regülatör hızla adapte olarak sağlar.

1.10.11.4. Kontrolleri

Belirli periyotlarda CNG regülatörleri, ilk çalışma, röllantide çalışma ve araç motorunun çalışma performansını test edilirken koku yönünden de kontrol edilmelidir.

1.10.11.5. Arıza ve Belirtileri

CNG ile çalışan arabada muhtemel regülatör arızalarını şu şekilde sıralamak mümkündür:

- Regülatörün hava ayarı veya gaz ayarı bozuk olabilir.
- Regülatör sıcak su girişi tıkalı veya regülatörde hava vardır.
- Regülatör rádyatörden daha yükseğe monte edilmişdir.
- Regülatör diyaframı özelliğini kaybetmiş veya uygun olmayan malzemenin imal edilmiş diyafram kullanılmıştır.
- Regülatör içerisinde tortu ve pislik birikmiştir.

CNG ile çalışan arabada muhtemel regülatör arızalarının belirtilerini de şu şekilde sıralamak mümkündür:

38
- Aracın CNG’de çok yakması,
- Aracın geç çalışması,
- CNG’de röntgen problemi olması,
- CNG’li aracın koku yapması,
- Araç motorunun CNG’de kesiklik yapması,
- Aracın CNG ’de çekmemesi.

1.10.12. Alçak Basınç Borusu ve Esnek Hortum

![Resim 1.2: Esnek hortumlar](image)

1.10.13. Yakıt Seçme Anahtarı ve Elektrik Bağlantıları

![Resim 1.22: Örnek yakıt seçme anahtarı (Göstergeli ve göstergesiz)](image)

Yakıt seçme anahtarı ve gösterge, aracın kullanacağı yakıtı seçmek için ve depodaki gaz miktarını sürücüye bildirmek için kullanılmaktadır.
1.10.14. Benzin Kesici Elektro Valfi

Elektronik olmayan regülatörlerde sistemin CNG ile çalıştığı durumlarda benzini kesmek için benzin kesici elektro valf kullanılır. Resim 1.23’de benzin kesici ve CNG kesici elektro valfler görülmektedir.

![Resim 1.23: Benzin kesici ve CNG elektro valf](image)

1.10.15. Elektronik Kontrol Ünitesi (ECU)

ECU’nun özellikleri şunlardır:

- Araç ECU ile ortak çalışması
- Parametre ayarları
- Gaz düzenlemeleri
 - Sistem Basıncı
 - Gaz Sıcaklığı
 - Motor Suyu Sıcaklığı
 - Lamda Düzenlemesi
 - Gaz Kesme ani-Cut-off
 - Geçiş zamanı hassasiyet ayarı

Bu ECU’da, benzin püskürtmeli Motronic modeli esas alınmıştır. ECU, CNG enjektörlerine ayrı tahrik kademeleri vasıtasıyla kumanda eder. Torkla yönlendirilen kumanda, CNG işletimine özgü işlevlerin basit bir biçimde entegre edilebilmesine olanak tanır.

Bazı sistemlerde her iki yakıt sisteminin çift yakıtı bir ECU’da birleştirilmesi sayesinde örneğin, daha düşük kablolama maliyetleri ve ikincı ECU’ya gerek kalmaması dolayısıyla maliyetten tasarruf gibi çeşitli avantajlar elde edilir. Ayrıca, sistem bir bütün itibarıyla önemli ölçüde bir optimizasyon potansiyeline sahiptir.
Tek ECU kavramının içerdığı bir diğer avantaj da, her bir çalışma konumunda, benzinli ve CNG’li çalıştırma arasında torkta herhangi bir sıçrama olmaksızın koordineli geçiş yapılabiliridir.

1.10.16. CNG Enjektörü ve Rail

CNG enjektörleri, otomotive yönelik CNG püskürtmenin taleplerini karşılamak üzere özel olarak üretilmiştir. Bir dizi teknik yenilik içeren enjektörler, gaz ölçümünde bir kistas teşkil eder. İçlerinden gaz akan bileşenler yüksek gaz hacimleriyle ve yüksek hızda gaz geçişine dayanacak şekilde tasarlanmıştır. Kısmı noktadan önceki basınç kayıpları ve çalışma gürültüsü özel bir akış kılavuzu sayesinde minimum düzeydedir.

Standart bir tahrik aşaması vasıtasıyla tetiklenebilen selenoidün yüzeyi, içinde yağ barındırmayan gazla kullanılması esnasında aşınmasını önlemek üzere özel olarak kaplanmıştır.

Özel tasarımıyla daha önceden bilinen tüm gaz enjeksiyon valflerinden kat kat üstün olup, mevcut emme maniföldlarının geometrisine kolaylıkla entegre edilebilir.
1.11. Doğal Gaz (CNG) Yakıt Sistemleri Montaj Yönetmeliği

Araçların CNG dönüşümünde uygulması zorunlu olan standartlar ve kurallar vardır. ECE R110 Teknik Düzenlemesi, CNG donanım parçalarının teknik özellikleri ve CNG donanımları araçlarla ilgili genel hükümleri belirlemektedir.

Türkiye’deki mevcut yönetmelik gereği sonradan dönüşümlerle takılan tüm CNG parçalarının ECE R110 standardına göre onaylı olması gerekmektedir.

Yönetmelik içerisinde edilen adımların kapsamdında 18 adet tahlita vatandaşmış olup mevcut araçların yakıt sisteminin CNG’ye tahlit edilmiş maddeden tarif edilmiştir.

Bir araç üzerinde imalatından sonra veya hizmet süresince, aracın niteliğini değiştirecek şekilde yapılan işlem tahlit edilmelidir.

- Araçlarda kullanılan aksam ve parçalar; yakıt olarak CNG kullanılacak araçlarda ECE R110 regülasyonunda belirtildiği teknik esaslar uygulanmalıdır.
- Firmalar, tahlit işlemlerini yaptıkları işyerleri için, Türk Standartları Enstitüsü’nün (TSE) Hizmet Yeterlilik Belgesi almak zorundadır.
- Firmalar, aksam ve parçaları prototip araç üzerine montajını yaptıktan sonra, Otomotiv Ana Bilim Dalı olan Üniversiteler veya TSE’nin “Yakıt Sistemi Uygunluk Raporu” alacaktır.
- Bakanlık veya bakanlığın yetki verdiği kuruluştan yetki belgesi almış makine mühendislerine çizdirilen tahlita ait projelerin bakanlık veya yetki verdiği kuruluşla onaylanır.
- Tahlit yapılan araçlarda eski, kullanılmış, standart dışı malzemeler kullanılmaz.
- Araçlarda CNG dönüşüm işlemleri, projesine uygun ve düşüşüme ilgili eğitim alınmış uzman kişilerce yapılacaktır.
- Seri tahlit olarak CNG dönüşüm montaj işlemlerini yapan firmalar için, yukarıdaki belirtilen hususları sağlamak kaydedilebilir, Bakanlık veya bakanlığın yetki verdiği kuruluş tarafından “Araçların İmal, Tadil ve Montajı Hakkında Yönetmelik (ÂİTM) Tip Onay Belgesi” verilir.
- Münferit olarak CNG dönüşümü yapılan araçların, yukarıdaki belirtilen hususları sağlamamak kaydedilebilir, Bakanlık veya bakanlığın yetki verdiği kuruluş tarafından “Münferit Araç Uygunluk Belgesi” onaylanır.
- CNG yakıt sistemi tahlitleri yapılan araçların trafiğe tescil edilebilmesi için Makine Mühendisleri Odası’ndan (MMO) veya Otomotiv Ana Bilim Dalı olan üniversitelerden, aracın montajının projesine uygun olarak yapılmış dair “Montaj Tespit Raporu” ve “Gaz Sızdırmazlık Raporu” nın alınması gereklidir.
Türkiye Şoförler ve Otomobilciler Federasyonu’ndan veya Makine Mühendisleri Odası’ndan temin edilen, üzerinde CNG yazısı bulunan yansıtıçılı (reflektif) etiketler, araçların ön ve arka camlarının sağ üst köşelerine yapılacaktır.

