MAKİNE TEKNOLOJİSİ

C EKSEN CAM TORNALAMA

Ankara, 2019
• Bu bireysel öğrenme materyali, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yetenekleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

• Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.

• PARA İLE SATILMAZ.
AÇIKLAMALAR... 3
GİRİŞ .. 4
ÖĞRENME FAALİYETİ-1 ... 5
1. C EKSEN CAM TORNALAMA İÇİN AYARLAR.. 5
 1.1. İki Boyutlu Parça Çizimi veya Hazır Parça Dosyasının Açılması 6
 1.2 CAM Modülüne Geçiş... 7
 1.3 Setup Dosyası Oluşturma 7
 1.3.1 Tezgah seçimi ve ayarlarının yapılması .. 8
 1.3.2 Operasyon tipinin seçilmesi .. 10
 1.3.3 İş parçası sıfır noktası tanımlanma .. 11
 1.3.4 Z Eksen güvenceli mesafeler ... 14
 1.3.5 İşlenecek model seçimi ... 14
 1.3.6 Ayna Ayakları Konumu Ve Seçimi ... 15
 1.4 Stock Seçimi ... 17
 1.5 Post Process (NC kod oluşturma ayarları) ... 19
 1.6 Kesici Tanımlama ... 19
 1.6.1 Kesici arama yöntemleri ... 22
 1.6.2 Kesici türleri .. 23
 1.6.3 Kesici geometrisinin düzenlenmesi .. 24
 1.6.4 Yeni kesici eklenmesi .. 25
 1.6.5 Tutucu seçimi .. 25
 UYGULAMA FAALİYETİ ... 27
 ÖLÇME VE DEĞERLENDİRME ... 30
ÖĞRENME FAALİYETİ-2 ... 32
2. C EKSEN CAM TORNALAMA YÖNTEMLERİ.. 32
 2.1 C Eksen Tornalma da kullanılan Freze işlemlerleri .. 33
 2.2 2D Adaptive Clearing .. 34
 2.2.1 Kesici Seçimi, Devir ve İlerleme Seçim Tablosu 36
 2.2.2 İş Parçası Geometrisi Seçimi .. 36
 2.2.3 Geometri Bölge Seçimi Türleri .. 37
 2.2.4 Stock Kontur Seçimi ... 38
 2.2.5 Tool Orientation ... 38
 2.2.6 Heights (Yükseklik Ayarları) ... 39
 2.2.7 Passes – Kesme Değerleri ve Geçişleri .. 41
 2.2.8 Feed Optimization: İlerleme değeri uyarlama .. 44
 2.2.9 Linking – Kesicinin Giriş ve Çıkış Hareketleri 45
 2.3 2D Pocket .. 50
 2.3.1 Tool - Kesici Seçimi ... 50
 2.3.2 Geometry - İş Parçası Geometrisi Seçimi ... 51
 2.3.3 Kesme Yükseklik Ayarları ... 52
 2.3.4 Passes – Geçişleri .. 54
 2.4 2D Contour .. 58
 2.4.1 Tabs: Tırnak Yeri Brakma ... 59
 2.4.2 Heights (Yükseklik Ayarları) ... 60
 2.5 Turning Drilling – Delik Delme .. 62
 2.5.1 Tool- Kesici Seçimi ... 62
 2.5.2 Geometry – Delik Bölümlerinin Seçimi ... 64
 2.5.3 Passes- Geçiş Seçenekleri .. 65
 2.6 Takım Yolu Simülasyonu .. 66
2.7 Post Processing NC-Code (G kodları oluşturma) ... 68
2.8 Setup Sheet (NC rapor çıktısı alma) .. 70
UYGULAMA FAALİYETİ .. 71
ÖLÇME VE DEĞERLENDİRME .. 79
CEVAP ANAHTARLARI ... 81
KAYNAKÇA ... 82
AÇIKLAMALAR

<table>
<thead>
<tr>
<th>ALAN</th>
<th>Makine Teknolojisi/Teknolojileri</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAL/MESLEK</td>
<td>Bilgisayarlı Makine İmalatı</td>
</tr>
<tr>
<td>MODÜLÜN ADI</td>
<td>C Ekser CAM Tornalama</td>
</tr>
<tr>
<td>MODÜLÜN TANIMI</td>
<td>CAM programlarını kullanarak çizilen parçaların takım yollarının oluşturularak Torna tezgâhında daha hızlı ve verimli bir şekilde üretilmesini sağlamak için gerekli öğrenim materyalidir.</td>
</tr>
<tr>
<td>SÜRE</td>
<td>40/16</td>
</tr>
<tr>
<td>ÖN KOŞUL</td>
<td>10 Sınıf alan ortak modüllerini, CAM Programında İki Boyutlu Çizim, CAM Programında Üç Boyutlu Çizim, modüllerini almış olmak.</td>
</tr>
<tr>
<td>YETERLİK</td>
<td>CAM Tornalama Yapmak</td>
</tr>
<tr>
<td>MODÜLÜN AMACI</td>
<td>Genel Amaç</td>
</tr>
<tr>
<td></td>
<td>Gerekli ortam sağlandığında bu modül ile öğrenci; CAD/CAM programlarını kullanarak işleme parametrelerini oluşturabilecek ve CNC Torna tezgahlarına dosya aktararak parça imalatı yapabilecektir.</td>
</tr>
<tr>
<td></td>
<td>Amaçlar</td>
</tr>
<tr>
<td></td>
<td>1. CAD/CAM torna programlarını kullanarak iş parçası tanımlayarak menüleri kullanabilecektir.</td>
</tr>
<tr>
<td></td>
<td>2. CAD/CAM programlarını kullanarak operasyonlara göre Torna cam ile kesici yolları oluşturarak, işleme ayarları ve simulasyon yapabilecektir</td>
</tr>
<tr>
<td>EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI</td>
<td>Ortam: Bilgisayar laboratuarı</td>
</tr>
<tr>
<td></td>
<td>Donanım: CAD/CAM programı, projeksiyon, tepegöz, örnek modeller, çeşitli ölçme ve kontrol aletleri.</td>
</tr>
<tr>
<td>ÖLÇME VE DEĞERLENDİRME</td>
<td>Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçme araçları ile kendini değerlendirireceksiniz. Öğretmen modül sonunda ölçme aracı (çoktan seçmeli test, doğru-yanlış testi, boşluk doldurma vb.) kullanarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek sizi değerlendirirecektir.</td>
</tr>
</tbody>
</table>
Sevgili Öğrenci,

Ülkemizde makine alanındaki sanayileşmeye yönelik gelişmelerin temelini CNC ve CAD/CAM sistemlerinin oluşturduğu söylenebiliriz. CNC tezgahlar universal tezgahlara işlenmesi zor ve karmaşık olan parçaları işleme böylece üretim süresini kısaltmakta, hassasiyeti ve kaliteyi artırarak teknolojik gelişmelerde katkıda bulunmaktadır.

CAM programları ise; CNC tezgahlarda programlanamayan karmaşık şekilli parçaları işleveyebilmek ve takım yollarını oluşturabilmek için kullanılmaya başlanmıştır. CAM programları; üretimde hata riskini azaltarak, daha hızlı üretim yapmayı ve daha kaliteli ürünler elde etmeyi olanak sağlar.

