Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.

PARA İLE SATILMAZ.
MODÜLÜN ADI
Distribütör Tipi Dizel Yakıt Enjeksiyon Pompaları

MODÜLÜN TANIMI
Distribütör tipi dizel yakıt enjeksiyon pompalarını tanımı, arızalarını teşhis etme, onarım, ayar ve bakımını yapma becerilerinin kazandırıldığı bir öğrenme materyalidir.

SÜRE
40/32

ÖN KOŞUL
Bu modülün ön koşulu yoktur.

YETERLİK
Distribütör tipi dizel yakıt enjeksiyon pompalarının bakım onarımını yapmak

MODÜLÜN AMACI
Genel Amaç
Öğrenci, araçlarda kullanılan dizel motorları yakıt sistemlerini kontrol ederek bakım ve onarımı yapabilecektir.

Amaçlar
1. DPA tip pompanın bakım ve onarımı aracı kataloguna uygun olarak yapabileceksiniz.
2. DPS tip pompanın bakım ve onarımını yapabileceksiniz.

EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI
Ortam: Dizel Motorları Atölyesi
Donanım: El aletleri, Pompa, Enjektör test cihazı, Distribütör tipi dizel yakıt enjeksiyon pompa, kesit elemanları, bilgisayar ve multimedya, eğitim CD’leri

ÖLÇME VE DEĞERLENDİRME
Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçme araçları ile kendiniizi değerlendirireceksiniz. Öğretmen modül sonunda ölçme aracı (çoktan seçmeli test, doğru-yanlış testi, boşluk doldurma, eşleştirme vb.) kullanarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek sizi değerlendirecektir.
Sevgili Öğrenci,

Sevgili öğrenci; dizel motorlar tarihi bir süreç içerisinde hızla gelişme halinde olmuştur. Bu süreçte yakıt sistemi elemanları, yakıt kalitesi, enjektör püskürtme açıları, yanma odası şekilleri, ön yanma gibi yenilikler dizel motorunun teknik olarak üst seviyelere çıkmasına neden olmuştur.

Distribütör tipi dizel yakıt enjeksiyon pompaları, sıra tipi dizel yakıt enjeksiyon pompalarına alternatif olarak ortaya çıkmıştır. Özellikle hafif ticâri araçlarda sıkça kullanılmaktadır. Sıra tipi dizel yakıt enjeksiyon pompalarına nazaran daha sade bir yapısı vardır. Kullanılan parça sayısının az olması, komplike bir yapılı sahip olması, devrelerinin birden fazla fonksiyona sahip olması gibi üstünlükleri vardır. Mekanik aksamlarının yanı sıra hidrolik devrelere sahip olması başka bir tercih nedeni olarak kendini gösterir.

Bu modül ile sıra tipi dizel yakıt enjeksiyon pompalarından farklı olarak alternatif bir pompa olan distribütör tipi yakıt enjeksiyon pompaların öğreneceksiniz; sistemdeki değişiklikleri, yenilikleri kavrayıp yakıtın ve sistemin parçalarını mukayese edip özellikle çevre kirliliğinin önemini çok daha iyi kavrayarak sistemi oluşturulan elemanların bakım, onarım ve ayarlarını yapabilecek ve üstünlüklerini öğreneceksiniz.
AMAÇ

Araç kataloğuna uygun olarak DPA tip pompanın bakım ve onarımı ile ilgili işlemleri yapabileceksiniz.

ARAŞTIRMA

- Atölyenizde bulunan klasik dizel motorları inceleyiniz.
- Yeni nesil dizel motorlarının farklılıklarını inceleyiniz.
- Distribütör tipi yakıt enjeksiyon pompalarının özelliklerini kavrayıp kullanıma nedenlerini araştırınız.

1. DPA TİPİ POMPA

Distribütör tip yakıt pompalarının en büyük özelliği, yakıtı bir distribütör gibi ateşleme sırasında göre ve eşit miktarlarda enjektörle de dağıtmaktadır. Distribütör tipi pompalar, yakıt emiş kontrolü sağlayan karşıt pistonlu olarak çalışan bir pompa olarak tanımlanabilir.

Günümüzde sıra tipi pompaların yerini distribütör tipi pompalar almıştır. Bunun sebebi ise distribütör tipi pompaların birçok sayıda avantajı bulunmaktadır. Bunlar şunlardır:

- Yapıları basittir ve kolay sökülüp takılarlar.
- Sıra tipi pompalarına göre daha az yer kaplarlar.
- Yüksek devirli motorlarda daha verimli çalışanlar.
- Özel yağlamaya gerek yoktur.
- Ayarlanması kolay ve basittir.

Bu avantajları nedeniyle günümüzde hafif ve yüksek devirli araçlarda yaygın olarak kullanılmaktadır. Distribütör tip yakıt enjeksiyon pompaları birçok değişik tiplere yapılmış olmasına rağmen bazıları kullanışlı olmadığından günümüzde tercih edilmemektedir. Günümüzde distribütör tipi pompaların geliştirilmiş modelleri dizel motorlarında başarı ile kullanılmaktadır.

Distribütör tipi yakıt enjeksiyon pompalarının çeşitleri ise şunlardır:

- DPA tipi pompalar
- DPS tipi pompalar
- EP/VE tipi pompalar
Dizel motorlarında günümüzde en çok kullanılan distribütör tip yakıt enjeksiyon pompalarından birisi de DPA tipi yakıt enjeksiyon pompalarıdır.

Şekil 1.1’de distribütör tipi yakıt enjeksiyon pompasının şematik resmi görülmektedir.

Şekil 1.1: DPA tipi pompa kısımları (Mekanik regülatörlü)

1.1. Genel Yapısı ve Parçaları

DPA tipi yakıt enjeksiyon pompalarının görevleri:

- Yakıtın basıncını yükseltir. Yaklaşık 420 kg/cm2 (6000 PSI)
Motorun gereksinimine göre yakıtın miktarını ölçer.
Yakıtı belirli zaman aralığında enjektörlere gönderir.
Motorun ateşleme sırasına göre yakıtı enjektörlere gönderir.

Distribütör tipi yakıt enjeksiyon pompaları genel olarak aşağıdaki ana parçalardan oluşmaktadır:

- Pompa gövdesi (Hidrolik başlık, Rotor, İçi kamplı halka)
- Tahrik şaftı ve plakası
- Transfer pompası ve kapağı
- Regülatör (düzenleyici)
- Avans düzeni
- Hidrolik başlık
- İçi kamplı halka
- Rotor

Resim 1.1’de DPA yakıt pompası sökülmüş resmi ve parçaları görülmektedir.

Resim 1.1: DPA Yakıt pompası parçaları

DPA tip yakıt enjeksiyon pompasının ana parçaları:

- **Pompa Gövdesi**
 Alüminyum aalışından yapılan pompa gövdesi, pompanın hareketli ve hareketsiz tüm parçalarını üzerinde taşır.

- **Tahrik Şaftı ve Plakası**
Transfer Pompası ve Kapak

Görevi; motorun besleme pompası tarafından gönderilen yakıtı almak, basıncını yükselterek sisteme göndermektedir. Transfer pompa bir çift palet ve palet taşıyıcısından oluşur. Palet taşıyıcısı çelikten yapılmış olup motorun dönüş yönüne göre sağ veya sol vida ile pompa rotoruna takılır ve hareketini buradan alır. Şekil 1.2’de transfer pompasının elemanları görülmektedir.

Şekil 1.2: Transfer pompasının parçaları

Transfer pompa kapağı, transfer pompasına kapaklık eder ve kapakta basınç ayar valfı vardır. Regülatör kısmı ve avans tertibatı ayrıca incelenecektir.

1.1. Pompa Elemanı

1.1.1. Yapısı

- Hidrolik Başlık

Rotor, rotor gömleği içinde çok az bir boşlukla (0, 001 mm) çalışmaktadır. Yüzeyi çok hassas işlenmiş ve sertleştirilmiştir. Rotorun ön tarafında karşı pistonların çalıştığı bir silindir ve silindir merkezinden rotor eksenine uzanan bir yakıt kanalı vardır. Rotor üzerinde ön tarafa transfer yakının yakıt ölçme supabına geçişini sağlayan dairesel bir yakıt geçiş kanalı ve onun hemen arkasında silindir sayısındaki giriş deliği vardır. Giriş deliklerinden başka, basınçlı yakıtın enjektörlerine dağıtılmamasını sağlayan bir adet çıkış deliği bulunur. Resim 1.3’te rotorun yapısı görülülmektedir.

Döndürme plakası ve rotor, iki tarafı kanallı bir döndürme milinden (tahrik şaftından) hareket alır. Döndürme mili pompa gövdesine sızdırmaz bir şekilde bağlanmıştır. Döndürme plakası, makara pabuç çenelerinin geçtiği ön ve arka ayar saclarını da tespit eder.

İçi Kamılı Halka

![Resim 1.4: İçi kamılı halka ve rotor](image.jpg)

1.1.1.2. Çalışması

Marşa basıldığında besleme pompası, depodan çektiği yakıtı transfer pompasına basınçlı olarak gönderir. Yakıt, transfer pompasına gelirken filtreler vasıtasıyla süzülür ve temizlenir. Yakıt giriş rekorundan girerek basınç ayar supabından (dengeleme valfi) transfer pompasına ulaşır. Şekil 1.2’de yakıtın transfer pompasına girişi görülmektedir.
Mekanik regülatörlü DPA pompalardaki yakıtın geçişi ve pompanın çalışması, hidrolik regülatörlü pompalarda da aynıdır. Fakat yakıt ölçme supabının çalışması değişiktir. Bu konu regülatörler konusunda daha ayrıntılı işlenecektir.

Şekil 1.4: Mekanik regülatörlü DPA pompanın yakıt devresi
Şekil 1.5: Hidrolik regülatörlü DPA pompanın yakıt devresi

1.1.2. Regülatör

1.1.2.1. Görevleri

Motor devrinin artması veya azalması, gönderilen yakıt miktarına bağlı olarak değişir. Regülatör yakıtın miktarını, yakıt ölçme supabını kontrol ederek sağlar. Buna göre regülatörlerin görevleri şunlardır:

- Motorun röllantide stop etmeden çalışmasını sağlamak
- Motorun maksimum hızı aşmadan düzenli çalışmasını sağlamak
- Röllanti ve maksimum hızlar arasında devir kontrolü sağlamak

1.1.2.2. Çeşitleri ve Yapıları

Günümüzde DPA pompalarında iki tip regülatör kullanılmaktadır. Bunlar mekanik ve hidrolik tip regülatörlerdir.
1.1.2.3. Motorun Yük ve Devir Durumuna Göre Çalışması

- **Mekanik Regülatörler**

Mekanik regülatörler, değişik yük ve devirlerde hassas olarak kontrol sağlar. Merkezkaç kuvvetin etkisiyle açılan ağırlıklar prensibine göre çalışırlar. Resim 1.6’da mekanik regülatör ağırlıkları görülmektedir.