Yakit sistemi tadilatla, CNG’ye dönüştürülen araçların trafiğe kayıt ve tescil işlemleri, Karayolları Trafik Kanunu’nun 32. maddesine ve bu yönetmelik esaslarına göre yapılacaktır.

Araçlarda yakıt sistemi dönüşümü ile ilgili her türlü teknik ve mali sorumluluk; araç projelerini hazırlayan makine mühendislerine, “Yakit Sistemi Uygunluk Raporu”nu veren kurulsha, aksam ve parçaları imal veya ithal eden firmalara, dönüşüm montajı yapan firmalara aittir.

CNG yakıt sistemine dönüştürülen araçların periyodik muayenelerinde; TSE, MMO veya Otomotiv Ana Bilim Dalı olan üniversiteler tarafından düzenlenmiş “Gaz Sızdırmazlık Raporu” aranır. İl merkezi belediye hudutları dışındaki yerlerde araç muayene istasyonları tarafından da “Gaz Sızdırmazlık Raporu” düzenlenebilir.

Bakanlıktan veya yetki verdiği kuruluştan kendi firmaları adına AİTM “Tip Onay Belgesi” alan firmalar, belgelerini diğer firmaların araç dönüşüm işlemlerinde kullandıkları takdirde, bu firmaların belgeleri iptal edilir.

CNG yakıtı kullanan araçlar kapalı garajlarda park edemez.

1.12. Doğal Gazlı (CNG) Yakıt Sisteminin Montajının Yapılışı

Karbüratórlu motorlarda CNG kullanılması için karbüratörün alt ve üst kısmında mikser, içinde belirli çapta delik açılmış bilezik kullanılmaktadır. Karbüratörün yapısından dolayı mikserler değişiklik arz etmektedir.

Şekil 1.15: Montaj örneği

CNG montajının yapılsı uygulama faaliyetinde tarif edilmiştir.
1.13. Montajda Dikkat Edilecek Hususlar

Montaj, bakım, servis bölgelerinde iş güvenliğine ilişkin alınmış tezihat önlemleri yeterli olmadığı için, sızdırmazlığı sağlanmamış doğal gazlı araçlar bu bölgelere hiçbir şartta sokulmamalıdır. Bu araçlar ya açık alana ya da gaz sistemi için uygun olan tamir bölgelere sevk edilmelidir.

Doğal gazlı araçlar üzerinde yapılacak tüm işlemler sırasında araç, ilgili uyarı işaretleriyle ön ve arka kısmından güvence altında alınmalı ve mümkünse kırmızı-beyaz bir bantla aracın çevresi kapatılmalıdır.

Şekil 1.16: CNG ikaz işaretı

Yangın durumunda çıkan gaz alevleri söndürülmemeli, tam tersine yanan nesne soğutulmalıdır. Gereken şekilde tanımlanmış olan basınçlı doğal gaz tüplerinin, dolum tabancalarının ve depolama tanklarının vanaları kapatılmalıdır.

Bu tür bir yanma esnasında alevlerin çevreye yayılması durumunda normalde yapıldığı gibi yangın söndürücü yardımıyla mücadele edilmelidir. Yakında bulunan araçlar anında tehlike bölgesinde uzaklaştırılmalıdır.

Bir yangın çıkması durumunda, kendi söndürme çabalarınıza beraber hemen itfaiyeye haber verilmeli ve daha sonra yangınla mücadele sürülmelidir. Tehlikedeki kişilere hemen yardım edilmelidir. İnsanların kurtarılması yangınla mücadelede önce geldiği unutulmamalıdır. Gereken şekilde tanımlanmış olan dolum tabancalarının ve depolama tanklarının vanaları kapatılmalıdır. Elektrik tesisatının ana şalteri de kapatılmalıdır.
Montaj atölyesinde dikkat edilecek hususlar:

- Gaz sistemi üzerindeki çalışmalar sadece özel tasarlanmış, teknik havalandırımayı sahip ve ateş kaynağı içermeyen bölgede yapılmalıdır.
- Gaz sisteminin montaj işleminden sonra yaklaşık 20 bar basınç ile uzman kontrolör tarafından sızmazlık testi yapılmalıdır.
- Doğal gaz sadece açıkta ve 5 m yakınında ateş kaynağı olmayan bir bölgesinde tahliye edilmelidir.
- Özel koruma önlemleri alınmazsa gaz ihtiva eden komponentlerin 1 m çevresinde alevli çalışmalar yapılmalıdır.
- Gaz sistemi arızalanmış doğal gazlı araçların çekilebilme si için çekme arabası hazır bulundurulmalıdır.
- Gaz sisteminde bir kaçak olursa araç hemen kendine gücüyle ya da çekilere atölye dışına alınmalıdır, atölye havalandırılmalı; yanan gaz söndürülmemeli ve itfaiye aranmalıdır.
- İşletme talimatı atölye personeli tarafından biliniyor olmalıdır.
- Doğal gazlı araçlarda tamir işlemlerinin yapılması için özel uzmanlar ve uzman kontrolörlerle ihtiyaç vardır.

1.14. Montajdan Sonra Yapılan Kontrol ve Ayarlar

Multivalf üzerinden girişi-çıkışı vanaları açılarak yüksek basınç boruları rekorlarında ve bağlantılarında kaçak kontrolü yapılmalıdır. Bu işlem için CNG tankı 3-5 litre CNG ile doldurulmalı ve dolum işlemi kontak anahtarı kapalı iken yapılmalıdır.

Motor CNG yakıtı ile çalıştırılacak yeni bir kaçak kontrolü yapılmıştır. Montaj sonrasında, tüm muhafazalı kauçuk ve çelik gaz boruların, bunları aşırı döşenmiş herhangi bir parça ile temas edip etmediği ve gaz kaçağı oluşturma kabiliyetini kontrol edilmelidir.