Modülün amacı, CNC torna tezgahlarını daha verimli çalışlabilmek için CAM programlarını kullanarak programlamayı öğretmektr. Bu modülün sonunda, CAM programı ile CNC 2 eksen ve C eksen torna tezgahların da üretelecek parçaların takım yollarını oluşturabilecek ve işleme ayarlarını yapabileceksiniz. G kodlarını yanı CNC programlama kodlarını çıkarıp simülasyon yapabilecek yeteneğine sahip olabileceksiniz.
Gerekli ortam sağlandığında bu modül ile öğrenci; CAD/CAM programlarını kullanarak işleme parametrelerini oluşturabilecek ve CNC torna tezgahlarına dosya aktararak parça imalatı yapabilecektir.

ARASTIRMA

- Herhangi bir CAD/CAM programında C eksen torna tezgahlarında takım yollarını çıkarmaya uygun parçalar çiziniz.
- CNC torna tezgahlarında programlama mantığı hakkında bilgi toplayınız.
- Bölgenizde bulunan sanayi kuruluşlarında kullanılan CNC torna tezgahlarını ve CAM programlarını araştırmınız.

1. C EKSEN CAM TORNALAMA IÇIN AYARLAR

C eksen; daha çok torna tezgâhında frezeleme işlemlerini yapmak amacıyla kullanılır. Parça üzerinde veya alın kısmında; frezeleme, kanal açma, delik delme, çeşitli helisel kanallar açma gibi işlemler C eksenli torna tezgâhlarında yapılan işlemlerden bazılarıdır.

CNC Torna tezgâhına C eksen takım yollarını oluşturmak için işlem sırası şöyledir;

- Önce işlenecek parçanın şekli 2 veya 3 boyutlu olarak çizilir.
- Parçayı işleme için önce Manufacture (CAM) modülü toplanmalıdır.
- Setup seckesini toplanarak New Setup seçer. Burada makine tipi olarak Generic Mill-Turn Lathe (Torna) seçer. Bu kısımda parçanın;
• **Stock Setup** (Ham parça) tanımlaması yapılır.
• **Toolpath** dan (Takım yolları) operasyon tipi seçilir.
• **Work Coordinate System** yanı iş parçası Şifir noktası tanımlanır.
• **Torna aynası tipi seçimi** yapılır.
• **Safe Z** (Z eksenli Güvenlik mesafesi) seçimi yapılır.
• **Post process** (Takım yolunu ayarları) yapılır.

- Parçanın şekline uygun işleme stratejisi seçilir. (Profile, Kanal frezeleme, Delik delme, Groove, veya Face gibi) Bu sekmede aşağıdaki seçenekler belirlenir.
 - Parçanın şekline uygun kesici ve parametreler belirlenir.
 - Parça geometrisi seçilir.
 - İşleme yükseklikleri seçilir.
 - Kesme ayarları yapılır
 - Kesicinin parçaya giriş ve çıkışları ayarlanır.

- Takım yollarının 2 veya 3 boyutlu simülasyonu izlenir.
- **Post alma** yani CNC kodlarını (G Kodu) çıkarma işlemine geçilir.
- Çıkarılan G kodları tezgâha aktarılır ve parçanın bu kodlara göre işlenmesi sağlanır

1.1. İki Boyutlu Parça Çizimi veya Hazır Parça Dosyasının Açılması

CAM programlarında torna uygulamaları için, kendimiz CAM programında işlenecek parçayı çizebileceğimiz gibi başka bir CAD/CAM programında çizilmiş parçayı kullandığımız programa aktarabiliriz.

Başka bir CAD/CAM programında çizilmiş parça dosyasını transfer ederken kabul edilebilir dosya uzantılarında kaydetmemiz gerekir. Unutulmamalıdır ki her program bir başka programda çizilen dosyayı açmayabilir. Bunun için dosya uzantısını değiştirmemiz gerekir. Genellikle 2 boyut çizimlerin saklanmasında **DXF, DWG** uzantıları, 3 boyut çizimlerin saklanmasında ise; **STEP, PARASOLİD, IGS, STL ve SAT** uzantıları kullanılmaktadır. Ayrıca Fusion 360, **Catia, Solidworks, Unigraphics NX** dosyalarını dosya formatını değiştirmeden açabilmektedir.

Hazır parça dosyasının açılması için program penceresindeki File’den Open seçilerek daha önce çizilen parçalar CAM programına çağırılır. Farklı uzantıda dosya varsa dosya türü penceresinden çağıracağızımız dosyanın uzantısı bulunarak dosya çağrılır. Daha sonra bu dosya CAM programında açılır.

![Görsel 1.1: C eksen tornlama işlemi yapılan örnek parçalar.](image-url)
1.2 CAM Modülüne Geçiş

1.3 Setup Dosyası Oluşturma

Fusion 360 programında takım yolu oluşturmak için ilk işlem Program ekranında yer alan SETUP sekmesini tıklanır. Yapılacak işe göre yeni veya ilave bir SETUP dosyası oluşturulması gerekmektedir. Bu kısımda

- Tezgâh seçimi
- Seçilen tezgâhın ayarları,
- Operasyon tipi,
- İş parçası sıfır noktası tanımlama,
- Z eksen güvence mesafeleri
- İşlenecek parça veya parçaların seçimi,
- Torna tezgahı aynası tipi seçimi yapılır.

Görsel 1.4: Setup seçim menüsü, Operasyon tipleri ve Edit ile düzenleme

1.3.1 Tezgah seçimi ve ayarlarının yapılması

<table>
<thead>
<tr>
<th>Temel Eksenler</th>
<th>Yardımcı Doğrusal Eksenler</th>
<th>Yardımcı Döner Eksenler</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Y</td>
<td>V</td>
<td>B</td>
</tr>
<tr>
<td>Z</td>
<td>W</td>
<td>C</td>
</tr>
</tbody>
</table>

Görsel 1.5: Cnc tezgâhlardaki eksenler

Görsel 1.6: Tezgâh tipi seçim menüsü
1.3.2 Operasyon tipinin seçilmesi

Fusion 360 da iş parçasına göre veya yapılacak işleme yönteminine göre operasyon seçimi yapılabilir. Bu operasyonlar aslında tezkâh tipini de belirleyen bir seçim olacaktır. Operasyon çeşitliliğinin fazla olması değişik imalat yöntemleri ile imalat yapma kabiliyetini artırmaktadır.