Resim 1.6: Mekanik regülatör ağırlıkları

Şekil 1.6: Mekanik regülatör ve çalışma yönleri
Hidrolik Regülatörler

Şekil 1.7: Hidrolik regülatör ve parçaları

1.1.3. Avans Sistemi

1.1.3.1. Görevleri

1.1.3.2. Yapısı

DPA pompalarda hidrolik avans mekanizması kullanılmaktadır. Şekil 1.8’de avans sistemi görülmektedir.

Şekil 1.8: Hidrolik avans mekanizması

1.1.3.3. Motorun Yük ve Devir Durumuna Göre Çalışması

Küresel başlıklı vida, içi kamlı halkayı rotor dönüş yönünün tersine çevirmek rulmanların kamıla binmesi ve yüksek basınçlı yakıtın enjekte göre ulaşmasını öne alır. Yani gereklı avans verilir.

Avans miktarı motorun her devrine göre değişen transfer pompa basıncına uygun olarak değişir. Motorun yüksek devirlerinde avans artar, düşük devirlerinde azalır.

1.2. DPA Yakıt Enjeksiyon Pompaların Çalışması

DPA Pompaların çalışması, mekanik regülatörlü pompalar ve hidrolik regülatörlü pompalar için ayrı ayrı inceleyelim.

1.2.1. Mekanik Regülatörlü DPA Pompanın Çalışması

Motor üzerinde bulunan birinci besleme pompası yakıtı depodan alarak pompa üzerindeki ikinci besleme pompasına (Transfer pompası) gönderir. Bu arada yakıtı iki filtrene geçirecek iyice temizlenmesini de temin eder.

Besleme pompası kapağındaki giriş rekorundan giren yakıt, buradaki süzgeçte süzüldükten sonra paletlerin arkasına dolar. Paletli tip olan besleme pompası yakıtı basıncını yükseltir ve iki kola ayrılan çıkış kanalına basar. Çıkış kanalındaki yakıtı bir kısmını hidrolik başlıklı yatay kanal yoluya pompaya gider, bir kısmını da besleme pompası kapağına geri gelir ve basınç ayar supabına girer.

Pompanın silindirlere gönderdiği yakıt miktarının değişimi, birim zamanda çok sık tekrarlandığından motor belli bir devirde çalışır. Yakıt ölçme supabının dönme hareketine stop kolu ve gaz kolu ile de kumanda edilebilir. Böylece de motor devri yükseltilir veya motor stop ettirilir. Şekil 1.9’da mekanik regülatörlü DPA pompanın çalışması görülmektedir.

Şekil 1.9: Mekanik regülatörlü DPA pompanın çalışması
1.2.2. Hidrolik Regülatörlü DPA Pompanın Çalışması

Hidrolik regülatörlü DPA yakıt pompalarında regülatörün ve yakıt Ölçme supabının dışındaki bütün parçalar mekanik regülatörlü pompanın aynıdır. Bu tip pompanın çalışması şöyledir.

Depodan birinci besleme pompası ve filtre yoluya gelen yakıt, ikinci besleme pompası (Transfer pompası) kapağındaki giriş rekorundan girerek paletler arasına dolar. Burada basıncı yükseltilen yakıtın fazlası basınç ayar supabından kısa devre yaparken yeterli miktarı da rotor gömleine kanaldan rotordaki dairesel kanala gelir. Yakıt burada iki kola ayrılırak aşağıdan avans düzene ve yukarıdan da yakıt Ölçme supabına gider. Yakıt Ölçme supabının ortasındaki delikten giren yakıt, ölçme deliğinin açıklığı oranında geçer ve daha önce anlatıldığı yoldan pistonlar arasına dolar.

1.3. DPA Yakıt Enjeksiyon Pompasının Motordan Sökülmesi ve Takılması

Dizel motorların verimli ve düzenli çalışması için, yakıt pompalarının motora dikkatli ve doğru olarak bağlanması gereklidir. Bu nedenle üretici firmalar her motor için hazırladıkları katalog esaslarını uygulamasını zorunlu kılmışlardır.

DPA yakıt enjeksiyon pompasını motordan sökerken, öncelikle motorun sağlanması gereklidir. Çıkış rekorları ve yakıt giriş ve geri dönüş bağlantıları uygun anahtılar kullanılamak suretiyle dikktatlı sökülmelidir. Yakıtın yerler ya da araç motoruna dökülmemesinin için temiz bir kaba aktarılması gerekir. Çıkış rekorları pompadan ayrılarak plastik kapaklar takılmak
suretiyle toz ve kirlilikten arınmalıdır. Pompa flanş bağlantısı uygun anahtar takımları kullanılarak dikkatlice sökülmelidir. Pompa flanş üzerindeki çentik işaretlerine de ayrıca dikkat edilmelidir.

DPA yakıt enjeksiyon pompalarının motora bağlanması için öncelikle motorun hazırlanması gerekir. 1. silindir senteye (ÜÖN) getirilmesi ve motora katalog değerlerine uygun avansın verilmesi gerekir.

Bu işlemler bittikten sonra yakıt sisteminin havası alınarak motor çalıştırılır. Şekil 1.10’da sökülmuş bir DPA tipi pompa ve tamir takım elemanları görülmektedir.
1.4. DPA Yakıt Enjeksiyon Pompalarda Yapılan Kontroller ve Pompa Ayarı

Distribütör tip yakıt pompalarının çalışma prensipleri ve ana parçaları birbirine çok benzemektedir. Bu nedenle DPA, Roosa-Master, PSB ve Alman Bosch VE yakıt pompalarının kontrollerini ve ayarlarını ayrı ayrı değil tek bir grupta inceleyeceğiz.

Distribütör tip yakıt pompalarında başlıca şu kontrol ve ayarlar yapılır.

1.4.1. Basınçlı Hava İle Sızıntı Kontrolü

Distribütör tip yakıt pompaları montaj edildikten sonra bağlantı yerlerinde kullanılan conta ve lastiklerin kaçırıp kaçırmadığını kontrol etmek için yapılır. Bunun için pompanın yakıt geri dönüş rekorundan 1, 5-2 kg/cm² basınçta hava verilir. Pompa temiz yakıt içine batırılır. Eğer kaçak varsa hava kabarcıkları şeklinde kendini gösterir. Bu noktaların tekrar kontrol edilmesi gerekir.

1.4.2. Besleme Pompası Kontrolü

Besleme pompasının vakumu, pompa düşük devirde döndürülürken kontrol edilir. Giriş rekoruna bağlı bir vakummetrede okunan değer, katalog değerinde olmalıdır.

Basma basıncı kontrolü ise bir manometrenin görev tespit vidalarından birisinin yerine takılması ile değişik devirlerde yapılır. Bu değerlerin de katalog değerlerinde olması gereklidir.

1.4.3. Yakıt Miktarı Kontrolü

Pompanın değişik devirlerde bastığı yakıtların miktarlarını saptanarak verilen değerlerle karşılaştırılır. Bu değerler birbirlerine yakın olmalıdır.

1.4.4. Stop Kontrolü

Belirtilen devirde stop kolu stoba getirilerek kontrol edilir.

1.4.5. Maksimum Yakıt Miktarı Kontrol ve Ayarı

Maksimum yakıt miktarı, belirtilen devirde gaz kolu ve stop kolu tam açıckken kontrol edilir. Eğer maksimum yakıt miktarı belirtiilen değerden farklı ise ön ve arka ayar saclarından ayar yapılır.

1.4.6. Regülatör Ayarı

Regülatörün rölanti ve yüksek devir ayarı, vidalardan katalog değerine göre yapılır.
1.4.7. Avans Düzeni Kontrolü

Yakıt pompası değişik devirlerde çalıştırılır. Avans ölçme aletiyle bu devirlerdeki avanslar tespit edilir. Tespit edilen bu değerler katalog değerinden farklı ise pistonla yay arasına değişik kalınlıkta pul (şim) koymakla ayarlanır.

1.4.8. Basma Başlangıcı (Sente) Kontrolü

Bütün kontroller yapıldıktan sonra, pompa ayar tezgahından sökülünce yapılan bir kontroldür. Pompanın yakıt basıma başlaması ile, pompa flanşındaki çizginin karşılaştığını anlamak için yapılır.

1.5. DPA Yakıt Enjeksiyon Pompaların Arızaları ve Onarımı

Pompaların ayar, kontrol, bakım ve onarım işlemleri bu iş için özel hazırlanmış pompa tezgahlarında yapılır. Resim 1.5’te pompanın bakım onarım için tezgaha bağlanması görülmektedir.

Resim 1.5: DPA pompanın pompa tezgahına bağlanması

Resim 1.6: DPA pompanın kontrolü

Yaylarda da sürtünmeden dolayı aşınma, yay tansiyonunun kaybolması ve şekil bozuklukları meydana gelebilir. Bu arızalar görüldüğünde yeni seri ile değiştirme işlemi uygulanmalıdır. Tüm sistem kontrol edilirken pompa üzerindeki tüm delikler, kanal ve keçe yuvaları iyice temizlenmelidir.
1.6. Pompa Etiketi ve Anlamları

Yakıt enjeksiyon pompalarının üzerinde birtakım harf ve rakamlardan oluşan etiketler bulunur. Buradaki her harf ve rakam pompa hakkında bazı bilgiler içermektedir. Resim 1.7’de pompa etiketinin yeridir.

Resim 1.7: Pompa etiketi

Resim 1.8: Pompa etiketi

<table>
<thead>
<tr>
<th>D</th>
<th>Distribütör Tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Pompa</td>
</tr>
<tr>
<td>A</td>
<td>Pompa Tipi</td>
</tr>
<tr>
<td>32</td>
<td>İmalat Kod No</td>
</tr>
<tr>
<td>4</td>
<td>Çıkış Rekoru</td>
</tr>
<tr>
<td>2</td>
<td>Regülatör Avans Düzeni</td>
</tr>
<tr>
<td>02</td>
<td>Özel Şekil No</td>
</tr>
<tr>
<td>1</td>
<td>Değişiklik No</td>
</tr>
<tr>
<td>Set</td>
<td>Ayar</td>
</tr>
<tr>
<td>A</td>
<td>Tezgahta Ayar Edilirken Kullanılan Enjektör Meme No</td>
</tr>
<tr>
<td>75</td>
<td>Bir Kursta Max. Yakıt Miktari</td>
</tr>
<tr>
<td>800</td>
<td>Max Yakıt Miktari Ayarı</td>
</tr>
<tr>
<td>1</td>
<td>Regülatör Yay Kodu</td>
</tr>
<tr>
<td>1220</td>
<td>Motorun Max. Yüksüz Devri</td>
</tr>
</tbody>
</table>
1.7. DPA Yakıt Pompalarının Kontrol ve Ayar Cihazı İle Ayarı

DPA yakıt enjeksiyon pompalarında kontrol ve ayar işlemi yapılırken pompa ayar fişsi kullanılarak. Örnek: Bir pompa ayar fişi yardımıyla pompa testini inceleyebiliriz. Resim 1.9'da DPA pompası üzerinde rölandı ayar vidası görülmektedir.