Doğal gazlı (CNG) yakıt sisteminin montajını yapıyoruz.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boru ve bağlantı elemanlarını hazırlayınız.</td>
<td>➢ Dikkatli ve hassas çalışınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Temiz ve düzenli olunuz.</td>
</tr>
<tr>
<td></td>
<td>➢ Devre şeması okumasını öğreniniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Kullanacağınız bütün CNG sistemi elemanlarının ECE R tüzüğüne uygun olduğundan emin olunuz.</td>
</tr>
<tr>
<td></td>
<td>➢ İş güvenliği kurallarına dikkat ediniz ve uygulayınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Güvenlik eldivenleri giyiniz.</td>
</tr>
<tr>
<td>Deponun, dolum ağzının ve multivalfın montajını yapıyor.</td>
<td>➢ Deponun basınçsız olması gereklidir.</td>
</tr>
<tr>
<td></td>
<td>➢ Tüplerle çalışırken etiketin iyi bir durumda ve okunabilir kalmasına dikkat ediniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Tüpün hangi gaz için öngörüldüğünü tespit ediniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Tüplerle çalışırken ellarınızın temiz olmasına, ellarınızde aşındırcı taneciklerin (kum), sıvı veya katı yağ olmamasına dikkat ediniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Böylece hem elinizden kayma tehlikesi hem de tüpün iç kısımlarının kirleme tehlikesi minimize edilmiş olur.</td>
</tr>
<tr>
<td></td>
<td>➢ Tüpün üzerine basmayınız. Eğer tüpün üzerine basınç basma kaçınılmaz ise, ayakkabılarınızın tüpün yüzeyinde çizik oluşturmadığına emin olunuz.</td>
</tr>
<tr>
<td></td>
<td>➢ Tüpleri kaldırmırken valflerinden, tapalarından, contalarından, güvenlik tertibatlarından veya boru hatlarından tutmayınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Özellikle tüplerin aşağı düşmemesine büyük itina gösteriniz. Çünkü bu durumda hem personel yaralanabilir hem de tüpler hasar görebilir.</td>
</tr>
<tr>
<td></td>
<td>➢ Valfi veya tapayı tüpün boynuna elle monte ediniz.</td>
</tr>
<tr>
<td>Kesici vanaların montajını yapınız.</td>
<td>Valflin veya son tapanın ve karşı parçanın yivlerinin hasarsız olduğundan emin olunuz.</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Yivleri temizleyici bir madde ve bir plastik fırça ile temizleyiniz.</td>
</tr>
<tr>
<td></td>
<td>Yivleri kuru bir bez ile kurulayın.</td>
</tr>
<tr>
<td></td>
<td>Yivlerin ve O halkasının sıздравmaz alanının temiz olduğundan emin olunuz.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regülatorun ve manometrenin montajını yapınız.</th>
<th>Aşağıdaki resimlere uygun olarak çalışınız.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Doğal gaz enjektörlerini emme manifolduna montajını yapınız.</th>
<th>Aşağıdaki resimlere uygun olarak çalışınız.</th>
</tr>
</thead>
</table>
Boru bağlantılarınızı yapınız.

Kullanılacak boruların ECE R standartlarına uygun olmasıına dikkat ediniz.

Boruların motora bağlantısı bittiğinde hepsinin aynı boyda olmasıına dikkat ediniz.

CNG railine nozulları bağlayınız.

Bütün bağlantıarda sızdırmazlık için sıvı conta kullanınız.
- CNG ortak railini motor üzerine uygun bölüme bağlayın.
- Filtrenin montajını yapınız.
- Filtreyi giriş ve çıkışına dikkat ederek montaj yapınız.
- CNG ECU’nun montajını yapınız.
- CNG ECU’sunu araç üzerinde orijinal braketlerini kullanarak bağlayın.
| Kablo bağlantılarını hazırlayınız ve yapınız. |
| Kablo bağlantılarında standartlara uygun soket kullanınız. |
| Enjektörlerin elektrik bağlantılarını numaralarına uygun olarak takınız. |
| Kumanda düğmesinin montajını yapınız. |
| Yakıt seçici kumanda düğmesini sürücü mahalinde resimde olduğu gibi uygun yere monte ediniz. |
CNG sistemi elektrik devresinin sigortasının montajını yapınız.

Resimde görülen kablo demeti üzerindeki yerine CNG sigortasını takınız.

Sistemin test ve ayarlarını yapınız.

Sistemin sıздравmazlık testini yapınız.
Test ve ayar işleminde uygun diagnoztik cihaz kullanınız.

CNG sistemini yol testi ile de son kontrolerini ve ayarını yapınız.
Aşağıdaki soruları dikkatlice okuyarak doğru seçeneği işaretleyiniz.

1. Türkiye’deki mevcut yönetmelik gereği sonrasında dönüşümle takılan tüm CNG parçalarının hangi standarda göre onaylı olması gerekmektedir?
 A) ISO 9001
 B) TS
 C) ECE R110
 D) CE
 E) DIN

2. Araçlarda bulunan CNG tankları kaç yılda bir değiştirilmelidir?
 A) 5
 B) 10
 C) 20
 D) 30
 E) 40

3. CNG’nin tamamına yakını hangi gazdan oluşmaktadır?
 A) Metan
 B) Etan
 C) Bütan
 D) Propan
 E) Helyum

4. Aşağıdakilerden hangisi doğal gazin özelliklerinden birisi değildir?
 A) Doğal gaz saf halinde iken renksiz, kokusuz ve tatsız bir gazdır.
 B) Fiyatı ucuzdur.
 C) Araçlarda kullanıldığında çevreyi fazla kirletmez.
 D) Yanma verimi çok yüksek olan bir gazdır.
 E) Oktan sayısı yüksektir.

5. Aşağıdakilerden hangisi termik emniyet valfi (TPRD)nin görevidir?
 A) Yüksek basınçtan sistemi korumak
 B) Gaz kaçaklarından sistemi korumak
 C) Yüksek sıcaklık durumunda sistemi korumak
 D) Benzinle çalışırken gazı kesmek
 E) Sistemde yüksek basınç oluştuğunda basıncı düşürmek
Aşağıda boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

6. () LNG; kokusuz, renksiz ve zehirli olmayan, sıvı fazda bir yakıttır.
7. () Doğal gazın, Otto motorlarında yakıt olarak kullanılımasına yarar sağlayacak en önemli özelliği oktan sayısının yüksek olmasıydı.
8. () CNG’ın dizel motorlarda kullanılması; dizel motoru benzinli motor çalışma bicimine dönüştürülmüş bir ateşeleme sistemi yerleştirilerek ve sıkıştırma oranı düşürülenerek kullanılması tercih edilen bir yöntemdir.
9. () CNG’ın dizel motorlarda kullanılması; çift yakıt sistemi uygulaması ile sıkıştırılan karışımın pilot yakıtla tutuşturulması yöntemi tercih edilen bir yöntemdir.
10. () Arac motorunda CNG’ın yakıt olarak kullanılması silinder cidarlarında karbon birikimine sebep olur.

DEĞERLENDİRME

ÖĞRENME FAALİYETİ–2

AMAÇ

Doğalgazlı (CNG) yakıt sisteminin ayarlarını yapabileceksiniz.

ARAŞTIRMAMA

Doğalgazlı (CNG) yakıt sisteminde bakım ve ayar işlemlerinin yapılmasını inceleyiniz.