Bu sekmede bulunan operasyon tipleri:
- Milling – Frezeleme
- Turning & Mill and Turn – Tornalama ve C eksen Torlama
- Cutting – Sujet, Plazma veya Lazer kesim
- Additive - Metal veya Plastik 3D printer

Coordinate: Yardımcı dönel eksen
Custom name: Ayarlama Adı
Home position: Başlangıç noktası Açısı
Resolution: Dönen eksen açısı
Rapid feedrate: Hızlı ilerleme
Max feedrate: Max ilerleme
Orientation: Yardımcı eksenin ana eksenlere uyumu
Offset: Eksen çalışma ofsetleri
Range: Dönme mesafesi
Preference: Döndürme eksen yön tercihleri (pozitif veya negatif yönde)
1.3.3 İş parçası sıfır noktası tanımlama

Döküm ve üst yüzey kısımları formlu parçalar için sıfır noktasının toz paso olarak tanımlanan sıfır alın tornalama işleminden sonra seçilmesi doğru olacaktır. İş parçası sıfır noktası seçimini yanlış veya tezgah operatörü tarafından eş ve benzer tanımlama yapılmadığında iş kazası olması kesindir. Bu işlem tezgahın yapılmadan önce SETUP SHEET çıktı alınamak operatörün tezgah başında buna göre sıfırlama yapılması sağlanmalıdır. **Görsel 1.9**da yapılan CAM işleminde tanımlanan sıfır noktası görülmektedir.

Görsel 1.9: Setup Sheet ile elde edilen operatör bilgilendirme raporu

Görsel 1.10: Ayna pozisyonu seçimi

Bu bölümde ayrıca belirlenen kütüğe ve iş parçasına göre 6 tip sıfır noktası tanımlama seçeneği vardır.
Görsel 1.11: İş parçası ve kütük konumuna göre sıfır noktası seçimi

- **Stock Front**: Sıfır noktası kütüğün önünde
- **Stock Back**: Sıfır noktası kütüğün arkasında
- **Model Front**: Sıfır noktası iş parçasının önünde
- **Model Back**: Sıfır noktası iş parçasının arkasında
- **User Selected Point**: Kullanıcı tanımlı bir noktaya göre sıfır noktasya tanımlama
- **Chuck Front**: Sıfır noktasya torna ayna ayakların önunde

Görsel 1.12: İş parçası Referans (Sıfır) noktası seçimi
1.3.4 Z Eksenı güvenlik mesafeleri

Bu bölümde torna kalemlerin iş parçasına Z ekseninde güvenli mesafede yaklaşma ve uzaklaşma değerlerini tanımlar.

WCS REFERENCE AND OFFES DISTANCE: İş parçası sıfır noktasına göre tanımlanan değer kadar torna kaleminine parçaya ilk yaklaşma veya uzaklaşma verir.

STOCK FRONT REFERENCE AND OFFES DISTANCE: İşlenmemiş kütük (stock) parçasının seçil alın (ön kısmı) yüzeyine göre tanımlanan değer kadar torna kaleminine parçaya ilk yaklaşma veya uzaklaşma verir.

STOCK BACK REFERENCE AND OFFES DISTANCE İşlenmemiş kütük (stock) parçasının arka yüzeyine göre tanımlanan değer kadar torna kaleminine parçaya ilk yaklaşma veya uzaklaşma verir.

1.3.5 İşlenecek model seçimi

İşlenecek parçanın seçimi yapılır.

Spun Profile: Bazı torna parçalarının daha sonraki işlemlerde freze veya özel tornalama işlemleri gerektirebilir. Bu gibi durumlarda, frezeleme başlamadan önce tornalanacak profili freze işlemi için değişikliğe uğratılar. Torna parçasının X eksenine boyunca 2B çizim profili oluşturarak freze işlemi için talas payı bıramkaya olanak tanır, bu daha sonra özel tornalama için de kullanılabilir bir talas miktarı olabilir.
1.3.6 Ayna Ayakları Konumu Ve Seçimi

Bu bölümde sanal olarak oluşturulacak bir mesafe durumu vardır. Torna aynası ayakları ile iş parçasının işleme bitiş bölgesinin mesafesi belirlenir.

Chuck Reference: Bu bölümünde iş parçasının konumuna göre sıkma bölgesinin yeri tanımlanır.

Offset: İş parçası ile sıkma bölgesi arasındaki mesafesiyi tanımlanır.

Chuck: Chuck Reference sekmesinden from solid seçeneği aktif edildiğinde Ayna veya ayna ayakları gibi sıkma düzeneği seçimi için bu bölge ortaya çıkar. Önceden çizilen ve montaj ortamında iş parçası ile uygun şekilde monte edilen torna aynası veya ayakları tanımlanmış olur.
Stok parçasının önünden ofset verme işlemi

Stok parçasının arka tarafından ofset verme işlemi
Stok parçasının arka tarafından ofset verme işlemi

Model parçasının arka tarafından ofset verme işlemi

Model parçasının önünden ofset verme işlemi

Katı model olarak çizilmiş ve iş parçası ile monte edilmiş torna aynasının seçimi ve sıkma ayaklarının önünden ofset verme işlemi
1.4 Stock Seçimi

Tasarlanan modeller için kütük (ham) parça oluşturulmak için kullanılır. Kütük boyutlarının ve görünümenin ayarlarının yapıldığı kısımdır.

Görsel 1.14: Stock seçim menüsü

- **Fixed Size Cylinder Mode**: Sabit ölçüli silindirik stok atama

 - **Stock Diameter** – Oluşturulacak stok çapı.
 - **Length** – Oluşturulacak stok boyu
 - **Model Position: Offset from front** – Stok önünden offset – Stok parçasını, modelin ön yüzü ile aynı hizada olacak şekilde konumlandırır.
 - **Model Position: Center** – Modeli stok ile ortalayıp eşit boşluk payları bırakır.
 - **Model Position: Offset from back** – Stok arkasından offset – Stok parçasını, modelin arka yüzü ile aynı hizada olacak şekilde konumlandırır.
Stok seçim yöntemleri

Fixed Size Box: İş parçasını dış ölçülerine göre bir dikdörtgen prizmanın içine sığdırarak stock oluşturur.

Relative Size Box: İş parçasının dış ölçülerine göre istenildiğinde değişken yükseklikte dikkертgen prizma ile stock oluşturur.

Fixed Size Cylinder: İş parçasını dış ölçülerine göre bir silindirin içine sığdırarak stock oluşturur.

Relative Size Cylinder: İş parçasının dış ölçülerine göre istenildiğinde değişken yükseklikte Silindir ile stock oluşturur.

Fixed size Tube: İş parçasını dış ölçülerine göre bir Tüp içine sığdırarak stock oluşturur. (Stok içerisinde istenildiğinde delik olur.)

Relative Size Tube: İş parçasının dış ölçülerine göre değişken yükseklikte bir Tüp içine sığdırarak stock oluşturur. (Stok içerisinde istenildiğinde delik olur.)

From Solid: İş parçasının kendisini veya başka bir parçayı stock olarak kabul eder.

Stok offset ayarları

No additional stock: İş parçasının en dış ölçülerini referans alır ve ilave bir fazlalık ekmez.

Add stock to sides and top – bottom: İş parçasının en dış ölçülerini referans alır ve iş parçasının alt ve üst yüzeylerine ilave bir fazlalık ekler.

Add stock sides: İş parçasının en dış ölçülerini referans alır ve iş parçasının yan yüzeylerine ilave bir fazlalık ekler.