Resim 1.9: DPA pompanın ayar tezgahındaki rölandı ayarısı

1.7.1. DPA Yakıt Enjeksiyon Pompa Ayar Fişi

<table>
<thead>
<tr>
<th>Pompa tipi</th>
<th>DPA 3238F960</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>D115</td>
</tr>
<tr>
<td>Tatbikat</td>
<td>U 446</td>
</tr>
</tbody>
</table>

- **Pompanın Başlica Özellikleri**
 - Dönüş yönü: Saat yönü tersine
 - Governör tipi: Mekanik, her devirde kumandalı
 - Governör başlığı uzunluğu: 54.0 mm + 0.1 mm
 - Governör kolu delik: 1 no
 - Gaz kolu delik: 3 no
 - Plancı çapı: 9.0 mm
 - Bilyeler arası mesafe: 50.00 mm
 - Tahrık düzeni: Destekli
 - Avans tipi: El kumandalı marzo rötari, hız ile orantılı

- **ISO Test Şartları**

 Test tezgahı ISO 4008 şartlarını karşılamalıdır.
 Test yağlı: ISO 4113, giriş sıcaklığı 40OC ±2OC
Test memeleri : ISO 4010
Test meme açma basıncı : 172 bar (+ 3 bar–0)
Test yağ giriş basıncı : 0.1 bar
Yüksek basınç boruları : 6x2x845 mm (ISO 4093.2)

Test Öncesi Hazırlık

- Avans aletini takip sıfırlayınız.
- El kumandalı marş rötarı aksi belirtilmedikçe açık almalıdır.
- Gaz kolu aksi belirtilmedikçe tam açık durumda bırakılacaktır.
- Otomatik avans yay tapasına montaj sırası 0.5 mm’lik şim konmuş olup alınmamalıdır. Test değerlerini alabilmek için 3.0 mm’ye kadar şim ilave edilebilir.
- (*) Yıldız işaretini gördüğünüz testte şişelere 30 saniye boşalma müddeti veriniz, yakıt akışı kesildikten 15 saniye sonra değeri okuyunuz.

Test İşlemi

<table>
<thead>
<tr>
<th>Test No</th>
<th>Açıklama</th>
<th>A/K</th>
<th>d/d</th>
<th>İstenenler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hava Alınması</td>
<td>K</td>
<td>100</td>
<td>Bütün çıkışlardan havasız test yağı çıkışı olmalıdır.</td>
</tr>
<tr>
<td>2</td>
<td>Transfer Basıncı</td>
<td>K</td>
<td>100</td>
<td>En az 0.55 bar (8 lbf/in²)</td>
</tr>
<tr>
<td>3</td>
<td>Avans</td>
<td>A</td>
<td>800</td>
<td>3, 7, 75 o–4, 25 o (Şim ile)</td>
</tr>
<tr>
<td>4</td>
<td>Avans</td>
<td>K</td>
<td>1200</td>
<td>7, 75 o–8, 75 o</td>
</tr>
<tr>
<td>5</td>
<td>Avans</td>
<td>K</td>
<td>200</td>
<td>2.75 o–3.75 o</td>
</tr>
<tr>
<td>6</td>
<td>Transfer Basıncı</td>
<td>K</td>
<td>1200</td>
<td>4, 1–5, 2 bar (60–75 lbf/in²)</td>
</tr>
<tr>
<td>7</td>
<td>Geri dönüş</td>
<td>K</td>
<td>800</td>
<td>5-50 cm³ / 100 strok (40-400 cm³ /dakika)</td>
</tr>
<tr>
<td>8</td>
<td>Max.Yakıt Ayarı</td>
<td>A</td>
<td>1200</td>
<td>48, 0 mm³, 0, 5 mm³ Dağılım en çok 4, 0 mm³</td>
</tr>
<tr>
<td>9</td>
<td>Düşük Yük Yakıt</td>
<td>A/K</td>
<td>200</td>
<td>Gaz kolu kapalı iken en çok 1.0 cm³</td>
</tr>
<tr>
<td>10</td>
<td>Avans</td>
<td>K</td>
<td>1200</td>
<td>7,75 o–8,75 o</td>
</tr>
<tr>
<td>11</td>
<td>Avans</td>
<td>K</td>
<td>300</td>
<td>0 o (El kumandalı rötar pimi çekili iken)</td>
</tr>
<tr>
<td>12</td>
<td>Yakıt Miktarı</td>
<td>K</td>
<td>100</td>
<td>Yakıt miktarı 8. testten en çok 20 mm³ düşüş olabilir.</td>
</tr>
<tr>
<td>13</td>
<td>Yakıt Miktarı</td>
<td>K</td>
<td>1200</td>
<td>Yakıt miktarını cm³ olarak kaydedin.</td>
</tr>
</tbody>
</table>

Tablo 1.1: DPA Yakıt enjeksiyon pompası test işlem tablosu
Resim 1.10: DPA pompada tam gaz ayarının yapılsı

Tablo 1.1’de test işlemi sırasında DPA yakıt enjeksiyon pompasına ait test parametreleri verilmiştir. Burada istenilen değerlere göre test açıklamaları görülmektedir. Resim 1.10’da ise DPA pompa üzerinde tam gaz ayarının yapılsı görülmektedir.
UYGULAMA FAALİYETİ

DPA Tip pompanın bakım ve onarımını yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPA tip yakıt enjeksiyon pompasını motor üzerinden sökünüz.</td>
<td>Daha önce sizlere anlatılan atölye güvenlik kurallarına uyunuz.</td>
</tr>
<tr>
<td></td>
<td>Çalıştığınız ortamın temiz olmasına dikkat ediniz.</td>
</tr>
<tr>
<td></td>
<td>Uygun işlem sırasını takip ederek pompayı motordan sökünüz.</td>
</tr>
<tr>
<td></td>
<td>Pompa sökümünde boru ve rakorlara zarar vermeden işlemi gerçekleştiriniz.</td>
</tr>
<tr>
<td></td>
<td>Akan temiz yakıtı temiz bir kaba alınız.</td>
</tr>
<tr>
<td></td>
<td>Sökme işleminde teknik kurallara uyunuz ve doğru takım doğru şekilde kullanınız.</td>
</tr>
<tr>
<td></td>
<td>Pompayı motordan zarar vermeden ayırınız.</td>
</tr>
<tr>
<td>DPA tip yakıt enjeksiyon pompasını sökünüz.</td>
<td>DPA pompanın sökülmesinde takip edilecek yöntem regülatör tipine göre değişir.</td>
</tr>
<tr>
<td></td>
<td>Hidrolik regülatörlü DPA pompa da işlem sırası şu şekildedir:</td>
</tr>
<tr>
<td></td>
<td>Pompanın muhafaza kapağını sökünüz ve pompa içersindeki yakıtı boşaltınız.</td>
</tr>
<tr>
<td></td>
<td>Pompayı bağlama plakasına, uygun bir şekilde tespit ediniz.</td>
</tr>
<tr>
<td></td>
<td>Hidrolik regülatörü pompa gövdesine tespit eden iki adet vidayı sökünüz. Tertibatı komple alınız.</td>
</tr>
<tr>
<td></td>
<td>Otomatik avans tertibatı takılı ise aşağıdaki sırayı izleyerek sökünüz.</td>
</tr>
<tr>
<td></td>
<td>Besleme pompasının dört vidasını sökerek ayrıntı ve yuvarlak keçeyi alınız.</td>
</tr>
<tr>
<td></td>
<td>Besleme pompası kapağındaki basınç ayar supabını sökünüz.</td>
</tr>
<tr>
<td></td>
<td>Besleme pompasının paletlerini ve daha sonra da gömlekini, yani besleme pompası halkasını alınız.</td>
</tr>
</tbody>
</table>
Kamalı döndürme milini özel anahtarı ile tutarak palet taşıyıcısını (besleme pompası rotornun) özel sökme anahtarı ile gevşetiniz.

Hidrolik başlığı pompa gövdesine tespit eden iki adet vidayı sökünüz.

Hidrolik başlık ve rotoru komple alınınız.

Döndürme plakasını üstte gelecek şekilde hidrolik başlığı çeviriniz. Döndürme plakasını özel takımıyla tutarak iki tespit vidasını gevşetiniz.

Hidrolik başlık üzerindeki contayı alınız.

Besleme pompası palet taşıyıcısını sökünüz.

Sonra rotoru hidrolik başlıktan ayırınız.

Döndürme plakasını iki tespit vidalarını sökerek ön ve arka miktar ayar saçlarını serbest bırakınız.

Ön ayar sacını, makara ve pabuçları, arka ayar sacını çıkarınız.

Karşıt pistoncukları rotor içindeki silindirinden çıkarınız. Korozyon ve zedelenmeyi önlemek için temiz yakıt içerisine batırınız.

Çalışma yüzeyini korumak için rotoru hidrolik başlık içerisinde ayırmayınız.

Otomatik avans tertibatının küresel başlı kam avans vidasını, özel takımını kullanarak sökünüz. Avans tertibatı olmayanlarda ise kam merkezleme vidasını sökünüz.

İçi kamlı halkayı (dahili kam) kendi doğrultusunda ve geriye doğru çekere çıkarınız.

Zaman ayar segmanını özel pense veya bir kargaburnu ile sökünüz.

Özel segman pensesiyle döndürme milini tutan emniyet segmanını sökünüz. Döndürme milini çekerek alınız.
| Döndürme mili üzerindeki yağ keçelerini sökünüz. |
| Not: söküm işlemi sırasında mutlaka pompa katalog tavsiyelerini dikkate alınınız. |

| Parçaların kontrolerini yapınız. |
| Bütün plastik segman, keç ve contaları dikkatlice kontrol edin. Bunlarda ezilme, kopma ve şekil değişikliği olmamalıdır. |
| Yaylarda sürtünmeden dolayı aşınma, şekil değişikliği ve kırılma olmamalıdır. |
| Bütün delik, kanal ve keçeye yuvalarını iyice temizledikten sonra, hasar olup olmadığını tespit ediniz. Hasara uğramış parçaları değiştiriniz. |
| Besleme pompası paletlerini dikkatlice kontrol ediniz. |
Karşıt pistonların silindirinde serbest hareket edip etmediğini kontrol ettikten sonra, pistonları çıkarınız. Pistonlarda çapak, çizik veya aşırı aşınma varsa yenilenmesi gereklidir. Eğer pistonlar, silindirleri içinde tutuklayıcı yapıyor ve gözle görülür bir arıza yoksa pistonları ve silindiri yumuşak bir kil firça ile tiner veya aseton ile temizlemek gerekir.