2. DOĞAL GAZ (CNG) YAKIT SİSTEMLERİNİN AYARLARI

2.1. Doğal gaz (CNG) Yakıt Sistemlerinin Arızaları ve Belirtileri

Doğal gaz yakıt sisteminde aşağıda belirtilen arızalar ile karşılaşabiliriz:

- Dolum sistemi (dolum ağı) tek yönlü valfi gaz kaçırıyordu.
- Dolum basıncı manometresi arıزانmış ve tutarsız değer göstermektedir.
- Filtre tıkanmıştır ve gaz geçişini yeterince sağlayamıyordu. Özellikle yüksek devirlerde ve güçlü durumunda geçen yakıt yetersiz gelmektedir.
- Herhangi bir tehlike durumunda motor stop sensörü motoru stop etmemektedir.
- Tüpler yerine sabitlerken gevşek ve hatalı bağlantılar olabilir.
- Manuel valf devreyi açıp kapatamamaktadır veya gaz kaçağı vardır.
- Selenoid valf devreyi açıp kapatamamaktadır veya gaz kaçağı vardır.
- Aşırı akım valfi arıزانmıştır ve elektrik sistemi sürekli arıza gelmektedir.
- Termik emniyet valfi (TPRD) yüksek sıcaklıklarda devreyi korumaya almamaktadır.
- Tüpleri birbirine bağlayan manifold sisteminde gaz kaçığı vardır.
- Manifold bağlantı borularında dış etkilerden dolayı hasar oluşmuştur.
- Manifold üzerinde basınç sensörü düzgün değer ölçemiyordur ve sürekli arıza vermektedir.
- Elektrik bağlantı kablolarında ve bağlantı soketlerinde ezilme ve gevşeklikler kısa devre yaptırmaktadır.
- Yüksek basınç borularında ezilme ve bağlantı rekorlarında sızıntı olmuştur.
- CNG regülatörü doğal gazı, gaz fazına geçirememektedir.
- Alçak basınç borusu ve esnek hortumlarda ezilme, sızıntı ve aşıntı vardır.
- Yakıt seçme anahtarı ve elektrik bağlantılarında temassızlık vardır.
- Benzin kesici elektro valfi benzini kesmemekte ve motor zengin karışımıla düzensiz çalışmaktadır.
- Elektronik kontrol ünitesi devrelerinde ve soketlerinde arıza nedeniyle sistem düzensiz çalışmaktadır.

54
CNG sisteminin can güvenliği açısından en önemli parçası olan tüplerdeki/tanklardaki arızaları biraz daha ayrıntılı ile inceleyelim. Kullanım ömrünü tamamlamamış CNG sisteminde tankların arızaları genelde hasar şeklinde olur ve belirtileri de şunlardır:

- **Darbe hasarı**

 Bir darbe hasarı kaplama yüzeyi altında bulunabileceğinden, duruma göre zor tespit edilebilir. Değerlendirmede özellikle hasar nedeni ve gelişimi de dikkate alınmalıdır. Darbe hasarı olan tüplerin kullanımına devam edilip edilmemesi kararı işleticinin sorumluluğundadır.

 Örneğin tüpün bir kenar üzerine düşmesi neticesinde ortaya ç kabulecek hasarlar gibi, keskin kenarlı objelerin oluşturduğu darbe hasarları tüpün zorlanmasına sebebiyet vermektedir.

 Tüp üzerinde yarık, yassı bölgeler, kaplamada kırmızı veya soyulma, ince çatıları görüür ise tüp kullanılmadan kaldırılarak kullanılmaz hale getirilir.

 ![Resim 2.1: Tank üzerinden darbe hasarı](image1)

 Sadece dış saf reçine tabakası üzerindeki ince çatıların laminate kaplama özelliklerini etkilemez.

 - **Kesme hasarı**

 Kaplamadaki kesiklerin veya yarıkların değerlendirilmesi bunların derinlikleri ve uzunlukları bazında yapılır. Burada bir çentiğin uzunluğu, lif yönüne dikey olan toplam uzunluğudur. Bir çentiği örneğin lif yönüne çapraz uzanyorsa, bu durumda bu kertiğin lif yönüne dikey “izdüşümlü” uzunluğu tespit edilir.

 ![Resim 2.2: Kesme hasarı](image2)

 Sadece dış saf reçine tabakası üzerindeki kesiklerin kaplama özelliklerini etkilemez.
Çentik derinliği, çentiğin kaplama içindeki derinliğini ifade eder ve toplam derinlikten reçine tabakasının kalınlığı düşülen bir şekilde zımparalanarak giderilmelidir. Duruma göre, çentik derinliğinin tespiti için saf reçine tabakası, çentiğin bulunduğu yerde dikkatli bir şekilde zımparalanarak giderilmelidir.

- **Sürtme hasarları**

Bir sürtme hasarının değerlendirilmesinde ilgili bölgenin kaplama içindeki hasar derinliği baz alınır. Sürtme derinliği, laminat içindeki en derin çentik veya eksik kaplamının maksimum kalınlığı ölçülerek, diğer bir deyişle toplam derinlikten reçine tabakasının kalınlığı düşülen bir şekilde zımparalanarak bulunur. Duruma göre, sürtme derinliğinin tespiti için saf reçine tabakası, sürtmenin oluştuğuna yerde dikkatli bir şekilde zımparalanarak giderilmelidir.

Sürtme derinliği tam olarak tayin edilemiyorsa, muhtemel bir hasar bölgesi tespit edilir ve sınıflandırma için en kötü durumu hesap edilir.

![Resim 2.3: Sürtme hasarı](image)

- **Ateşe ve aşırı sıcakğa bağlı hasarlar**

Bu konuda açık bir belirti göstermese de, tüm ateşten veya aşırı sıcakktan dolayı hasar görmüş olabilir. Bu nedenle, önerilen süreçlere uyulması önemlidir. Örneğin ateş veya aşırı sıcakın etkisiyle bağlı olmayan pisliği gidermek için önce etkilenen kısmı temizlenmelidir.

![Resim 2.4: Ateşe bağlı hasar (3. derece)](image)

Ateşe veya aşırı sıcakğa bağlı hasar belirtileri taşıyan tüpler, etkilenen kısmın boyutuna bakılmaksızın kullanımdan kaldırılmalıdır ve kullanılmaz hale getirilmelidir.
Hava etkisine bağlı hasarlar

Etkilenen kısımda, yanlış değerlendirmeye yol açabilecek pişliği veya diğer maddeleri gidermek için, incelemeye başlamadan önce temizlenmelidir.

Resim 2.5: Hava etkisine bağlı hasarlar (1. derece)

Kimyasal aşınma

Etkilenen kısımda, hâlâ var olan kimyasal maddeleri veya çözücüleri gidermek için, incelemeye başlamadan önce temizlenmelidir.

Resim 2.6: Kimyasal aşınma (3. derece)

Tüplerin onarımı

Tüp hasarlarının derecelerini imalatçı firma kataloglarına göre değerlendirilerek onarılma karar verilmelidir. Onarımın amacı, nemin veya diğer yabancı maddelerin kaplamasını önlemek için bir koruyucu tabaka uygulanmasıdır. Onarım, tüpün dayanaklılığını artırma/tüpu güçlendirmeye yaramaz.

Gerekli malzemelerin listesi:

- Zımpara bezi
- Yassı fırça (yaklaşık. 15 mm genişliğinde)
- Epoksi reçine
- Sertleştirici
- Epoksi reçineyle uyumlu siyah boyar madde veya boya macunu
- Temizlik maddesi veya çözücü
İmalatçı firma ile görüştükten sonra başka reçine sertleştirici sistemler de kullanılabiliyor.

CNG yakıt sistemi arızalarının temel nedenlerinden biri de, motorun benzin ile çalışmasındaki arızalar ve ayarların bozulmasıdır. Benzin sistemi ile arızalar giderildiğinde ve ayarlar yapıldığında CNG yakıt sistemi arızaları çoğunlukla giderilebilmektedir.

CNG yakıt sistemi bulunan araçlarda karşılaşılan muhtemel Tablo 2.1’de belirtilmektedir.