Görsel 1.15: Stock seçim yöntemleri
1.5 Post Process (NC kod oluşturma ayarları)

Cnc tezgâhları için gerekli olan NC kodlarının oluşturulması öncesinde Post Process sekmesinde ayarlamalar yapılmalıdır. Bunlar:
- Program numarası
- Program açıklaması
- Makine sıfır noktası (G54, G55)

1.6 Kesici Tanımlama

Görsel 1.16: Kesicilerin özelliklerine göre tarete dizilişleri

C tornalama kesici ucları seçerken dikkate alınması gereken birçok parametre bulunmaktadır. İyi bir talash kontrolü ve işleme performansı elde etmek için kesici uç geometrisini, kesici uç kalitesini, kesici uç şeklini, kesici uç boyutunu, köše radyüsünü ve giriş (boşluk) açısı dikkate alınmalıdır. Kullanılan kesiciler freze ve delik delme işlemlerinde kullanılan kesiciler olduğundan kesici seçim kriterleri cnc freze tezgâhındaki kriterlerle aynıdır. Bu işlemlerde kesici boyu çok önemlidir. Taret ve kater yükseklikleri her çapta işin yapılmasına olanak sağlamakabilir. Çarpma ve talash kontrolü mutlaka yapıp dikkate alınmalıdır.

Fusion 360 programında 2 farklı alanda kesici takım tanımlaması yapılabilir. İlk yol ana ekranda yer alan tool library ikonu ile seçmendir. İkinci yol ise işleme yöntemlerinin bulunduğu pencere içerisindeki kısımdır. Kesici seçiminde Mill- Turn seçeneği altında kesiciler seçilmeli ve
tanımlanmalıdır. Kendi ekseninde dönenerek kesen ve C eksen torna gibi özel işlemlerde kullanılan kesicilere “Canlı Takım” da denilmektedir.

Görsel 1.17: Kesici takım tablosunu seçim yöntemleri

Görsel 1.18: Kesici takım seçim tablosu
Kesici seçim yöntemleri

- **Operation**: Operasyon göre
- **Type**: Kesici tipine göre
- **Dimension**: Kesici ölçülerine göre
- **Search**: Kesici adı veya tanımlamasına göre arama
- **Yeni kesici ve ekipmanları ekleme**
- **New mill tool**: Yeni kesici ekleme
- **New Holder**: Yeni tutucu ekleme
- **New turnig tool**: Torna kesici ekleme
1.6.1 Kesici arama yöntemleri

1.6.1.1 Operation türüne göre kesici seçimi ve aranması

Bu ekranda İş parçacını işleme operasyonlarına göre daha önce tanımlanan veya kesici kütüphanesinde bulunan kesicileri bulmamızı sağlar. Örneğin yüzey işleme operasyonu yapacaksak Face sekmesi tıkladığında ve Ok seçildiğinde ekranın sağ üst köşesinde kullanılan kesiciler listesi halinde görülecektir.

Görsel 1.21: Kesici opresayon türüne göre takım aranması

1.6.1.2 Kesicinin tipine göre seçimi ve aranması

Bu ekranda İş parçacını kesici tiplerine göre daha önce tanımlanan veya kesici kütüphanesinde bulunan kesicileri bulmamızı sağlar. Örneğin Flat (düz uç) kesicileri bulmak istiyorsak FLAT sekmesi tıkladığında ve Ok seçildiğinde aranan kesiciler listesi halinde görülecektir.

Görsel 1.22: Kesici tipine göre takım aranması
Ekrana gelen kesici listesinden aranan kesici mause’nin sağ tuşu tıklanlığında kesici ölçülenini edit (düzenleme) seçeneği görülür.

1.6.1.3 Kesicinin ölçülerine göre seçimi ve aranması

Bu yöntemde daha önce tanımlanmış veya kesici kütüphanesinde bulunan kesicilerin çap, kesme boyu, k köşe radiusu, ağız ve ağız sayısına göre bulunmasını sağlar. Bu tabloda en küçük ve en büyük ölçü aralığı girilerek aranan kesiciler ekrana getirilir. Görsel 1.18 deki örnekte çapı 3 ile 12 mm arasındaki daha önce tanımlanmış kesiciler ekrana getirilmişdir.

1.6.2. Kesici türleri

Fusion 360 kesici kütüphanesinde oluşturulacak takım yolları için değişik amaçlı kesiciler bulunmaktadır. Görsel 1.19 de kesicilerin türleri görülmektedir.
1.6.3 Kesici geometrisinin düzenlenmesi

Kesici kütüpanesinden seçilen veya yeni oluşturulan kesicilerin geometrik ölçü tanımlaması Görsel 2.5 de gösterilen tablodan yapılır.

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Flutes</th>
<th>Material</th>
<th>Through Tool coolant</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat end</td>
<td>3</td>
<td>Unspecified</td>
<td></td>
<td>Millimeters</td>
</tr>
<tr>
<td>Ball end</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bull nose</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapered</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dovetail</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lollipop</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamfer</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Görsel 1.25 Kesici Türleri

Number of Flutes: Kesicinin açıksı sayısı

Clockwise spindle rotation: Kesme yönü

Material: Kesicinin malezmesi

Through Tool coolant: Soğutma kesici içinden mi?

Unit: Ölçü sistemi

Diameter: Kesici çapı

Flute Length: Kesici ağız boyu

Shoulder Length: kesici kademe boyu

Shaft diameter: Kesici sap çapı

Body length: Kesicinin tutucu dışında kalan boyu

Overall length: Kesicinin toplam boyu

Görsel 1.26 Kesici Türleri

24
1.6.4 Yeni kesici eklenmesi

Cam işlemi sırasında yeni kesici ekleme işlemi çok dikkat edilmesi gereken bir durumdur. Yapılacak cam operasyonuna göre kesici seçimi yapılmış ve daha önce belirtilen konular dikkate alınarak değerler girilmelidir. Kesici seçim ekranında New Mill Tool sekmesi tıkladığında Görsel 1.21 deki menü karşımıza gelmektedir. Bu menüden kesinin geometrik özelliklerini, malzemesi, tutucusu, devir ve ilerlemesi, NC kod alanında kesici ile ilgili bilgilerin yer alması için gerekli değerler girilir.

![Görsel 1.21: Kesici seçimi ekranı]

Görsel 1.27: Yeni kesici ekleme tablosu

1.6.5 Tutucu seçimi

Görsel 1.28: Yeni tutucu ekleme ve mevcut tutucu tablosu
Aşağıdaki iş parçasının alın kısmında bulunan 3 adet oval formu C eksen tornada işlemek için gerekli küttük, makine, kesici (Pocket bölgeler kaba işlemek için çapı 10 mm düz uçlu parmak freze) ve sıfır noktasını tanımlayınız. Küttük ölçülerini Ø 70 mm, küttük boyunu 60 mm olarak belirleyiniz.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parçanın CAM ortamına çağrılması.</td>
<td>Fusion 360 programı içerisindeki Cam uygulama örnekleri kısmından parçayı Cam ortamına çağırınız.</td>
</tr>
<tr>
<td>Setup ayar seçeneği eklemek.</td>
<td>Cam kısmından Setup ikonu tıklanınız.</td>
</tr>
<tr>
<td>Küttük tanımlaması yapmak.</td>
<td>Setup seçeneğinde bulunan Stock menüsüne girerek Fixed Size Cylinder seçeneği ile Diameter:70 mm Length: 60 mm Parça alınandan 2 mm ofsetli olarak Küttüğü tanımlayınız.</td>
</tr>
</tbody>
</table>
Sıfır noktası ayarlarını yapmak.