Rotorun hassas olan kısmında çizilmeler, aşınıntı ve matlaşmalar, giriş ve çıkış delikleri hızında daireşel çizikler olmasın. Ön ve arka ayar saçılar üzerindeki, pabuç yuvalarının kavisli kısımlarında aşırı aşınma ve saçlarda şekil değişikliği olmasın. Rotor göbeğindeki tapanın gevşek olup olmadığını ayrıca kontrol ediniz.

Her makara, pabucu içersinde serbestçe dönebilmeli ve sağa, sola kayabilmelidir.
Pabucun ön ve arka ayar saçıları kavislerine giren
kısılarda aşırı aşınma ve çukurluklar olmamalıdır. Sisteme daima temiz motor gönderilirse makara yüzeylerinin ayna gibi parlak olması gerekir.

- **Not:** Rotorun aşınması halinde, rotor ve hidrolik başlık komple değiştir.
- Yakıt ölçme supabını ve yuvasını kontrol edin.
- Supap üzerinde derin çizik ve aşıntısı, yuvada çapak ve pişlik olmasın. Piston, yuvası boyunca serbest hareket edebilmelidir. Aşınmadan dolayı yuvası içinde sağa sola oynamasın.
- İç kişli halkanın iç kısmında sadece çalışan kısımlar taşlanmış olduğu için, diğer kısımlardaki kalemler ön. bir hasar olarak görülmesin.
- Halkanın taşlanmış kısımlarında renk farkı ve gölge bulunması çalışmadan dolayı değil ısıl işlemin sonucudur. Halkanın iç kısmını ve düz yüzeylerin kenarlarını dikkatlice kontrol edin.
- Aşırı aşınma varsa ve yüzeylerden pul pul parça kalkmışsa halkanın değiştirilmesi gerekir.
- Döndürme miliin kama kanallarında aşıntı olup olmadığını, mil burcunun (klavuz burcu) iç kısımlarında çizik ve aşıntı olup olmadığını kontrol ediniz ve gerekirse değiştiriniz.
- Besleme pompası kapağındaki filtreyi ve basınç ayar supabını kontrol ediniz.
- Regülatör yay, yakıt ölçme supabı yayları ve otomatik avans pistonu yayını kırıklik ve eğiklik bakımından kontrol ediniz. Son duruma göre uzunluklarını ölçünüz.
- Zayıf veya kırık yayları değiştiriniz.
- Piston dişli ve kremayer dişlinin kavrama ve aşıntısı durumlarını kontrol ediniz ve gerekirse değiştiriniz.

- **DPA** tip yakıt enjeksiyon pompasını takınız.
pompa gövdesindeki faturaya oturtunuz.
- Üzerindeki ayar çizgisi kontrol kapağının ortasına gelmelidir.
- İçi kamlı halkayı segmana dayayın. Kamın görünen yüzündeki okun yönü, pompa dönüş yönüne uymalıdır.
- Otomatik avans tertibatı yoksa, kam tespit civatasını uygun torkla sıkınız.
- Otomatik avans tertibatı olan pompalarda ise küresel başlı kam avans vidasını verilen torkla sıkınız. Sikma işleminden sonra içi kamlı halkanın serbest hareketini kontrol ediniz.
- Arka ayar sacını, pompa rotoruna takınız.
- Karşıt pistonları, rotordaki silindirine koyun.
- Sonrada makaraları ve pabuçları yuvalara yerleştirin. Pabuç kulaklarının kavisleri, ayar sacları oyuklarının kavisleriyle çakışmalıdır. Aksi halde maksimumしてきた miktarı ayarı yapamaz.
- Ön ayar sacını, tırnakları arka ayar sacına gelemek şekilde takınız.
- **Not:** Doğru takabilmek için ön ayar sacının çevresindeki kesik kısmın rotor çevresindeki özel çizgi ile karşılaşması gerekir.
- Aynı zamanda ayar sacları üzerinde eksantrik oyuklar pabuç kulaklarının kavisleriyle çakışmalıdır.
- Döndürme plakasını rotorun ön tarafına, uygun şekilde yerleştiriniz, iki tespit vidası ile hafifçe sıkarak tespit ettirin.
- Rotoru hidrolik başlığa takın. Besleme pompası palet taşıyıcısı hafif vidalayıp rotoru emniyete alınız.
- Hidrolik başlık üzerindeki çıkış portlarından ikisine özel burulu adaptörü bağlayın.
- Ucuna da 15 atm basınca ayarlı basınç ayar supabını tespit ediniz. Sonra bu komple olarak bir enjektör ayar cihazına bağlayın.
- Enjektör ayar cihazını pompalarken rotoru hafif dönüş yönünde çevirin, karşıt pistonların maksimum açıldığı ani bulun.
- Bu anda ayar saclarını döndürek makaradan makara olan mesafeyi bir düş çap mikrometresi ile ölçün.
- Bu değer pompayla ilgili ayar kartında belirtilmiştir.
Döndürme plakasını özel anahtarı ile tutarak vidalarını uygun torkla sıkınız.
Özel adaptörü enjektör ayar cihazından hidrolik başlıktan ayırınız.
Hidrolik başlık üzerine yeni bir plastik segman takınız. Başlığın gövde içersine girecek kısmını yağlayıniz.
Hidrolik başlığı kaydırarak ve plastik segmanını korumak için sağa sola çevirerek pompa gövdesine takınız. Döndürme plakasının dişi kamalı göbeği, döndürme milinin erkek kamalı kısmı ile karşılıştı oturtulmalıdır.
Döndürme milini tutarak besleme pompası palet taşıyıcısını verilen torkla sıkınız.
Besleme pompası gömleğini hidrolik başlıktaki yerine oturtunuz ve paletleri yerleştirin. Gömlek elle çevirebileceğinden emin olunuz.
Besleme pompası kapağındaki (alüminyum kapaklarda) basınç ayar supabını takınız.
Hidrolik başlığın besleme pompası tarafındaki alına yeni bir plastik segman yerleştiriniz.
Besleme pompası kapağı üzerindeki tespit pimini gömlek üzerindeki yarığa geçiriniz.
Dört kapak vidasını verilen torkla sıkarak kapağı monte ediniz.
Pompa üzerindeki standart otomatik avans tertibatını takınız.
Hidrolik regülatörü toplayınız.

Pompa ayar Tezgahında ayarlarını yapınız.

İşlemlere başlamadan önce güvenlik kurallarını hatırlayınız ve uyunuz.
Test için aşağıdaki hazırlıkları yapınız.
Yakıt pompasını tezgah bağlına mengenesine, üç vida ile ve uygun şekilde tespit ediniz.
Hidrolik başlık tespit civatalarından birini sökünüz (üzerinde hava alma vidası olmayan) ve bir ara rakor takınız. Bunu yakıt hortumu ile besleme pompası basınç göstergesine bağlıyınız.
Tezgahın yakıt besleme hortumunu, pompa
girişine bağlayınız. Bu hortumun saydam olması tercih edilir.

- Pompa geri dönüşü ile tezgah geri dönüşünün bağlantısını sağlayınız. Enjektor borularını takınız.
- Avans tertibatının yay kapağı üzerindeki küçük vidayı sökünüz. Avans ölçme tertibatını, derece göstergesi yukarıya gelecek şekilde takınız ve göstergeyi sıfıra ayarlayınız.
- Besleme pompası kapağı (arka kapak) yakıt girişindeki ayar mastarı ile yoksa, giris borusunu sökerek uygun bir allen yardımcıyla besleme pompası basınç ayar vidasını yukarıya dayanınca sola doğru çevirerek gevşetiniz, sonra 1,5 devir sıkınız.
- Sistemin havasını alınız.
- Pompa ayar tezgahında yapılan ayarlar ve şartları şunlardır:
 - Hava Alma ve Sistemi Yaktıla Doldurma Besleme Pompası Vakumu Besleme Pompası Basıncı
<table>
<thead>
<tr>
<th>İşlem</th>
<th>Ayrıntılar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avans Durumu (100 d/dk’de)</td>
<td></td>
</tr>
<tr>
<td>Avans Durumu (150 d/dk’de)</td>
<td></td>
</tr>
<tr>
<td>Besleme Pompası Basıncı (500d/dk’de)</td>
<td></td>
</tr>
<tr>
<td>Besleme Pompası Basıncı (1100 d/dk’de)</td>
<td></td>
</tr>
<tr>
<td>Geri Dönüş (Kaçak)</td>
<td></td>
</tr>
<tr>
<td>Azami Yakıt Miktarı Ayarları (500 d/dk, 200 Basma)</td>
<td></td>
</tr>
<tr>
<td>Azami Yakıt Miktarı Kontrollü (100 d/dk’de, 200 Basma)</td>
<td></td>
</tr>
<tr>
<td>Stop Çalışması (Yakıt Kesme) Kontrolü</td>
<td></td>
</tr>
<tr>
<td>Yakıt Miktarı Kontrolü (100 d/dk, 200 Basmada)</td>
<td></td>
</tr>
<tr>
<td>Yakıt Miktarı Kontrolü (1000 d/dk’de, 200 Basma)</td>
<td></td>
</tr>
<tr>
<td>Hidrolik Regülatörün AyarlarıBasıma</td>
<td></td>
</tr>
<tr>
<td>Basma Bağlantısı (Zaman) Ayarı</td>
<td></td>
</tr>
<tr>
<td>Belirtilden ayar değerleri ve hızları pompadan pompaya değişebilmektedir. Gerçek değerler için kataloga başvurulmalıdır.</td>
<td></td>
</tr>
<tr>
<td>DPA tip yakıt enjeksiyon pompasını motor üzerine takınız.</td>
<td></td>
</tr>
<tr>
<td>Pompayı motor üzerine takmadan önce katalogu inceleyiniz ve tavsiyeleri göz önünde alın.</td>
<td></td>
</tr>
<tr>
<td>Bu tip pompaların döndürme mili uzun ve ucu kamalıdır. Mil ucunda, bir dolu bir boş dişten meydana gelmiş, genişçe dolu bir kilavuz diş vardır. Takma işlemi sırasında bu dişi dikkate alın.</td>
<td></td>
</tr>
<tr>
<td>Pompayı yerine takarak bağlantı flanşındaki çizgiler karşılaştırınız.</td>
<td></td>
</tr>
<tr>
<td>Cıvata ve somunlar uygun torkla sıkınız.</td>
<td></td>
</tr>
<tr>
<td>Daha sonra enjektör borularını birinci silindirden itibaren uygun şekilde bağlayınız. Bu işlem sırasında pompa dönüş yönüne ve ateşleme sırasına dikkat ediniz.</td>
<td></td>
</tr>
<tr>
<td>Yakıt sisteminin havası alınız.</td>
<td></td>
</tr>
<tr>
<td>Bir önceki öğrenme faaliyetinden hava alma işleminin nedenini hatırlayınız.</td>
<td></td>
</tr>
<tr>
<td>Hava alma işlemine geçmeden önce depoya yeterli yakıt koyunuz.</td>
<td></td>
</tr>
<tr>
<td>Yakıt pompası üzerindeki hava alma tapasını gevsetiniz. Besleme pompasını pompalayınız. Tapadan kabarcıksız yakıt gelince tapayı sıkınız. Not: Hava alma tapalarının yerleri değişiklik gösterebilir, pompa katalogu inceleyiniz.</td>
<td></td>
</tr>
<tr>
<td>Pompa regülatörü üzerindeki hava alma tapasını gevsetiniz, besleme pompasını kabarcıksız yakıt gelene kadar pompalayınız. Tapayı gevşek bırakınız.</td>
<td></td>
</tr>
<tr>
<td>Yakıt pompası basınçlı çıkışının uzun rakoru</td>
<td></td>
</tr>
<tr>
<td>MOTORU ÇALIŞTIRMIZ.</td>
<td>MOTORU ÇALIŞTIRMIZ.</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
Yangın ihtimaline karşı tedbirli olunuz.
Tüm kontrolleri yaptığımdan sonra motoru çalıştırınız.
Motor düzenli çalışıyorsa sistemin havası alınmış demektir. |
| - Motoru, marş ile çevirmeye devam ederek regulatör üzerindeki tapadan kabarcıksız yakıt gelince tapayı sıkınız. | |
| - Enjektörlerden iki tanesinin girişindeki enjektör borusu rakorlarını gevşetiniz. Gaz pedalına tam basılı marş yapınız, kabarcıksız yakıt gelince rakorları sıkınız. | |
| - Motoru çalıştırınız.
- Enjektörlerden iki tanesinin girişindeki enjektör borusu rakorlarını gevşetiniz. Gaz pedalına tam basılı marş yapınız, kabarcıksız yakıt gelince rakorları sıkınız. | |
| - Motoru çalıştırınız.
- Enjektörlerden iki tanesinin girişindeki enjektör borusu rakorlarını gevşetiniz. Gaz pedalına tam basılı marş yapınız, kabarcıksız yakıt gelince rakorları sıkınız. | |
| - Atölye güvenlik kurallarına uyunuz.
- Yangın ihtimaline karşı tedbirli olunuz.
- Tüm kontrolleri yaptığımdan sonra motoru çalıştırınız.
- Motor düzenli çalışıyorsa sistemin havası alınmış demektir. | |
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işaret koyarak kendinizi değerlendirin.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DPA tipi yakıt enjeksiyon pompasını motor üzerinden söktünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. DPA tipi yakıt enjeksiyon pompasını söktünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Parçaların kontrollerini yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. DPA tipi yakıt enjeksiyon pompasını taktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. DPA tipi yakıt enjeksiyon pompasını pompa ayar tezgahında ayarlarını yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. DPA tipi yakıt enjeksiyon pompasını motora üzerine taktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Yakıt sisteminin havasını aldıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Motoru çalıştırdınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyarak doğru seçeneği işaretleyiniz.