<table>
<thead>
<tr>
<th>Arızalar</th>
<th>Muhtemel Sebepleri ve Belirtileri</th>
</tr>
</thead>
</table>
| Araç CNG’de çok yakıyor | ✓ Araçın benzin sarfiyatı yüksektir. Benzin sisteminde arıza teşhisı yapılmalı ve benzin emisyon değerleri kontrol edilmelidir.
✓ CNG takılı olan araç yağ yakıyor veya su eksiltiyor. Motorunda arıza var.
✓ Supap ayarı bozuktur.
✓ Buji çalıştırma verimliliğini kaybetmiştir. Buji tırmak aralığı fazladır.
✓ Rölanti ve k virus ayarı bozuktur. Karbüratöre fazla hava gidiyor olabilir.
✓ Emme maniföldü veya mikser hava alıyor olabilir. Sistemin hava alması, karbüratörlü motorda karbüratör kontası veya hidrovaktan, enjeksiyonlu motorda otomatik hava ayarını sağlayan debimetreden kaynaklanır.
✓ Regülatörün hava ayar vanası çok açılmıştır.
✓ Regülatör sıcak su giriş tıkalı veya regülatörde hava vardır.
✓ Regülatör radyatörden daha yüksekse monte edilmişdir.
✓ Regülatör diyaframı özelliğini kaybetmiş veya uygun olmayan malzemeden imal edilmiş diyafram kullanılmıştır.
✓ CNG kaçığı olabilir. CNG kaçiği olan bölgede buzlanma olur.
✓ Motor herhangi bir sebeple hararet yapmışsa regülatör işleminin tam yerine getirilememiştir.
✓ Hava filtrisinin temizliğine ve zamanında değişimine uyulması motorun CNG ve LPG pozisyonunda sağlıklı çalışmayacak, gereğinden fazla yakıt harcamayacaktır. |
| Araç geç çalışıyor | ✓ Buji veya buji kabloları ömrünü tamamlamış, eski veya kalitesizdir.
✓ Avans ayarı bozuktur. Motorun CNG ve benzinde geç çalışmasına sebep olur.
✓ Regülatörün hava ayağı veya gaz ayağı bozuk olabilir. |
| CNG’de rölanti problemi var | ✓ Karbüratörlü araçlarda karbüratör kelebeği arızalı olabilir.
✓ Emme maniföldü hava alıyorsa düzensiz rölantiye sebep olabilir.
✓ Buji ve buji kablolarının eski veya kalitesiz olduğu rölanti devrini bozabilir.
✓ Regülatör diyaframları özelliğini kaybetmiştir. Regülatör içerisinde tortu ve pislik birikmiştir. |
Avans ayarının bozuk olması düzensiz röllantıye sebep olabilir. CNG elektro valfine gelen gerilim düşüktür.

CNG’li araç koku yapıyor
- Regülatör diyafırmaları özellikini kaybetmiştir.
- Araçta CNG kaçağı olabilir.
- Aracımızın egzozunda patlak veya delik olması araçta CNG kokusunun algılanmasına sebep olabilir.
- Aracın radyatöründe delik var veya radyatör tıkılsı ise regülatöre yeterli sıcak suyun gelmesine ve araçta kokuya sebep olabilir.

Araç CNG’de kesiklik yapıyor
- CNG elektro valflerinde tıkanıklık veya çalışma bozukluğu olabilir.
- Regülatör diyafırmaları özelliğini kaybetmiştir. Regülatör arızalıdır.
- Buji veya buji kabloları ömrünü tamamlamış, eski veya kalitesiz olabilir.
- Araç CNG’yi kesik kesik alıyor ise regülatör ve ayarlarda bozuluk olabilir.

Araç stop ediyor
- Hidrovaka kaçağ, aracın stop etmesine sebep olabilir.
- Karbüratör hava alıysa fren yapınca arac stop edebilir.
- Vites boşta olduğunda stop ediyorsa hava fazla geliyor olabilir.
- Araç CNG’de vites boşta iken frenlemeye stop ediyorsa frenler kaçıyor.
- Araç hararet yapmış, radyatörde su kalmamış ise regülatör diyaframının yüzülmesine sebep olur. Araç CNG’de çalışırken stop etmesine sebep olabilir.

CNG kaçağı var
- CNG’nin temas ettiği parça üzerindeki buzlanma CNG kaçağını işaret eder. Multivalf giriş ve çıkış vanaları kapalı olmalıdır. CNG tankının terlemesi CNG ayında arızası işaret eder.

Elektronik sistem arızaları
- CNG-benzin geçiş anahtarı arızası varsa şarj sistemi arızalı veya akıb fazla şarj edilmiş olabilir.
- CNG göstergesi yakıt miktarını göstermeyor ise yakıt seçene anahtarı ve göstergenin veya sensörün şasi bağlantısında problem olabilir. Kablo bağlantısı yanlış çalışmış olabilir.
- Enjeksiyonlu araçlarda CNG-benzin geçiş anahtarı otomatik geçiş sağlayamıyor ise sinyal alım kablosu bağlantı hatası olabilir.

Araç CNG ’de çekmiyor
- Avans ayarı düşük ise teklemeye veya çekişten düşmesine neden olacak.
- Regülatör diyafırmaları özelliğini kaybetmiştir. Regülatör arızalıdır.
- Regülatör ayarları bozuk olabilir.
- Buji ve buji kabloları, buji tıkanma kontrol edilmelidir.
- Supap ayarları sıkı veya gevşek ise yakıt sarfiyatını artırır ve çekiş düşer.
- Emme manifoldu hava alıysa düzensiz rolanti ve güç düşüklüğüne yol açar.

Tablo2.1: CNG ile çalışan araç için yakıt sisteminin muhtemel arızaları, sebepleri ve belirtileri

59
2.2. Doğal Gaz (CNG) Yakıt Sistemleri Kontrolleri

Benzin yakıt sisteminin hormut ve bağlantıları sızmazlık yönünden kontrol edilmelidir. Çatlak, kırık, yıpranmış ve eskimiş hormut ve bağlantılar mutlaka değiştirilmelidir.

CNG yakıt sisteminde ayrıca aşağıdaki kontroller yapılmalıdır.

- Elektrik tesisatı bağlantılarının da gevşeklik veya oksitlenme olup olmadığını bakılmalıdır.
- Regülatörde biriken kostik boşaltma tapası açılarak boşaltılmalıdır.
- CNG elektro valfi içerisinde bulunan kâğıt elemanlı gaz filtresi değiştirilmelidir.
- CNG tankı bağlantıları kontrol edilmeli, gerdirilerek tank sabit duruma getirilmelidir.
- Motorun hava filtresi temizlenmeli veya yenisi ile değiştirilmelidir.
- Bujiler sökülerek kontrol edilmeli, km’si geçmiş bujiler değiştirilmelidir.
- Motorun soğutma suyu seviyesi kontrol edilmelidir.
- CNG yakıt sistemi elemanlarınınabı bağlantı noktalarının kontrolü yapılmalıdır.
- CNG tankı, multivalf, dolum ağzı, borular ve bağlantılar kontrol edilmelidir.
- Regülatör soğutma suyu bağlantılarında sızmazlık kontrolü yapılmalıdır.
- CNG’li araçlarla, uzun süre benzin kullanılmaması nedeni ile benzin hormutları, karbüratör çantaları, şamanıa topu ve benzин otomatığı kuru çalışmadan dolayı deformeye olabilir. Benzin yakıt sistemi elemanları kontrol edilmelidir.