Setup kısmında bulunan **Work Coordinate System** seçeneğinden iş parçasının silindirik yüzeyine tıklayarak Z ekseni olarak şekilde **Stock Front** komutunu kullanarak sıfır noktasını tanımlayınız.

3 eksen CNC freze tezgah seçimini yapmak.

Setup seçeneğinde bulunan **Machine** menüsüne girerek **Turning** seçimi tıklanır.

Kesici seçimi yapmak

Ekrana bulunan **MANAGE** sekmesinden **Tool Library** penceresi seçilir. Ekrana gelen menüden **New Turning Tool** tıklanarak kesici ekleme menüsü aktifleyiniz.
Kesici ölçüleri tabloya girmek.

Kesici menüsünden Genel kesicilerden Kaba talaş kesicisine uygun ölçüde kesici uçu tanımlayınız.

KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri Evet, kazanamadığınız becerileri Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendirmeiniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Parçayı Cam uygulama örnekleri kütüphanesinden çağırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Setup sekmesini seçtiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Kütük oluşturmak için Setup menüsünden Stock Setup’ı seçtiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Kütük değerlerini belirtilen ölçüde girdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Setup menüsünden iş parçasının sıfır noktasını belirlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Makine tipi olarak standart Turning (Torna) tezgahını seçriniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Kaba talaş Torna kesicisini yeni kesici olarak eklediniz mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Uzun parçları tornlamak için kullanılan gezer punta seçeneği hangisi ile aktiflenir?
 A) Tool
 B) Tial stock
 C) Holder
 D) Pocket
 E) Edit tool

2. Aşağıdaki terimlerden hangisi takım tutucu anlamındadır?
 A) Plunge
 B) Tool
 C) Pocket
 D) Tial stock
 E) Holder

3. Aşağıdakilerden hangisi takım kütüphanesine ulaşmak için kullanılır?
 A) Create new tool
 B) Select library tool
 C) Edit tool
 D) Tool manager
 E) Manage

4. Torna tezgâhında dalma ilerleme hızını ifade eden terim aşağıdakilerden hangisidir?
 A) Plunge feed rate
 B) Spindle speed
 C) Feed rate
 D) Max. Spindle speed
 E) Tool manager

5. Aşağıdakilerden hangisi C eksen tornalamada” Canlı Takım” olarak adlandırılır?
 A)

 B)

 C)

 D)

 E)

30
6. CAM ortamında ayarlama işlemleri hangi seçeneğe yapılır?
 A) Setup
 B) Inspect
 C) Manage
 D) Select
 E) Model

7. Cam ortamında Parça Sıfır noktası hangi alt seçeneğe sağlanır?
 A) Machine
 B) Setup
 C) Model
 D) Work Coordinate System (WCS)
 E) Generate

8. CAM ortamında oluşturulan takım yollarının NC kodlarını türetmek için hangi seçeneğe kullanılmaktadır?
 A) Generate
 B) Setup
 C) Simulate
 D) Sheet Setup
 E) Post Process

9. Aşağıdakilerden hangisi Stock (Kütük) oluşturulma yöntemlerinden birisi değildir.
 A) Fixed Size Box
 B) End Mill
 C) Relative Size Box
 D) Fixed size Cylinder
 E) Edit tool

10. Aşağıdakilerden hangisi Cam işlemine başlamadan önce kesici hakkında bilinmesi gereken bilgilerden birisi değildir.
 A) Kesici boyu
 B) Kesici uç çapı
 C) Kesici malzemesi
 D) Kesici uç yarıçapı
 E) Üretici firma bilgisi

DEĞERLENDİRME

Cevaplarınızı cevap anahtarıyla karşılaştırınız. Yanlış cevap verdiniz ya da cevap verirken tereddüt ettiği sorularla ilgili konuları faaliyete geri dönerek tekrarlayınız. Cevaplarınızı tümü doğru ise bir sonraki öğrenme faaliyetine geçiniz
Gerekli ortam sağlandığında bu modül ile öğrenci; CAD/CAM programlarını kullanarak işleme parametrelerini oluşturabilecek ve CNC Torna tezgahlarına veri aktararak parça imalatı yapabilecekir.

ARAŞTIRMA

- CNC Torna tezgahında kullanılan takım yolları ve çeşitleri hakkında bilgi toplayınız.
- G kodlarının tezgaha aktarılmasını hakkında bilgi toplayınız.

2. C EKSEN CAM TORNALAMA YÖNTEMLERİ

Cnc torna tezgahlarında C eksen işleme, 2D işleme veya Prizmatik işleme olarak adlandırılan yöntemlerdir. Ortak özelliği işlenen yüzeyler de Z ekseninin aynı yönde veya dik olarak bulunmasıdır.

Fusion 360 yazılımında çok küçük olmayan ve kesicinin çapının en az 2 katı olduğu Pocket bölgelerini işlerken genellikle 2D Adaptive Clearing yöntemi seçiliridir.

Cam programlarının çoğunda bazı işleme yöntemleri ve tanımlamaları standart bir isimle adlandırılır. Uluslararası bir tanımlama olması açısından bu yöntem ve tanımlamalar standard hale gelmiştir. C eksen tornalmada da 2.5 eksen frezeleme yöntemleri kullanıldığında aşağıdaki tanımlamalar olabilir, bunlar ;

- **FACE** : İş parçasının yüzeyinin işlenmesi
- **POCKET** : Cep işleme (Havuz bölgelerinin işlenmesi)
- **CONTUR MILLING** : Parça üzerindeki bir hattın veya kenarın işlenmesi
- **ENGRAVE** : Yazı veya fiğür işleme
- **DRILLING** : Delik delme işlemi.

Diğer operasyonlar her program tarafından farklı veya benzer şekilde isimlendirilmiştir. Bütün operasyonlarda amaç; doğru değerler girerek, en kısa zaman da iş parçasını iş kazası meydana gelmeden işlemek olmalıdır.
C eksen tornalama işlemlerinde, iş parçasının dış çapındaki düzlemsel bölgeler, alın ve yüzey delikleri, dairesel kanal açma işlemleri veya uygun şartlar sağlanırsa iç çapındaki frezeleme işlemleri yapılabilir. C eksen tornlama işlemlerleri, günümüz imalat teknolojilerinde, savuma ve havacılık sektöründe yaygın olarak kullanılan işlemlerden biri olduğu için talas kontrolü, işlem güvenliği ve parça kalitesi talepleri yüksektir.

2.1 C Eksen Tornalma da Kullanılan Freze işlemleri

2D ADAPTİVE CLEARING: Geleneksel ve yeni nesil kesme teknolojisinin kullanarak dış çevre veya pocket bölgeleri işler. Takım yollarını küütük ve parça geometrisine göre adapte eder. 2D POCKET: Pocket bölgelerini işlemek için kullanılır.
2D CONTOUR: Bir çizgi veya iş parçasının kenar hatlarını kullarak işleme.