1. Aşağıdakilerden hangisi distribütör tipi yakıt enjeksiyon pompasının avantajlarından birisi değildir?
 A) Yapıları basittir ve kolay sökülüp takılırlar
 B) Sıra tipi yakıt enjeksiyon pompalarına göre daha çok yer kaplarlar.
 C) Ayarlanması kolay ve basittir.
 D) Özel yağlamaya gerek yoktur.

2. Aşağıdakilerden hangisi distribütör tipi yakıt enjeksiyon pompasının ana parçalarından birisi değildir?
 A) Hidrolik başlık
 B) Pompa kam mili
 C) Regülatör (düzenleyici)
 D) Avans mekanizması

3. Çelik alaşımından yapılan iç kısmında motor silindir adedi kadar çıktığı olan DPA pompa elemanı aşağıdakilerden hangisidir?
 A) Basma ventili
 B) Kramayer
 C) Eleman pistonu
 D) İçi kamli halka

4. Pompa elemanı aşağıda verilen hangi parçaldan oluşur?
 A) Hidrolik başlık–rotor
 B) İçi kamlı halka–rotor
 C) Hidrolik başlık–palet
 D) İçi kamlı halka–palet

5. Aşağıdakilerden hangisi regülatörün görevlerinden birisi değildir?
 A) Motorun röllantide stop etmeden çalışmasını sağlamak
 B) Motorun maksimum devri aşmasını engellemek
 C) Motorun devrine göre belli oranda avans vermek
 D) Röllanti ve maksimum hızlar arasında kontrollü bir devir sağlamak

6. Yanda verilen resim aşağıdaki parçaldan hangisine aittir?
 A) Hidrolik başlık
 B) Transfer pompası
 C) Mekanik regülatör
 D) Avans mekanizması
7. Aşağıda verilen kontrollerden hangisi DPA pompalarda yapılan bir kontrol **değildir**?
A) Kam mili gezinti kontrolü
B) Avans düzeni kontrolü
C) Yakıt miktarı kontrolü
D) Avans mekanizması kontrolü

8. Transfer pompa içerişinde bulunan paletlerin aşıntıları aşağıda verilen ölçü aletlerinden hangisi ile kontrol edilir?
A) Mıknatıslı kompratör
B) Kumpas
C) Dış çap mikrometresi
D) Teleskopik geysç

9. Yanda DPA pompanın etiketi verilmiştir. Burada belirtilen (6) rakamı aşağıdakilerden hangisini ifade eder?
A) Maksimum yakıt miktarı ayarı
B) Çıkış rekoru sayısı
C) Regülatör kodu
D) İmalat kod numarası

10. Aşağıdakilerden hangisi DPA pompanın testi öncesinde yapılan hazırlıklardan birisi **değildir**?
A) Avans aletini takıp sıfırlama yapmak
B) Gaz kolutu tam açık durumda bırakmak
C) Marş rötarını açık durumda bırakmak
D) Pompanın havasını almak

DEĞERLENDİRME

AMAÇ

DPS tip pompanın bakım ve onarımı ile ilgili işlemleri yapabileceksiniz.

ARAŞTIRMA

- Pompa test cihazlarının çalışmasını araştırınız.
- Pompa test cihazlarında yapılan ayar çeşitlerini araştırınız.
- DPS tipi yakıt pompalarının ayarlarının nasıl yapıldığını araştırarak uygulama değerlerini öğreniniz.

2. DPS TİP POMPA

Resim 2.1: DPS Yakıt enjeksiyon pompası
DPS pompalar, dizel motorlarda kullanılan distribütör tip pompalardan birisidir. DPS tipi mazot enjeksiyon pompaları, DPA pompaların çalışmasına benzer bir sistemle çalışmakta olup basma basınçlarının 750 bar olması nedeniyle genellikle yüksek devirli hafif ticâri araçlarda kullanılır. Resim 2.1’de DPS yakıt pompasının resmi, Resim 2.2’de ise DPS pompanın kesit resmi görülmektedir.

Resim 2.2: DPS pompanın kesit resmi

2.1. Genel Yapısı ve Parçaları

DPS pompalar, yapı bakımından sizlere daha önce “Öğrenme Faaliyeti 1”de anlatılan DPA pompalara çok benzemektedir. Farklı olan nokta ise yakıt miktarının ayarlanmasında kullanılan halkalardır. DPS pompayı oluşturan temel elemanlar şunlardır:

- Kamring (içi kamlı halka) ve yakıt ayar halkaları
- Döndürme mili
- Transfer pompası
- Regülatör (düzenleyici)
- Avans düzeni

Şekil 2.1’de ise DPS pompanın detay resmi görülmektedir.
Şekil 2.1: DPS pompa detay resmi

2.2. Pompa Elemanı

2.2.1. Yapı

Pompa elemanı yapı olarak daha önce anlatılan DPA pompa elemanına benzemektedir. Sadece yakıt miktarının ayarlanması sağlayan yakıt ayar halkaları farklıdır. Yakıt ayar halkaları eleman pistonun açılma miktarını değiştirerek basılan yakıtın miktarını ayarlar. Şekil 2.2’de yakıt ayar halkalarının resmi görülmektedir.

41
2.2.2. Çalışması

Arka kapaktan gelen yakıt, transfer pompası tarafından ölçek valfından geçirilerek rotor giriş delilerinden açılmış olan basma pistonunun önüne dolar.

Rotorun dönmesi ile giriş deliği kapanır ve dağıtım deliği çıkış deliğinden bir tanesi ile karşılاتها. Bu arada içi kamlt halka basma pistonunu ileriye doğru iterik yakıt sıkıştırır ve püskürtme gerçekleşirilir. Şekil 2.3’te yakıtın püskürtülmesi görülmektedir.
2.3. Regülatör

2.3.1. Görevleri

Motor devrinin kontrolü gönderilen yakıt miktarına bağlıdır. Regülatörler yakıt miktarını, yakıt ölçme supabını kontrol ederek sağlarlar.

2.3.2. Çeşitleri ve Yapıları

DPS pompalarda mekanik tip regülatörler kullanılmaktadır.

2.3.3. Motorun Yük ve Devir Durumuna Göre Çalışması

Şekil 2.4: DPS pompalarda kullanılan regülatör ve kısımları

2.4. Avans sistemi

2.4.1. Görevleri

Motor devri değiştiğinde yakıtın püskürtülme zamanının da değiştirilmesi gerekli olarak.
Bunu sağlayan sistem avans sistemi denir. Avans sistemi, motorun devrine göre piston ÜÖN varmadan önce (5–10° gibi) yakıtın enjektörden püskürtülmesini sağlar.

2.4.2. Yapısı

DPS pompalarda hidrolik avans mekanizması kullanılmaktadır. Yakıtın basıncı ile sağa sola hareket etirilen avans mekanizması gerekli avansı sağlar.

2.4.3. Motorun Yük ve Devir Durumuna Göre Çalışması

Marş devrindede kilit valf kapalı olduğundan avans mekanizmasına yakıt gitmez ve mekanizma çalışmaz. Motor çalıştığında yakıt basıncı artar ve kilit valf açılarak yakıtın avans mekanizmasına gitmesini sağlar. Şekil 2.5’te avans mekanizmasının çalışması görülmektedir.

![Şekil 2.5: Avans mekanizmasının çalışması](image)

Resim 2.3’te ise DPS pompa üzerinde bulunan ayar noktaları görülmektedir. Rölanti ayarı için rölanti ayar vidası, yakıt miktarının kontrolü için tam gaz ayar vidası ve avans ayarı yapabilmek için pompa üzerinde bulunan avans işaretli bulunur.
2.5. DPS Yakıt Pompalarının Kontrol ve Ayar Cihazı İle Ayarı

DPS yakıt enjeksiyon pompalarında DPA yakıt enjeksiyon pompalarında olduğu gibi ayar işlemi yapılırken pompa ayar fişi kullanılır. Örnek bir pompa ayar fişi yardımıyla pompa testini inceleyelim.