Montaj/kontrol ve ayarları tamamlanan CNG’li araç resmi işlemlerinin yapıldığı ruhsatına işlenebilmesi için de bazı kontroller ve işlemlerin yapılması gerekir.

Yetki belgeli Serbest Mühendislik ve Müşavirlik Firması (SMM) tarafından CNG dönüşümü yapılır. Araç; yetki belgeli firmanın bağlı olduğu en yakın MMO Gaz Sizdirmalızk Denetim ve Kontrol Noktası’nın gider ve araca CNG dönüşümünde eksiklik ve hata bulunmaması durumunda burada araca “Montaj Tespit Raporu” ile “Gaz Sizdirmalızk Raporu” düzenlenir.

CNG gaz sizdirmalızk denetim ve kontrollerinde araca teknik belgelerde tanımlı ve yetkili firma tarafından mühendis denetiminde standartlara uygun malzemelerle dönüşüm yapılmadığı, mevcut montajın yürürlükteki mevzuat usullerine uygun olup olmadığını 15 üzere, 85 noktada tek tek kontrol edilmektedir. Bu koşulları yerine getiren montajlara daha sonra her fenni muayene öncesi sizdirmalızk kontrolü yapılarak “CNG Sizdirmalızk Raporu” verilmektedir.
Makina Mühendisleri Odası CNG kontrol noktalarındaki “CNG Araç Yakıt Sistemi” kontrollerinde, araçlara yönelik olarak,

- Araç genel kontrolü
- Montaj tespit belge kontrolü,
- Gaz kaçak kontrolü
- CNG sistem kontrolü
- Gaz enjeksiyon sistemi elemanları kontrolü
- Regülatör (buharlaştırıcı) montaj kontrolü,
- Gaz ayar vidası kontrolü
- CNG valfi ve montaj kontrolü
- Multivalf ve montaji kontrolü
- Sızdırmazlık sistemi kontrolü
- CNG bakır borusu ve hortumu kontrolü
- Tank ve montaj kontrolü
- CNG dolum ağzı montaj kontrolü
- Seçici anahtar kontrolü
- Benzin valfi ve benzin hortum kontrolü,

Olmak üzere 15 başlıkta 85 noktada kontrol yapılmakta ve tamamı uygunluk ya da uygunsuzluk olarak değerlendirilmektedir.

2.3. Doğal Gaz (CNG) Yakıt Sistemlerinin Egzoz Emisyonları

Doğal gaz kullanılan motorların egzoz emisyonlarında, benzin motorlarına göre daha az miktarda karbondioksit, karbon monoksid, nitrojen oksit ve metan bulundurmayan hidrokarbonlar olması için genellikle üç yollu katalitik konvertör kullanılması tavsiye edilmektedir. Fakat doğal gaz motorundan yayılan egzoz emisyonları kullanılan doğal gazın cinsine, kullanılan motor tipine göre de değişmektedir.

Doğal gazlı araçların desteklenmesinin en önemli nedeni çevresel avantajlardır. Lokal seviyelerde emisyonlarda (Hidrokarbon, CO ve NO₃), kökült ve partiküllerde çok büyük bir düşüş sağlamaktadır. Ayrıca sera etkisi gazlarında da % 20 oranında bir azalmaya sebep olmaktadır.

Yeni nesil doğal gazlı araçların benzinli ve dizel yakıtlı araçlara göre emisyon değerleri şu şekildedir:

- NOₓ’ de % 77 – 80 azalma,
- CO’ de % 76 azalma,
- Benzende % 97’nin üzerinde bir azalma,
- Ozona zararlı hidrokarbonlarda yaklaşık % 90 azalma,
- Partiküllerde % 99 ve üzerinde bir azalma.
- Doğal gaz çevreyi etkileyici toksik ve korozif ürünler üretmediğinden diğer fosil yakıtlara göre en temiz yakittır.
Doğal gaz motorlarında kirletici emisyonları azaltabilmek için iki farklı prensip düşünülmüştür.

Fakir karışılımlı doğal gaz motoru:

Hava fazlalık katsayısı 1.5-1.6’ya kadar çıkabilmektedir. Bu durumda NOₓ’lerde büyük oranda azalmalar olur. Ancak fakir karışında motor gücü azalır. Fakir karışılımlı motorlarda ön yanma odaları kullanılarak alevin yanma odası içerisinde yolu kısaltılabilir ve böylelikle yanı hıza normal değere kadar yükselir. Fakir karışlarının güç düştüğü etkisini azaltmanın bir başka yöntemi de aşırı doldurmaktır. Sonuç olarak motorun güç ve verimi artar.

Stokiometrik karışılımlı doğal gaz motoru:

Doğal gazin ağır vasıtlarda kullanımı, dizel motorların iyi bilinen problemlerinden biri olan NOₓ’lerde %67’ye kadar azalma sağlanmaktadır.

Gerçekte yanma sonu sıcaklığının artmasıyla NOₓ emisyonlarında artış gözlenmektedir. Fakat yapılan deneylerde, dizel motorunda ve benzin motorunda, doğal gaza geçiş durumunda yanma sonu sıcaklıklarında bir düşme gözlenmektedir. Bu da NOₓ emisyonlarında bir azalma sağlayacaktır.

CO emisyonları yanma sonu sıcaklığı, yanma verimi, su buharı miktarı ve NOₓ emisyonlarının oluşumu ile ve hava fazlalığı ile değişime göstermektedir. İyî bir yanma ile CO miktarında düşmeler görülür. Zengin karışımlarda, CO emisyonlarında artmalar gözlenir. Hava katsayısının belirli değerleri arasında sıcaklıkla beraber NOₓ de artmalar gözlenir, bu artma olurken buna ters olarak CO emisyonlarında azalmalar görülür. HC emisyonlarında da CO emisyonlarına benzer değişmeler görülür. İyî bir yanmayla HC ve CO emisyonlarında düşmeler olurken, sıcaklık artması ile NOₓ emisyonlarında artmalar görülür. Doğal gazın...
yakıt olarak kullanılması ile daha iyi bir yanma ve yanma sonu sıcaklıklarında azalma sağlanır. Bu da CO, HC ve NOx emisyonlarında azalma olacağını göstermektedir.

2.4. Doğal Gaz (CNG) Yakıt Sistemlerinin Bakım ve Ayarları

Karbüratörlü araçta CNG yakıt sisteminde ateşeme avans ayarı, CNG rölanti ve yüksek hız karışım ayarı ve gaz kaçağı gibi ayar ve kontrol yapılmaktadır. Benzin ile CNG yanma hızı farklı olduğu için ateşeme avans ayarının yakıt değiştiği zaman değişmesi gerekmektedir. Uygulamada ateşeme avans ayarı CNG yakıt sistemine göre yapılmaktadır.

Bütün bakımları yapılan motorun CNG yakıt sistemi ayar ve kontrolü yapılır. Gaz ayarı yapılan enjoz gazının CO, CO2, HC ve AFR (hava yakıt oranı) kontrol edilir.

2.4.1. Ayar Cihazının Motora Bağlanması

Doğal gaz yakıt sisteminde kullanılan kitlerin modeline göre diagnostik test cihazı değişiklik gösterebilir. Bu farklılıklardan dolayı her sisteme uyum sağlayabilen ve bütün doğal gaz sistemlerini kontrol etme imkânı olan universal test cihazları bulunmaktadır.