DRILLING: Delik delme işlemi.

2D ADAPTIVE CLEARING
2D POCKET
Görsel 2.3: C eksen işlemde 2D Adaptivie Clearing ve 2D pocket işleme örnekleri

2D CONTOUR
DRILLING
Görsel 2.4: C eksen işlemde 2D Contour ve Delik delme işlemi örnekleri

2.2. 2D Adaptive Clearing

Görsel 2.5: 2D Adaptive Clearing işleme seçim, ve işleme yöntemi

2D Adaptive Clearing işleme ikonu seçildiğinde Görsel 2.6 deki tablo ekranı gelir. Bu tablodaki seçenekler ve değerler girilerek işleme tamamlanır. Cam oluşturma tablosu 5 bölgeden oluşur. Bunlar;

<table>
<thead>
<tr>
<th>TOOL</th>
<th>KESİCİ SEÇİMİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOMETRY</td>
<td>İŞ PARÇASI GEOMETRİSİ SEÇİMİ</td>
</tr>
<tr>
<td>HEIGHTS</td>
<td>KESME YÜKSEKLİK AYARLARI</td>
</tr>
<tr>
<td>PASSES</td>
<td>KESME DEĞERLERİ</td>
</tr>
<tr>
<td>LINKING</td>
<td>KESİCİ GİRİŞ, ÇIKIŞ VE BAĞLANTILARI</td>
</tr>
</tbody>
</table>
2.2.1 Kesici Seçimi, Devir ve İlerleme Seçim Tablosu

![Kesici Seçimi, Devir ve İlerleme Seçim Tablosu](image)

Spindle Speed – Kesici dönme devri (RPM)
Surface Speed – Parça üst yüzeyinde geçişlerdeki ilerleme (m/min)
Ramp Spindle Speed – Parçaya dalışı sırasında devri
Cutting Feedrate – Kesme ilerlemesi mm/min
Feed per Tooth – Kesme anındaki kesici ağız başı ilerleme
Lead-In Feedrate – Kesmeye ilk giriş anındaki ilerlemesi
Lead-Out Feedrate – Kesme sonundaki çıkış ilerlemesi
Ramp Feedrate – İş parçasına helisel bir dalma yapacağındaki verilecek ilerleme
Plunge Feedrate – İş parçasına dik dalma kullanacağı zamanki ilerleme
Feed per Revolution – Diş başı ilerleme

Görsel 2.6 Kesici, Devir ve ilerleme tablosu

2.2.2 İş Parçası Geometrisi Seçimi

İş parçası geometri seçiminde 2d çizim, yüzey veya işleme alanı kenarları seçilebilir. İşleme alanı sınırlandırılacak ise tasarım kısmından sınırlama çizgisi oluşturulmalıdır. Görsel 2.3 de oluşturulan sınırları çizgisi ve işleme sonunda ki takım yolu görülmektedir. Bu sınır çizgisi Stock Contours sekmesi aktif edilerek seçilir.
2.2.3 Geometri Bölge Seçimi Türleri

Prizmatik parçalarda 3 tip geometri bölgeleri oluşur bunlar:

- Kapalı pocket bölgesi – 1. seçim
- Açık pocket bölgesi – 2. seçim
- Sabit seviye bölgesi – 3. Seçim

Görsel 2.8 Pocket bölge seçim tipleri

Geometry: İş parçası üzerindeki işlenecek bölgelerin seçimi
Stock Contours: İşleme alanı sınır çizgisi seçimi
Wrap Toolpath: 4 eksen veya divizör ile Cam işlemlerinde sarmal şeklinde takım yolu oluşturma
Tool Orientation: Kesici takım referans noktası ayarlaması veya değişimi

Geometry: İş parçası üzerindeki işlenecek bölgelerin seçimi
Stock Contours: İşleme alanı sınır çizgisi
2.2.4 Stock Kontur Seçimi

İşleme alanı ve işleme sınırı belirlemek için stock contours sekmesi aktiflenerek seçimler yapılır (2). Seçime göre stok sınır belirlemeleri yapılır. Eğer hiçbir seçim yapılmaz ise daha önce belirlenen stok tanımına göre hesaplama yapacaktır (1). Stok eğer iş parçası kenarlarından daha büyük tutulacak ise tasarım modülünden parça geometrisinden büyük bir çizim yapılmalıdır (3).

Görsel 2.10 işleme Alanı sınırlandırma

2.2.5 Tool Orientation

Kesici takım referans noktası ayarlanması veya değişimi gerektiğiinde bu sekmeden yapılır. Daha önce anlatılan kesici sıfır noktası tanımlama ile aynı parametrele sahiptir. Ortaya çıkan yönleri istenildiğinde Flip Z Axis seçimi ile Z eksenin yönünü, Flip X Axis seçimi ile X eksenin yönünü değiştirilir

Setup WCS orientation: Takım yönlendirmesi için geçerli kurulumun iş parçası koordinat sistemini (WCS) kullanır.
Model orientation: Takım oryantasyonu için geçerli koordinat sistemini (WCS) kullanır.
Select coordinate system: Bu işlem için modeldeki tanımlanmış bir kullanıcı koordinat sisteminden belirli bir takım yönü belirler. Bu, mevcut koordinatın hem başlangıç noktası hem de yönelimini kullanır.
2.2.6 Heights (Yükseklik Ayarları)

Bu kısımda kesicinin iş parçasına hangi mesafeden kesmeye başlayacağı, kesmenin hangi seviyede biteceği gibi kesicinin iş parçası üzerindeki kesme yükseklikleri girilir. İş parçasının istenilen seviyesinde kesme bitirilebilir veya istenilen seviyesinde kesme başlatılabilir. Bütün bu ihtimaler bu kısımda değer olarak tanımlanır. Eğer hiçbir seçim yapılmaz ise iş parçası ve tanımlanan kütüge göre takım yolu oluşturulur.
<table>
<thead>
<tr>
<th>Clearance Height</th>
<th>Havada gezinme yüksekliği</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retract Height</td>
<td>Seçime geri çıkma yüksekliği ekler.</td>
</tr>
<tr>
<td>Top Height</td>
<td>Seçime üst yüksekliği girilen değer kadar ekler.</td>
</tr>
<tr>
<td>Bottom Height</td>
<td>Seçime alt yüksekliğini girilen değer kadar ekler.</td>
</tr>
<tr>
<td>Model top</td>
<td>Parça üst yüksekliğini referans alarak girilen değer kadar ekler.</td>
</tr>
<tr>
<td>Model bottom</td>
<td>Parça alt yüksekliğini referans alarak girilen değer kadar ekler.</td>
</tr>
<tr>
<td>Stock top</td>
<td>Kütük üst yüksekliğini referans alarak girilen değer kadar ekler.</td>
</tr>
<tr>
<td>Stock bottom</td>
<td>Kütük alt yüksekliğini referans alarak girilen değer kadar ekler</td>
</tr>
<tr>
<td>Selected contour(s)</td>
<td>Seçilen konturu referans alarak girilen değer kadar ekler</td>
</tr>
<tr>
<td>Selection</td>
<td>İş parçası üzerinden seçilen kenar, nokta, düzlemi referans alarak girilen değer kadar ekler</td>
</tr>
<tr>
<td>Origin (absolute)</td>
<td>Ekranda bulunan orjini referans olarak kabul ederek girilen değer kadar öteler.</td>
</tr>
</tbody>
</table>
2.2.7 Passes – Kesme Değerleri ve Geçişleri

TOLERANS: İşleme toleransı vermek için bu değer verilmelidir. 2D ve kaba işlemlerde 0.1 değeri kabul edilebilir. 3D ve finiş işlemlerde 0.05 mm ile 0.01 mm arasında değerler verilmelidir. Yüzey kalitesine etki eden bir faktördür. Değer küçüldükçe işlem zamanı ve oluşan NC kod satır sayısı artar.