2.5.1. DPS Yakıt Enjeksiyon Pompa Ayar Fişi

<table>
<thead>
<tr>
<th>Pompa tipi</th>
<th>DPS 8523A321A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>F York 2,5 lt HSDİ</td>
</tr>
<tr>
<td>Tatbikat</td>
<td>F Transit Minibüs–Pikap</td>
</tr>
</tbody>
</table>

➢ Pompanın Başlıca Özellikleri

- Dönüş yönü : Saat yönüne
- Governör tipi : İki devirde kumandali, çift röltani ayarlı, mekanik.
- Governör bağlantı uzunluğu : 42.8 mm + 0.2 mm
- Plancır çapı : 4 adet 7.0 mm
Tahrik düzeni: Destekli
Pompa flanş göbek çapı: Sente adaptörü takılı 68 mm adaptörsüz 50 mm
Avans tipi: Servo avans, çubuk ile kumandalı
Transfer basınç ayarı: Arka kapak içinde ayar vidası

Max. yakıt için ayar halkaları ve çif kademeli tork kontrol sistemi, kilit valf, hidrolilik jikle kontrolü, elemandan hava alma sistemi, 12 VDC selenoid, motorun çabuk isnması için hızlı rölanti ve hızlı rölanti avans tertibatı bulunmaktadır.

➤ ISO Test Şartları

Test tezgahı ISO 4008 şartlarını karşılamalıdır.
Test yağı: ISO 4113, giriş sıcaklığı 40 °C ±2 °C
Test memeleri: 0,5 mm çaplı delikli plaka + ISO 74440 meme
Test meme açma basıncı: 207 bar (+3 bar –0)
Test yağı giriş basıncı: 0.1 bar
Yüksek giriş basıncı boruları: 6x2x845 mm (ISO 4093.2)
Tezgah kaplini: Desteksiz
Çıkış boruları: Orijinal şekli

➤ Test Öncesi Hazırlıklar

➤ Test işlemi

<table>
<thead>
<tr>
<th>Test No</th>
<th>Açıklama</th>
<th>A/K</th>
<th>d/d</th>
<th>İstenenler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hava alınması</td>
<td>K</td>
<td>100</td>
<td>Bütün çıkışlardan ve geri dönüşten havasız test yağ içi çıkış olmalıdır. Bu arada gövde basınç saat borusu havasız çıks elde edilene kadar gevşek tutulmalıdır.</td>
</tr>
<tr>
<td>2</td>
<td>Dengeleme</td>
<td>K</td>
<td>2400</td>
<td>Transfer basıncını 6,2–6,75 bar’a kadar (90-98 lbf/in² 91-98 lbf/in²) ‘ye ayarlayın. Pompayı 3 dakika çalıştırın. Gövde basıncı(0,6–1,15 bar 9-17 lbf/in²) olmalıdır.</td>
</tr>
<tr>
<td>3</td>
<td>Avans</td>
<td>K</td>
<td>2400</td>
<td>Gaz kolunu stop durumuna getirin. Avans 90±0,5° olmalıdır. Gaz kolunu tekrar max. devir vidasına getirin.</td>
</tr>
<tr>
<td>4</td>
<td>Avans</td>
<td>K</td>
<td>0</td>
<td>Oº</td>
</tr>
<tr>
<td>5</td>
<td>Transfer basınç</td>
<td>K</td>
<td>100</td>
<td>En az 0,4 bar (6 lbf/in²)</td>
</tr>
</tbody>
</table>
Tablo 2.1: DPS yakıt enjeksiyon pompası test işlem tablosu

- Tezgahı durdurun, gövde ve transfer basınç saatlerini sökünüz.
- Selenoidi takın ve 12 voltlu doğru akım veriniz.
- Tezgahı çalıştırıp 1 nolu işlem basamağında belirtilen hava alma işlemini yapınız.

<table>
<thead>
<tr>
<th></th>
<th>İşlem</th>
<th>K/100</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jikle kontrolü</td>
<td>K 100</td>
<td>Yakıt miktarı en az 5,5 cm³ olmalıdır.</td>
</tr>
<tr>
<td>7</td>
<td>Yakıt ön ayarı</td>
<td>A 2000</td>
<td>Tork kapsülü gövdesinden yakıt miktarını 36,2±1,2 mm³'e ayarlayın.</td>
</tr>
<tr>
<td>8</td>
<td>Transfer basınç</td>
<td>K 1300</td>
<td>4,1–5,0 bar (60–70 lbf/in²)</td>
</tr>
<tr>
<td>9</td>
<td>Avans</td>
<td>A 1300</td>
<td>Düşük yük avans çubuğu ayar vidası ile avansı 2,5º±0,5º ye ayarlayın. Gerekliyorsa şim ilave edin.</td>
</tr>
<tr>
<td>10</td>
<td>Avans</td>
<td>K 2000</td>
<td>5º–6,5º</td>
</tr>
<tr>
<td>11</td>
<td>Avans</td>
<td>A 2000</td>
<td>Transfer basınç ayar vidası ile avansı 6,5º–7º ye getirilir.</td>
</tr>
<tr>
<td>12</td>
<td>Geri dönüş</td>
<td>K 2000</td>
<td>100 strokta 30–50 cm³ (600–1000 cm³/dak)</td>
</tr>
<tr>
<td>13</td>
<td>Transfer basınç</td>
<td>K 2600</td>
<td>7,6–9,7 bar (100–140 lbf/in²)</td>
</tr>
</tbody>
</table>
DPS Tip pompanın bakım ve onarımını yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
</table>
Bu işlem bir önceki öğrenme faaliyetinde anlatılmıştı. Sizler de hem öğrenme faaliyetini hem de pompa kataloğu inceleyerek ve önerileri dikkate alarak parçaların kontrolünü yapınız.

DPS tip yakıt enjeksiyon pompasını takınız.

Bu iki işlemi birlikte yapınız.

- **Bakımı yaptığınız pompayı sökme işleminin tersini yaparak ve katalog tavsiyelerine uyarak toplayınız.**
- **Özel takım gerektiren yerde özel takım kullanınız.**
- **Herhangi bir kastırma veya sıkılığa sebep olan parçaları sildirin.**

Pompa ayar Tezgahında ayarlarını yapınız.

- **Temiz, düzenli, dikkatli ve hassas olunuz.**
- **Teste başlamadan önce aşağıdaki hazırlıkları yapınız.**
- **Otomatik avans yay tapasına montaj sırasında şim konmuş olup olmadığı kontrol edilmeli ve şim ilavesi yapılmalıdır.**
- **Selenoid yerine transfer basınç adaptörü takarak pompayı basınç saatine bağlayınız.**
- **Maksimum devir ve rölanti ayarları sonuna kadar gevsetip gaz kolunu tam gaz konumuna getiriniz.**
- **Avans ölçüme aletini yay, tapası tarafına bağlayın ve sıfırlayınız.**
- **Not: Daha ayrıntılı bilgi için pompa kataloğu bakınız.**
- **Pompa ayar tezgahında aşağıdaki ayarlar yapılır:**
 - **Hava alımı (200 dev/dak):**
 - Bütün çıkışlardan, geri dönüş ve regulatör kapağındaki havası yakıt çıkış olmalıdır.
 - **Dengeleme ve ön yakıt ayarı (1250 dev/dak):**
 - Pompayı 3 dakika çalıştırıp ortalama yakıt miktarını 69 mm³'e ayarlayınız.
 - **Transfer basınç (100 dev/dak):**
 - En az 0.5 bar
 - **Avans ayarı (1100 dev/dak):**
 - Transfer basınç ayar vidasından avansı 2.5°'ye getiriniz.
 - **Transfer basınç kontrolü (850 dev/dak):**
 - 4.6-5.6 bar olmalıdır.
 - Tezgahı durdurup transfer basınç saatini Blancheriniz, selenoidi yerine takıp 12 volt DC elektrik veriniz.
<table>
<thead>
<tr>
<th>Geri dönüş (1000 dev/dak):</th>
<th>100 strokta 40-80 cm³ (400-800 cm³/dak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yakıt ayarı (1250 dev/dak):</td>
<td>69.2 ± 0.6 mm³/strok. Silindirler arası fark 0.6 mm³/stroktan fazla olmamalıdır.</td>
</tr>
<tr>
<td>Regülatör ayarı (1370 dev/dak):</td>
<td>Gaz kolu maksimum, devir ayar vidası ile 6.8–7.6 cm³ yakıt verecek şekilde ayarlayınız.</td>
</tr>
<tr>
<td>Yakıt miktarı kontrolü (1480 dev/dak):</td>
<td>Ortalama yakıt miktarı 1.5 cm³/ü geçmemelidir.</td>
</tr>
<tr>
<td>Regülatör yayı toparlama (1250 dev/dak):</td>
<td>Yakıt miktarı 8. test değerinden en çok 0.4 cm³ düşük olabilir.</td>
</tr>
<tr>
<td>Rölanti ayarı (300 dev/dak):</td>
<td>Rölanti ayar vidası ile yakıt miktarını 4.2-5.2 cm³'e ayarlayınız.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DPS tip yakıt enjeksiyon pompasını motor üzerine takınız.</th>
<th>Pompayı motor üzerine takmadan önce katalog inceleyiniz ve tavsiyeleri göz önüne alınız.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daha önce ayarı yapılan pompayı uygun işlem sırası takip ederek motora bağlayıniz.</td>
</tr>
</tbody>
</table>
Yakıt sisteminin havasını alınız.

- Hava alma noktalarından sistemin havasını alınız.
- Not: Hava alma tapalarının yerleri değişiklik gösterebilir, pompa kataloğunu inceleyiniz.
- Hava alma tapasından köpüksüz yakıt gelinceye kadar besleme pompasını çalıştırınız.
- Hava alma işlemi bittikten sonra hava alma tapasını sıkınız.

Motoru çalıştırınız.

- Atölye güvenlik kurallarına uyunuz.
- Yangın ihtimaline karşı tedbirli olunuz.
- Öğrenme Faaliyeti–1’de anlatılan kontrolleri yaparak motoru çalıştırınız.
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işaret koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DPS tipi yakıt enjeksiyon pompasını motor üzerinden söktünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. DPS tipi yakıt enjeksiyon pompasını söktünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Parçaların kontrollerini yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. DPS tipi yakıt enjeksiyon pompasını taktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. DPS tipi yakıt enjeksiyon pompasını pompa ayar tezgahında ayarlarınızı yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. DPS tipi yakıt enjeksiyon pompasını motora üzerine taktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Yakıt sisteminin havasını aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Motoru çalıştırınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyarak doğru seçeneği işaretleyiniz.