Resim 2.7: LPG/Doğal enjeksiyon sisteminin test cihazı ile kontrol edilmesi

Universal test cihazları, doğal gaz sisteminde kullanılan ECU’ nun bilgi giriş ucuna takılabilen farklı konnektör bağlantılarına sahiptir. Resim 2.7’de enjeksiyonlu bir motorun diagnostik cihazı ile kontrol edilmesi gösterilmektedir.
Test cihazı CNG ECU’suna takılmak sureti ile sistemin genel çalışması kontrol edilebilir. Test cihazı ile CNG sisteminde şu verileri kontrol edebiliriz.

- Motorun devri
- CNG regulatördeki sıcaklığı
- CNG yakıt rampasındaki basıncı
- CNG enjektörlerinin açılma süresi
- Benzin enjektörlerinin açılma süresi

Test cihazı ile sisteme bulunan sensörler ve enjektörlerin çalışması kontrol edilir. Sisteme meydana gelen arızalar buradan görülebilir. Arıza parçasının yenisi ile değiştirilmesi ile arıza giderilebilir.

2.4.2. Ayarın Yapılması

CNG sisteminde motoru ilk çalıştırma esnasında geçiş ayarı genelde şu iki senaryo üzerine kurulur.

- Motorun soğuk olması durumunda CNG sistemine geçiş, aşağıdaki şartların gerçekleşmesi durumunda geçilir.
 - Motorun çalışanından en az 60 saniye sonra,
 - Motor soğutmaya suyu sıcaklığının 40 dereceye ulaşması durumunda,
 - Motor devrinin 2000 dev/dk ulaşması durumunda.
- Motorun sıcak olması durumunda CNG sistemine geçiş aşağıdaki şartların gerçekleşmesi durumunda geçilir.
 - Motorun çalışanından 10 saniye sonra,
 - Motor sıcaklığının 40 derece veya üzerinde olması durumunda,
 - Motor devrinin 2000 dev/dk ulaşması durumunda.

Test cihazı CNG ECU’suna bağlanır ve motor çalıştırılır. Test cihazında motorun ilk çalıştırma verileri değiştirilebilir. Yukarıda bahsedilen geçiş senaryolarına ve aracı kullandığımız mevsim şartlarına göre ayarları değiştirebilir.

2.4.3. Emniyet kuralları

- Basınçlı doğal gaz tüplerinin, dolum tabancasının ve ayrıca depolama tanklarının vanaları kapatılmalıdır.
- Elektrik tesisatının ana şalteri kapatmalıdır.
- Tehlike bölgesi tecrit edilir. İlgisi olmayan kişiler tehlike bölgesinde çıkarılmalıdır.
- Gaz kaçağı durumunda, sorumlu birimler anında haberdar edilmeli ve gerekli onarım çalışmaları başlatılmalıdır.
- Tüm atölye alanı iyice havaalandırılmalıdır.
- CNG’li araçlarda tamir işlerinin yapılması için özel uzmanlar ve uzman kontrolörler çalışmalıdır.
Doğal gazlı (CNG) yakıt sisteminin ayarlarını yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
</table>
| ✓ Doğal gazlı yakıt sistemi kullanılan aracı müşteri kabul bölümüne almınız. | ✓ Emniyet ve güvenlik tedbirlerini alınız.
✓ Mümkünse çalışılacak bölgeyi emniyet seridi ile ayırmınız.
✓ Yangına karşı emniyet tedbirlerini almınız.
✓ Aracın yakıt sisteminin özelliklerini belirleyerek bakım onarım planına kullanılabilecek aletler ve donanımları hazırlayınız.
✓ Kullanılacak yedek parça temin ediniz.
✓ Yedek parçaların ECE R ve TSE standartlarına uygun olmasına dikkat ediniz.
✓ Müşteriye yapılacak işlemleri hakkında bilgi veriniz. |
| ✓ CNG yakıt tankının kontrollerini ve onarımını yapınız. | ✓ Tüp seti kapamasının durumunu kontrol ediniz.
✓ Gaz tüberlerinin durumunu kontrol ediniz.
✓ Yakıt tankının hasarını tespit ediniz.
✓ Emniyet tedbirlerini alarak sistem gazını boşaltınız.
✓ Kataloglara uygun olarak CNG tankını araç üzerinde süpürünüz.
✓ Çentiğin boyutlarını tespit ediniz.
✓ Çentiğin derinlik ölçümü yapılamayacak kadar inceyse, derinliği tespit etmek için gerekirse kenarları zımparalayarak açınız.
✓ Saf reçine tabakasının zımparalanması sonucunda ortaya çıkan aşınmış bölge beyazdır.
✓ Laminat tabakasının nerede başladığini, aşınmış bölgenin grimi renginden anlarısınız.
✓ Hasarın çalınışı buradan itibaren ölçülmüş.
✓ Tankın hasar değerlerini onarımı uygunluğunu kontrol ediniz.
✓ Tüpün yüzeyini onarım aksesuarı hazırlanmak için onarılacak alanın tamamını zımparalayınız.
✓ Yüzeyi zımparaladıktan sonra temizlik maddesi veya çözücü ve bir bezle temizleyin ve yağdan arındırınız ve sonra hemen temiz ve kuru bir bezle siliniz.
✓ Oda sıcaklığında sertleşen epoksi reçine karışımını üreticinin talimatlarına göre |
Hazırlayınız ve sonra biraz boyarmadde veya boya macunuyla siyaha boyayınız.

➢ Reçine karışımini tüpün yüzeyindeki zımparalanmış kısmın ince bir tabaka halinde sürünüz.
➢ Onarımı tamamlanan tüp montaj kurallarına uygun olarak montajını yapınız.
➢ Sisteme gaz dolumu yapınız.
➢ Tankların gergi durumunu kontrol ediniz.
➢ Poyra yaylarının gerginliğini kontrol ediniz.
➢ Çerçeve kaynak noktalarını kontrol ediniz.

<table>
<thead>
<tr>
<th>Doğal gaz sisteminin göz ve cihaz ile sızdırmazlık kontrolünü yapınız.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borulama durumunu ve sızdırmazlığını kontrol ediniz</td>
</tr>
<tr>
<td>Hortum bağlantısı ve bükümünerini yenileyiniz</td>
</tr>
<tr>
<td>Alçak basınç sisteminin durumunu ve sızdırmazlığını kontrol ediniz.</td>
</tr>
<tr>
<td>Yüksek basınç filtresi yedeğini yenileyiniz.</td>
</tr>
<tr>
<td>Basınç sensörü / basınçöçerin çalışma durumunu kontrol ediniz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hava filtresi, buji vb. parçaları kontrol ederek yenisi ile değiştiriniz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorun yağlaması: Yağı değiştiriniz, Yedek yağ filtresini yenileyiniz.</td>
</tr>
<tr>
<td>Bujileri değiştiriniz.</td>
</tr>
<tr>
<td>Hava filtresini değiştiriniz.</td>
</tr>
<tr>
<td>Motor özelliğine göre ateşleme ve yakıt sisteminin elemanlarını kontrol ederek gerekli görülen elemanları değiştiriniz.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motorun son kontrollerini yapınız.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aracı doğal gazda çalıştırınız.</td>
</tr>
<tr>
<td>Uygun diagnostik cihazla motorun ve CNG sisteminin kontrollerini ve ayarını yapınız.</td>
</tr>
<tr>
<td>Gaz analiz cihazi ile egzoz gazın analizini yapınız.</td>
</tr>
<tr>
<td>Karbüratörli araç ise doğal gaz ile çalışan motorun röanti ayarını ve maksimum gaz ayarını yapınız.</td>
</tr>
</tbody>
</table>
Aşağıdaki soruları dikkatlice okuyarak doğru seçeneği işaretleyiniz.