Tolerance 0.1

Tolerance 0.01

Görsel 2.11: İşleme toleransı sonuçları

Optimal Load: Kesme yanal adım değeri 2D Adaptive Clearing yöntemi, geleneksel 2D pocket yöntemine göre işleme zamani açısından %40 yakını daha hızlı bir sonuç almabilir. Yanal adım değeri kesici çapı ile doğrudan ilgilidir. Düz uçlu kesicilerde sağlıklı bir kesme için kesici çapının max %20 kadar alınması kesici ömrünü uzatacaktır. Yanal adım olarak girilen değerin kesici çapından büyük girilmesi durumunda program hesaplama hatası verir ekranı hata mesajı çıkar.

Görsel 2.12: Optimal Load ve hatalı kesici çapı girildiğinde karşımıza çıkan ikaz.

Both Ways: Open pocket bölgesinde çift yönlü kesme yapılır. Kesme işlemi yapılırken kesici Climb ve Conventional kesmeyi birlikte yapar.
Minimum Cutting Radius: Kesicinin talas kaldırırken istenildiğinde köşelerde oluşturulacak en küçük yarıçaplı takımyolu ile frezleme yaptırılır.

![Kesme yarıçapi girilmiş takımyolu](image1)

Kesme yarıçapi girilmiş takımyolu

![Kesme yarıçapi girilmemiş takımyolu](image2)

Kesme yarıçapi girilmemiş takımyolu

Use Slot Clearing:

Pocket bölgelerinde dik duvarına doğru spiral bir hareketle devam etmeden önce, pocketin orta kısmında pocket boyunca bir yuva açıp ön boşaltma yapar. Bu özellik bazı pocket bölgeler için köşelerde bağlantı hareketini azaltmak için kullanılabilir. Açılan pencereye takım çapından büyük değer girilmelidir.

![Görsel 2.13: Use Slot Clearing seçeneğinin aktif edilmeden ve aktif edildikten sonraki oluşan takımyolu.](image3)

Direction: işleme yönü seçeneği için iki tip yöntem vardır Climb ve Conventional Geometriye bağlı olarak, tüm takım yolu boyunca Climb veya Conventional frezelemeyi sürdürmek her zaman mümkün değildir. Tüm geçişleri tek bir yönde işlemek için Climb yöntemini seçebilirsiniz.

![Görsel 2.14: Kesme yönleri](image4)

Multiple Depths: Bu seçeneğin sabit kesme yükseklikleri vermek için kullanılır. Verilen talas yüksekliği kadar her pasoda kesme işlemi yapılır. Eğer iş parçası tek seferde işleyeceksiniz bu seçeneğin aktif edilmesi.

Maximum Stepdown: En fazla kesme yüksekliği değer mm olarak olarak verilmelidir. Kesme yüksekliği işlenecek toplam yüksekliğe tam bölünür. Kalan talas son pasoda işlenir.

Maximum Stepdown
- Talaş yüksekliği

Order by Depth
- Katman olarak kesme

Order by Area
- Bölge olarak kesme

- **Çoklu takım yolu aktif**
- **Çoklu takım yolu kapalı**

- **Stock to Leave**
 - Pozitif pay
 - Negatif pay
 - Seçim iptal

2.2.8 Feed Optimization: İlerleme değeri uyarlamaları

2.2.9 Linking – Kesicinin Giriş ve Çıkış Hareketleri

Maximum Directional Change
Kesme ilerleme hızı azaltılmadan önce izin verilen maksimum açısal değişikliği belirter.

Reduced Feed Radius
İlerleme azaltılmasından önce izin verilen minimum yarıçapı belirir.

Reduced Feed Distance
Köşe dönüşünden önce yavaşlanacak mesafeyi belirter.

Reduced Feedrate
Köşe dönüşü öncesi yavaşlama mesafesi

Only Inner Corners
Yalnızca iç köşelerdeki kesme ilerleme hızını azaltmak için etkinleştirilir.
Retraction Policy: Geri çıkma yaklaşımı

Full Retract Minimum Retract

High Feedrate Mode: Boşta hareketlerin yüksek hızdan (G0) ne zaman çıkarılması gerektiğini ve yüksek ilerleme hızı hareketlerinde (G1) ne zaman çıkarılması gerektiğini belirtir.

Preserve rapid movement: Tüm hızlı hareketler korunur.

Preserve axial and radial rapid movement: Sadece yatay (radyal) veya dikey (eksenel) hareket eden hızlı hareketler gerçek hızlı hareketler olarak verilir.

Preserve axial rapid movement: Sadece dikey yönde hızlı hareket ettirir.

Preserve radial rapid movement: Sadece yatay yönde hızlı hareket ettirir.

Preserve single axis rapid movement: Sadece seçilen bir eksende hareket hızlı hareketler ettirir. (X, Y veya Z).

Always use high feed: Kesme ilerleme komutu olan G01 hızlı hareketler yerine daha hızlı olan (G0) ile hareket ettirir.

High Feedrate: G0 yerine G1 olarak verilen hareketlerin hızını belirler.

Allow Rapid Retract: Etkinleştirildiğinde, geri çekilmeler hızlı hareketler (G0) olarak yapılır.

Maximum Stay-Down Distance: Bekleme hareketleri için izin verilen maksimum mesafeyi belirtir.

Minimum Stay-Down Distance: Bekleme hareketi için izin verilen minimum mesafeyi belirtir.

Görsel 2.15: Maximum and Minimum stay-down

Stay-Down Level: Çıkıntı geometriler arasında hareket ederken geri çekilme yapmak yerine, ne zaman bekleyeceğini kontrol etmek için bu ayarı kullanılır. Genel olarak, CNC makineleri yüksek
ilerleme hareketleriyle karşılaştırıldığında yavaş geri çekilirse Adaptive stratejinin daha düşük kalmasını ister. Değerler En düşük ayar % 0, En yüksek ayar % 100'dür.

Lift Height: Yanal hareket için geçişlerde kaldırma mesafesini belirtir.

Lift height 0 mm
Lift height 3 mm

No-Engagement Feedrate: Takımın malzemeye temas etmediği, ancak geri çekilmediği hareketler için kullanılan ilerleme hızını belirtir.