1. DPS tipi pompalarda yakıt basma basıncı aşağıdakilerden hangisidir?
 A) 420 bar
 B) 500 bar
 C) 750 bar
 D) 840 bar

2. DPS tipi pompaların DPA tipi pompalardan farklı aşağıdakilerden hangisi olabilir?
 A) DPS tipi pompalarda rotor yerine dişliler kullanılmaktadır.
 B) DPS tipi pompalarda transfer pompası diyaframlı hale getirilmiştir.
 C) DPS tipi pompalarda hidrolik başlık kullanılmamaktadır.
 D) DPS tipi pompalarda yakıt ayar halkaları farklıdır.

3. Distribütör tipi pompalarda avans sisteminin görevi aşağıdakilerden hangisidir?
 A) Yakıtın miktarını kontrol eder.
 B) Piston ÜÖN’ye varmadan önce yakıtın enjektörden püskürtülmesini sağlar.
 C) Motorun her devrinde yakıtın basıncını artırarak kararlı bir rejim hızı sağlar.
 D) Silindir içerişine daha fazla miktarda hava göndererek güç artışını sağlar.

4. DPS tipi pompa tezgahta test edilirken havasının alınması sırasında pompa devri aşağıdakilerden hangisi olmalıdır?
 A) 100 dev/dak
 B) 1000 dev/dak
 C) 2400 dev/dak
 D) 3000 dev/dak

5. DPS tipi pompanın test işlemleri yapıldığından aşağıdaki testlerden hangisi yapılmaz?
 A) Transfer basınçının ölçüülmesi
 B) Avans ayarının yapılması
 C) Jikle kontrolünün yapılması
 D) Püskürtme açısının ayarlanması

Aşağıdaki cümlelerin sonunda boş bırakılan parantezlere, cümlelerde verilen bilgiler doğru ise D, yanlış ise Y yazınız.

6. () DPS pompalar yapı olarak DPA pompalara benzer.

8. () DPS pompalarda mekanik regülatör kullanılır.

9. () DPS pompalarda kullanılan avans mekanizması hidrolik tir.
10. () Transfer pompası dişli tip pompalardır.

DEĞERLENDİRME

AMAÇ

EP/VE tip pompanın bakım ve onarımı ile ilgili işlemleri yapabileceksiniz.

ARAŞTIRMA

- Pompa test cihazlarının çalışmasını araştırınız.
- Pompa test cihazlarında yapılan ayar çeşitlerini araştırınız.
- EP/VE tip pompanın ayarlarının nasıl yapıldığını araştırarak uygulama değerlerini öğreniniz.

3. EP/VE TİP POMPA

Resim 3.1: EP/VE tipi yakıt enjeksiyon pompası

EP/VE tipi yakıt enjeksiyon pompasının diğer distribütör tipi pompalara göre önemli üstünlükleri bulunmaktadır. Bunlar:

- EP/VE tipi pompalarda daha düşük egzoz emisyonları elde edilir.
- Son derece kompakt ve hafif bir yapıya sahiptir.
Motor devri 5000 dev/dak’ya kadar ulaşabilmektedir.
Pompa yakıt basma basıncını 950 bar basınca kadar çıkarmaktadır.

EP/VE tipi pompaların görevleri ise şunlardır:

- Yakıtların basıncını yükseltir.
- Motorun ihtiyaçlarına göre yakıtın miktarını ölçer.
- Yakıtı belli zaman ve başlangıç aralığına enjektörlerle gönderir.
- Motorun ateşleme sırasında göre yakıtın enjektörlerle gönderilir.

![Şekil 3.1: EP/VE Tip pompanın şematik resmi](image.png)

3.1. Genel Yapısı ve Parçaları

EP/VE tipi pompayı meydana getiren parçaları 5 ana grupta inceleyebiliriz.

- Transfer pompası
- Pompa elemanı
- Regülatör
- Elektrikli stop (manyetik şalter)
- Avans tertibatı

EP/VE tipi yakıt enjeksiyon pompasının devre şeması ve detaylı resmi Şekil 3.2’de görülmektedir.
Şekil 3.2: EP/VE tipi pompanın yapısı ve parçaları

Şekil 3.3: EP/VE tipi dizel yakıt sistemi

rekorları pompa başlığın önemli parçalarıdır. Resim 3.2’de EP/VE tipi pompa başlığı ve pompa başlığının sökülmuş haldeki parçaları görülmektedir.

Resim 3.2: EP/VE tipi pompa başlığı ve parçaları

EP/VE tipi pompaların çıkış rekoru kısımları sıra tipi pompaların çıkış rekorlarına yapısal olarak benzemektedir. Bu kısımda da sıra tipi pompalarda olduğu gibi ventil...
subapları ve ventil yayları bulunmaktadır. Şekil 3.4’te EP/VE tipi pompaların yakıt çıkış rekorları görülmektedir.

Şekil 3.4: EP/VE tipi pompalarda yakıt çıkış rekoru

3.1.1. Transfer Pompası

3.1.2. Elektrikli Stop Tertibatı

Şekil 3.6: Elektrikli stop tertibatı

3.1.3. Mekanik Stop Tertibatı

Bu tertibat sürücünün elle bir halat veya tel ile kumanda ettiği bir stop tertibatıdır. Halat veya tel yakıt girişine kumanda ederek yakıtın giriş kanalından geçmesini engelleyerek motorun stop etmesini sağlar.

Şekil 3.7: Mekanik stop devresi
3.2. Pompa Elemanı

Resim 3.4’te VE tipi pompaya ait eleman resmi görülmektedir.

![Pompa Elemanı](image)

Resim 3.4: VE Pompa elemanı

3.2.1. Genel Yapı

![Pompa Elemanı Parçaları](image)

Şekil 3.8: Pompa eleman parçaları
3.2.2. Çalışması

![Resim 3.5: EP/VE pompa kesiti](image)

Şekil 3.9: Plancıra önune yakıtın dolması

Şekil 3.10: Yakıtın enjektöre basılması

![Şekil 3.11: EP/VE tip pompanın çalışma prensibi](image)

3.3. Regülatör

![Şekil 3.12: EP/VE tipi pompada regülatör](image)
3.3.1. Görevleri

EP/VE tipi pompalarda regülatörün görevleri şunlardır:

- Motoru röllantide ve belli bir devirde stop ettirmeden çalıştırmak
- Röllantı ve maksimum devirler arasında sürücüye Kumanda imkânı sağlamak
- Yüksek devirlerde silindire silindir emilen havaya uygun miktarda yakıt göndermek
- Motorun maksimum devrini sınırlandırmak

3.3.2. Çeşitleri ve Yapıları

<table>
<thead>
<tr>
<th>Devir ve Yakıt Kontrolü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regülatör Basma Kolu</td>
</tr>
<tr>
<td>Yapıktı Yay</td>
</tr>
<tr>
<td>Düzenleme Halkası</td>
</tr>
<tr>
<td>Yüksek Basınç Odası</td>
</tr>
<tr>
<td>Kurs Hacmi Başlangıcı</td>
</tr>
</tbody>
</table>

Şekil 3.13: EP/VE tipi pompadn mekanik regülatörün yapısı, devir ve yakıt kontrolü

3.3.3. Motorun Yük ve Devir Durumuna Göre Çalışması

EP/VE tipi pompalarda regülatörler, devir ve yük göre yakıt miktarı kontrol bileziğini (kontrol halkası) sağa sola hareket ettirerek sağlarlar.

İlk Hareket

 Ağlıklar kapalıdır ve kontrol halkası sağı taraftadır. Dolayısıyla aracın ihtiyacı olan yakıt miktarı böylece sağlanır.
Rölanti

Rölanti esnasında, gaz kolu ve ilk hareket levyesi ve ilk hareket rölanti yayı, ağırlıkların oluşturduğu kuvvet ile denge halindedir ve kontrol bileziği ilk harekette verilen mesafeyi düşürecek şekilde sola hareket eder. Rölanti devrini aşar ve yay basınçını kontrol bileziğini sağa doğru hareket ettirir. Devir arttığunda ise ağırlıklar, püskürme mesafesini azaltacak şekilde kontrol bileziğini sola hareket ettirir. Şekil 3.14’te regülatörün rölanti konumu görülülmektedir.

Şekil 3.14: EP/VE Pompada rölanti ve tam gaz durumu (Regülatörün çalışması)

Kısımcı Yük Konumu

Gaz kolu, kullanıcı tarafından rölanti devrini aşacak şekilde değiştirilirse daha fazla yakıta ihtiyaç duyulur. Gaz kolumun bu konumda dengeleme yayı sıkışarak kontrol bileziğini sağa doğru hareket ettirir ve püskürme mesafesi bir miktar artrar.

Tam Yük Konumu

Gaz kolu, tam gaz ayar levyesinin tam gaz sınırlama vidsasına dayandığı konumda tam yük maksimum devir konumumdadır. Ağırlıklara karşı koyan yaylar sıkıştırılmış, bu etkiye kontrol bileziği hareket ederek ilk hareket konumu dışında ulaşılabilenı en büyük püskürme mesafesine ulaşır. (Şekil 3.14)

Şekil 3.15: EP/VE Pompada rölanti ve tam gaz ayar vidaları

3.4. Avans Sistemi

3.4.1. Görevleri

Avans mekanizması, yüksek devirlerde yanma verimini artırmak için püskürtmenin erken olmasını sağlar.