1. Araç motoru CNG’de kesiklik yapıyorsa muhtemel arıza aşağıdaki kilerden hangisi olamaz?
 A) CNG elektro valfleri arızalıdır.
 B) Regülatör arızalıdır.
 C) Buji veya buji kabloları ömrünü tamamlamış olabilir.
 D) Gaz filtresi tıkalı olabilir.
 E) Avans ayarı bozuktur.

2. Regülatörün radyatörden daha yükseğe montajının yapılması nasıl bir arıza oluşmasına neden olur?
 A) CNG’de yakıt sarfiyatı artar.
 B) Araç geç çalışır.
 C) Araç rölantide çalışır.
 D) Araç CNG’de koku yapar.
 E) Motor çalışmaz stop eder.

3. Test cihazı ile CNG sisteminde hangi verinin kontrolü yapılamaz?
 A) Motorun devrinin
 B) CNG regülatördeki sıcaklığının
 C) CNG yakıt rampasındaki basıncının
 D) Enjektörlerinin açılma süresinin
 E) Ortalama yakıt tüketiminin

4. Aşağıdakilerden hangisi CNG tankı hasarlarından birisi değildir?
 A) Darbe hasarı
 B) Kesme hasarı
 C) Aşınma hasarı
 D) Ateşe ve aşırı sıcaklığa bağlı hasar
 E) Kimyasal aşınma

5. Enjeksyonlu CNG sistemlerinde CNG ile motorun çalışması için hangi ayarın yapılması gerekir?
 A) Rölanti ayarı
 B) Benzin ve CNG geçiş ayarı
 C) Avans ayarı
 D) Püskürtme zaman ayarı
 E) Maksimum yakıt ayarı
Aşağıda boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

6. () CNG’li araçlarda tamir işlerinin yapılması için özel uzmanlar ve uzman kontrolörler çalışmalıdır.

7. () Enjeksiyonlu CNG yakıt sistemlerinde gaz ayarı yapılmaktadır.

8. () Karbüratörlü araçta CNG yakıt sisteminde ateşleme avans ayarı, CNG rölanti ve yüksek hız karışım ayarı ve gaz kaçağı gibi ayar ve kontrol yapılmaktadır.

9. () CNG sızmazlık denetim ve kontrollerini her montaj yapan atölyede yapabilir ve resmi belgelerini hazırlayabilir.

10. () Doğal gazın ağır vasıtalarda kullanımı, dizel motorların iyi bilinen problemlerinden biri olan NOx’lerde %67’ye kadar azalma sağlamaktadır.

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyarak doğru seçeneği işaretleyiniz.

1. Aşağıdakilerden hangisi LNG’nin anlamıdır?
 A) Likit petrol gazı
 B) Doğal gaz
 C) Sıkılaştırılmış doğal gaz
 D) Sıvılaştırılmış doğal gaz
 E) Tüp gaz

2. Doğal gazın kaç bar sıkıştırılması ile motorlu araçlarda kullanılan CNG elde edilir?
 A) 50-100 bar
 B) 100-150 bar
 C) 150-200 bar
 D) 200-250 bar
 E) 300-400 bar

3. Aşağıdakilerden hangisi araçlarda yüksek basınçta depolanan doğal gazın basınçının düşürülmesini sağlayan CNG yakıt sistemi elemanıdır?
 A) CNG regülatörü
 B) CNG multi valfi
 C) CNG sensörü
 D) CNG elektro valfi
 E) CNG enjektörü

4. Aşağıdakilerden hangisi çok nokta enjeksiyon sistemli araçlarda kullanılan CNG yakıt sistemi elemanlarından birisi değildir?
 A) Yüksek basınç sensörü
 B) CNG regülatörü
 C) Multivalf
 D) CNG enjektörleri
 E) CNG mikseri

5. Aşağıdakilerden hangisi tüplerin üzerinde bulunan multi valfın parçalardan birisi değildir?
 A) Manuel valf
 B) Selenoid valf
 C) Aşırı akım valfı
 D) TPRD termik emniyet valfı
 E) Basınç sensörü
6. Aşağıdakilerden hangisi doğal gazın avantajlarından birisi değildir?
 A) Motorun yağlaması için kullanılan yağın ömrü yaklaşık üç kat uzun olur.
 B) Ateşleme bujisinin ömrü uzun olur.
 C) NOx emisyon problemleri oluşmaz.
 D) Egzoz emisyonları açısından daha çevrecidir.
 E) Fiyatı ucuzdur.
7. Depo içerisinde bulunan gazın emniyeti hangi CNG elemanı tarafından sağlanmaktadır?
 A) Multi valf
 B) Selenoid valf
 C) Manuel valf
 D) Çek valf
 E) Sensör
8. CNG yakıt sistemi hangi tip araçlara montaj yapılmaz?
 A) Benzin motorlu araçlara
 B) Dizel motorlu araçlara
 C) Benzinli direkt püskürtme sistemli araçlara
 D) Elektrikli araçlara
 E) Karbüratörlü araçlara
9. Çift yakıtlı dizel motorlarda CNG kullanımında karışıının tutuşturulması nasıl sağlanır?
 A) Buji kıvılcımı ile
 B) Bobin ile
 C) Kızdırma bujisi ile
 D) Pilot yakıt püskürtürlerek
 E) Distribütör ile
10. Doğal gazla çalışan motorlarda sıkıştırma oranı yaklaşık kaç olması gerekir?
 A) 18:1
 B) 9:1
 C) 12:1
 D) 22:1
 E) 30:1

DEĞERLENDİRME

CEVAP ANAHTARLARI

ÖĞRENME FAALİYETİ-1'İN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>Doğru</td>
</tr>
<tr>
<td>7</td>
<td>Doğru</td>
</tr>
<tr>
<td>8</td>
<td>Yanlış</td>
</tr>
<tr>
<td>9</td>
<td>Doğru</td>
</tr>
<tr>
<td>10</td>
<td>Yanlış</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ-2’NİN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>Doğru</td>
</tr>
<tr>
<td>7</td>
<td>Yanlış</td>
</tr>
<tr>
<td>8</td>
<td>Doğru</td>
</tr>
<tr>
<td>9</td>
<td>Yanlış</td>
</tr>
<tr>
<td>10</td>
<td>Doğru</td>
</tr>
</tbody>
</table>

MODÜL DEĞERLENDİRMENİN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
</tr>
</tbody>
</table>
Çeşitli firma ve araç katalogları
http://obitet.gazi.edu.tr/
http://www.dynetek.com (20.07.2013/ 13.00)
http://www.youtube.com (18.07.2013/ 01.00)
http://forum.donanimhaber.com (16.07.2013/ 14.00)
http://dizel-gaz.com/tr (11.07.2013/ 01.00)
http://www.atiker.com.tr (12.07.2013/ 22.00)
http://www.lovatogas.com (12.07.2013/ 23.00)
http://www.2a-lpg.com (12.07.2013/ 00.00)