3.4.2. Yapısı

Avans mekanizması transfer pompasından gelen yakıtın basıncı ile çalışır. Şekil 3.16’da avans mekanizmasının yapısı ve parçaları görülmektedir.
Şekil 3.15: Avans sisteminin yapısı ve parçaları

Şekil 3.16: Avans sisteminin çalışması
3.4.3. Motorun Yük ve Devir Durumuna Göre Çalışması

3.5. EP/VE Yakıt Pompalarının Kontrol ve Ayar Cihazı İle Ayarı

3.5.1. EP/VE Yakıt Enjeksiyon Pompa Ayar Fişi

Pompa tipi : NR 0460 424 177
Motor : IVECO M 23
Tatbikat : IVECO MİDİBÜS

➢ Pompanın Başlıca Özellikleri

- Dönüş yönü : Saat yönüne
- Eleman çapı : 12 mm
- Tahrik düzeni : Desteksiz
- Avans tipi : Pistonlu
- Transfer basınç ayarı : Transfer basınç supaplı

➢ ISO Test Şartları

Test tezgahi ISO 4008 şartlarını karşılamalıdır.
- Test yağı : ISO 4113, giriş sıcaklığı 40 °C ±2 °C
- Test yağı giriş basıncı : 0,1 bar
- Tezgah kaplini : Desteksiz
- Çıkış boruları : Orijinal şekli
Test İşlemini

<table>
<thead>
<tr>
<th>Test No</th>
<th>Açıklama</th>
<th>d/d</th>
<th>İstenenler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hava alınması</td>
<td>100</td>
<td>Bütün çıkışlardan ve geri dönüştən havasız test yağış çıkışı olmalıdır. Bu arada gövde basınç saat borusu havasız çıkış elde edilene kadar gevşek tutulmalıdır.</td>
</tr>
<tr>
<td>2</td>
<td>Avans</td>
<td>1000</td>
<td>4,5°</td>
</tr>
<tr>
<td>3</td>
<td>Avans</td>
<td>0</td>
<td>0°</td>
</tr>
<tr>
<td>4</td>
<td>Yakıt miktarı kontrolü</td>
<td>1000</td>
<td>6,7 cm³</td>
</tr>
<tr>
<td>5</td>
<td>Rölanti yakıt tüketimi</td>
<td>425</td>
<td>1cm³</td>
</tr>
<tr>
<td>6</td>
<td>Yakıt miktarı kontrolü / Normal</td>
<td>1000</td>
<td>8,5 cm³</td>
</tr>
<tr>
<td>7</td>
<td>Yakıt miktarı kontrolü / Turbo</td>
<td>1000</td>
<td>12 cm³</td>
</tr>
<tr>
<td>8</td>
<td>Transfer basınç</td>
<td>1300</td>
<td>4,1–5,0 bar (60–70 lbf/in²)</td>
</tr>
<tr>
<td>9</td>
<td>Stop kolu</td>
<td></td>
<td>Selenoidli</td>
</tr>
<tr>
<td>10</td>
<td>Eleman</td>
<td>100</td>
<td>10–12 cm³</td>
</tr>
</tbody>
</table>

Tablo 3.1: EP/VE Yakıt enjeksiyon pompası test işlem tablosu

Transfer Basınç Ayarı

Transfer basınç ayarı, transfer basınç supabının tahrik edilmesiyle ayarlanır. Transfer basınç supabı sıkı geçme bir pistonun darbe ile hareket ettirilmesi sonucu ayarlanır.
EP/VE Tip pompanın bakım ve onarımını yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Çalıştığınız ortamın temiz olmasıına dikkat ediniz.</td>
</tr>
<tr>
<td></td>
<td>Uygun işlem sırasını takip ederek pompayı motordan sökünüz.</td>
</tr>
<tr>
<td></td>
<td>Pompa sökümünde boru ve rekorlara zarar vermeden işlemi gerçekleştiriniz.</td>
</tr>
<tr>
<td></td>
<td>İşin doğru yapılabilmesi için mutlaka pompa kataloğunu inceleyiniz ve buradaki önerilere uyunuz.</td>
</tr>
<tr>
<td></td>
<td>Sökme işleminde teknik kurallara uyunuz ve doğru takımı doğru şekilde kullanınız.</td>
</tr>
<tr>
<td></td>
<td>Pompanyı motordan ayırınız.</td>
</tr>
</tbody>
</table>

EP/VE tip yakıt enjeksiyon pompasını sökünüz.

Pompanyı temiz bir zemine alınız.

Uygun bir işlem sırasında takip ederek pompayı sökme işlemini gerçekleştiriniz.

Distribütor tip pompaların birçok parçası birbirine benzerlik gösterir, farklı özellikler için pompa kataloğunu inceleyiniz.

Söktüğünüz her parçayı titizlikle ve belirli bir düzene göre sıralayınız.
| ➢ Parçalarının kontrolerini yapınız. | ➢ Söktüğünüz parçaları dikkatli bir şekilde inceleyerek katalog tavsiyelerine göre değiştirilmesi gereken parçaları değiştiriniz.
➢ Zayıf veya kırık yayları değiştiriniz.
➢ Bütün plastik segman, keçe ve contaları dikkatlice kontrol edin. Bunlarda ezilme, kopma ve şekil değişikliği olmamalıdır.
➢ Bütün delik, kanal ve keçe yuvalarını iyice temizledikten sonra hasar olup olmadığını tespit ediniz. Hasara uğramış parçaları değiştiriniz. |
➢ Özel takım gerektiren yerlerde özel takım kullanınız.
➢ Herhangi bir kastırma veya sıkılığa sebebiyet vermeyiniz. |
| ➢ Pompa ayar tezgahında ayarlarını yapınız. | ➢ Not: Distribütör tip pompalarında ana parçalar ve çalışma prensipleri benzerlik gösterdiği için burada pompa ayar Tezgahında yapılan kontrolerin adları hakkında kısa bilgi verilecektir.
➢ Çalışmaya başlamadan önce güvenlik kurallarını hatırlayınız ve bu kurallara uyunuz.
➢ Pompayı kurallar uygun şekilde tezgaha bağlayınız.
➢ Pompa kataloğunu inceleyerek ayar değerlerini hatırlayınız.
➢ Ön hazırlıklar yapıldıktan sonra ayar işlemini geçebilirsiniz.
➢ Distribütör tip pompalarda genellikle aşağıdaki ayarlar yapılmaktadır. Yapılan ayrıntılarını pompa kataloglarında ve iş ve işlem yapraklarında bulabilirsiniz. |
EP/VE tip yakıt enjeksiyon pompasını motor üzerine takınız.

Ayarlanan pompa motor üzerine takılırken avans işaretlerine motorun sente pozisyonuna dikkat edilir.
Katalog tavsiyelerine uygun işlem sırası takip edilir.
Torkla sıkılması gereken yerlerde torkmetre kullanılır.
Bütün bağlantılar tek tek kontrol edilir, gevşek ve sıçıntı yapan yerler kontrol edilerek işlem tamamlayınız.

Yakıt sisteminden havasını alınız.
Pompa kataloğunu inceleyerek hava alma tapalarını, varsa özel durumları göz önüne alarak işlemi gerçekleştiriniz.

Motoru çalıştırınız.
Atölye güvenlik kurallarına uyunuz.
Yangın ihtimaline karşı tedbiri olunuz.
Öğrenme Faaliyeti–1’de anlatılan kontrolleri yaparak motoru çalıştırınız.
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işaretli koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EP/VE tipi yakıt enjeksiyon pompasını motor üzerinden söktünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. EP/VE tipi yakıt enjeksiyon pompasını söktünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Parçaların kontrolnerini yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. EP/VE tipi yakıt enjeksiyon pompasını taktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. EP/VE tipi yakıt enjeksiyon pompasını pompa ayar tezgahında ayarlarını yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. EP/VE tipi yakıt enjeksiyon pompasını motora üzerine taktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Yakıt sisteminin havasını aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Motoru çalıştırdınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyarak doğru seçeneği işaretleyiniz.

1. Aşağıdakilerden hangisi EP/VE tip yakıt enjeksiyon pompasının görevlerinden **değildir**?
 A) Yakıtın basıncını yükseltmek
 B) Yakıtın miktarını ölçmek
 C) Yakıtı istenilen derinliğe püskürtmek
 D) Yakıtı belirli bir zamanda enjektöre göndermek

2. Aşağıdakilerden hangisi EP/VE pompa parçası **değildir**?
 A). Transfer pompası
 B) Regülatör
 C) Plancır
 D) Vakumlu avans

3. Aşağıdakilerden hangisi transfer pompasının görevlerinde birisidir?
 A) Yakıtın basıncını artturan plancıra gönderir.
 B) Yakıtın basıncını arttıran enjektöre gönderir.
 C) Yakıtın basıncını 180–250 bar'a çıkarır.
 D) Yakıtı pompadan depoya transfer eder.

4. Yüksek devirlerde yanma verimini artırmak için püskürtmenin erken olmasını sağlayan düzenek aşağıdakilerden hangisidir?
 A) Regülatör
 B) Avans sistemi
 C) Besleme pompa
 D) Rölanti düzeneği

5. Basınç ayar supabının görevi aşağıdakilerden hangisidir?
 A) Yakıtın basıncını dengelemek
 B) Yakıtın basıncını düşürmek
 C) Yakıtı enjektöre göndermek
 D) Yakıtı istenilen derinliğe püskürtmek

DEĞERLENDİRME

Aşağıdaki cümlelerde boş bırakılan yerlere doğru sözcükleri yazınız.

1. Motor devri yükseldiği zaman yakıtnın normal zamandan önce enjekteye gönderilmesi ve yanma için yeterli zamanın verilmesini sağlayan düzeneğe ……………… sistemi denir.

2. Her iki ucundan kamalı olan………….., motordan aldığı hareketi plakaya iletir.

3. …………….., devir ve yük göre yakıt miktarını kontrol bileği (kontrol halkası) sağa sola hareket ettirerek sağlar

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

4. DPA pompalarında aşağıdaki kontrollerden hangisi yapılmaz?
A) Basınçlı hava ile sıçıntı kontrolü
B) Yakıt miktarı kontrolü
C) Basma başlangıcı kontrolü
D) Kremayer boyu kontrolü

5. Aşağıdakilerden hangisi distribütör tipi yakıt enjeksiyon pompası çeşitlerinden birisi değildir?
A) DPA tipi pompalar.
B) Sıra tipi pompalar
C) DPS tipi pompalar
D) EP/VE tipi pompalar

6. DPA 32 4 2 02 1 SET / 75 / 1 / 1120 Pompa etiketinde aşağıdaki verilenlerden hangisi yanlıştır?
A) D Distribütör tip
B) 4 Çıkış rekoru
C) P Pompa
D) 32 Avans derecesi

7. Aşağıdakilerden hangisi DPS Pompanın parçalarından birisi değildir?
A) Döndürme mili
B) Pleyt
C) Regülator (düzenleyici)
D) Kamring (içi kamlı halka) ve yakıt ayar halkaları
8. EP/VE tipi yakıt enjeksiyon pompalarının, DPA ve DPS pompalarından farklı olan en belirgin özelliği aşağıdakilerden hangisidir?
A) Plancır yatay eksenle çalışır.
B) Plancır dikey eksenle çalışır.
C) Plancır değişken açılarda çalışır.
D) Kaplin bağlantısı vardır.

9. DPA, DPS, EP/VE yakıt enjeksiyon pompa kontrol ve ayarlardan hangisi pompa tezgahında yapılaz?
A) Transfer (besleme) pompa basıncının kontrolü
B) Maksimum yakıt miktarı ayarı
C) Enjektör püskürme kontrol ve ayarı
D) Rölanti ayarı

10. Motor azami devirde çalışırken motorun kurs hacmine göre dumanız olarak yakabileceği yakıt miktarına ne ad verilir?
A) Rölanti ayarı
B) Basma başlangıcı ayarı
C) Maksimum yakıt miktarı
D) Kremayer yolunun kontrol ayarı

DEĞERLENDİRME

CEVAP ANAHTARLARI

ÖĞRENME FAALİYETİ-1’İN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ-2’NİN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>10</td>
<td>Y</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ-3’ÜN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
</tr>
</tbody>
</table>
MODÜL DEĞERLENDİRMENİN CEVAP ANAHTARI

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AVANS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TAHRİK ŞAFTI</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>REGÜLATÖR</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
KAYNAKÇA