Lift height 0 mm
Lift height 3 mm

Leads & Transitions: Giriş ve Geçişler.

Horizontal Lead-In Radius: Yatay giriş hareketleri için yarıçapı belirtir

Vertical Lead-In Radius: Giriş hareketinden takım yoluna geçeren giriş anındaki temas eden yüzeyde pürüzsüzleştirilen dikey yay yarıçapı.

Vertical Lead-Out Radius: Giriş hareketinden takım yoluna geçeren giriş anındaki temas eden yüzeyde pürüzsüzleştirilen dikey yay yarıçapı.

Ramp: Kesiciin her derinlik kesim hareketinin (Z ekseni yöndede parçaya giriş derinliği) nasıl olacağını belirler. Dolu parçalara daliş hareketi heliks yada smooth profil olabilir. Amacı ilk giriş anında kesici kırlımlarını önlemektir. Parmak freze çıkakları dik kesmeye uygun değildir. Bu sebepten kesici hareketi yataydan dike veya dik hareketten yataya doğru olmalıdır.
Görsel 2.16: Ramp tipleri
(İşleme yöntemi değiştiğinde o yöntemle uygun Rampa seçenekleri ekrana gelecektir. Tüm seçenekler ekrana gelmez.)

Görsel 2.16: Ramp tipleri
(İşleme yöntemi değiştiğinde o yöntemle uygun Rampa seçenekleri ekrana gelecektir. Tüm seçenekler ekrana gelmez.)
Görsel 2.17 Rampa ve Predrill Hareketleri

Ramping Angle: Kes
sırada dikey eksenle yaptığı heliks veya rampa açısını belirtilir.

Ramp Taper Angle: Parçaya
konik bir helis giriş oluşturur.

Maximum Ramp Stepdown: Rampa profilinde devir başına maksimum adım atmayı belirir. Bu parametre, rampa sırasında tam genişlikte kesimler yaparken takım yükünün sırlamasına izin verir.

Rampa Boşluğu Yüksekliği: Heliksin rampa hareketine başladığı yerin yüksekliğini belirtilir.

Helical Ramp Diameter: Dolu bir bölgeye helisel bir giriş için kullanılan maksimum çapı belirir. Seçeneğe bağlı bir değerdir. Amaç iyi talış tahliyesidir. Girilen değer takımın çapından büyükse, helezonun ortasında bir çıkıntı meydana gelir.

Minimum Ramp Diameter: Rampa hareketinde uygun küçük Helix çapı. Bu değer her zaman Helix Rampa çapından daha küçük olmalıdır, böylece program mevcut cebe veya kanala uyan bir aralık hesaplayabilir. Küçük çaplar talış tahliyesini azaltabilir, titreşim yaratabilir ve takımın kırlmasına neden olabilir.

Predrill: Kesicinin malzemeye girmesine izin vermek için deliklerin açıldığı noktaları seçin.
2.3 2D Pocket

2D POCKET yöntemi de diğer işleme yöntemleri gibi 5 bölümden oluşur. Bunlar;

<table>
<thead>
<tr>
<th>TOOL</th>
<th>KESİCİ SEÇİMİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOMETRY</td>
<td>İŞ PARÇASI GEOMETRİSİ SEÇİMİ</td>
</tr>
<tr>
<td>HEIGHTS</td>
<td>KESME YÜKSEKLİK AYAĞLARI</td>
</tr>
<tr>
<td>PASSES</td>
<td>KESME DEĞERLERİ</td>
</tr>
<tr>
<td>LINKING</td>
<td>KESİCİ GİRİŞ, ÇIKIŞ VE BAĞLANTILARI</td>
</tr>
</tbody>
</table>

2.3.1 Tool - Kesici Seçimi

<table>
<thead>
<tr>
<th>Spindle Speed: Kesici dönme devri (RPM)</th>
<th>Surface Speed: Parça üst yüzeyinde geçişlerdeki ilerleme (m/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp Spindle Speed: parça alışı hızı sırasındaki devri</td>
<td></td>
</tr>
<tr>
<td>Cutting Feedrate: Kesme ilerlemesi mm/min</td>
<td></td>
</tr>
<tr>
<td>Feed per Tooth: Kesme anındaki kesici ağız başı ilerleme</td>
<td></td>
</tr>
<tr>
<td>Lead-In Feedrate: Kesmeye ilk giriş anındaki ilerleme</td>
<td></td>
</tr>
<tr>
<td>Lead-Out Feedrate: Kesme sonundaki çıkış ilerlemesi</td>
<td></td>
</tr>
<tr>
<td>Ramp Feedrate: İş parçasına helisel bir dalma yaptığındaki verilecek ilerleme</td>
<td></td>
</tr>
<tr>
<td>Plunge Feedrate: İş parçasına dik dalma kullanacağı zamanki ilerleme</td>
<td></td>
</tr>
<tr>
<td>Feed per Revolution: Diş başı ilerleme</td>
<td></td>
</tr>
</tbody>
</table>

Spindle Speed: Kesici dönme devri (RPM)
2.3.2 Geometry - İş Parçası Geometrisi Seçimi

Geometry: İş parçası üzerindeki işlenecek bölgelerin seçimi

Stock Contours: İşleme alanı sınır çizgisi seçimi

Wrap Toolpath: 4 eksen uygulamalarında kullanılan sarmal profil seçim komutu

Tool Orientation: Kesici takım referans noktası ayarlaması veya değişimi

İş parçası geometri seçiminde 2D çizim, yüzey veya işleme alanı kenarları seçilebilir. İşleme alanı sınırlandırılacak ise tasarım kısımdan sınırlama çizgisi oluşturulmalıdır. Görselde görülen sınır çizgisi ve işleme sonunda ki takım yolu görülmektedir. Bu sınır çizgisi Stock Contours sekmesi aktif edilerek seçilir.

Geometri Bölge Seçimi

Prizmatik parçalarda 3 tip geometri bölgeleri oluşur:
- Kapalı pocket bölgesi – 1. seçim
- Açık pocket bölgesi – 2. seçim
- Sabit seviye bölgesi – 3. seçim

Görsel2.18: Pocket seçenekleri ve sınır alanları

C eksen tornalama işlevlerinde Frezeleme işlemlerini yaparken dikkat edilmesi gereken en önemli işlemlerden biri kesiçinin çalışma eksenini ile seçilen işleme geometrisinin uygunluğudur. Eğer bir silindirik parçanın üzerindeki bir pocket bölgesi işlenecekse parmak frezenin Z eksenini işle
bölgesine dik olacak şekilde **Tool Orientations** sekmesinden değiştirilmelidir. Tüm c eksen frezeleme işlemlerinde bu yöntem geçerlidir ve Z eksen yönü mutlaka değiştirilmelidir.

Görsel2.19: Pocket işleminde Takım çalışma ekseninin işleme bölgesine göre değiştirilmesi

2.3.3 Kesme Yükseklik Ayarları

Bu kısımda kesicinin iş parçasına hangi mesafeden kesmeye başlayacağı, kesmenin hangi seviyede biteceği gibi kesicinin iş parçası üzerindeki kesme yükseklikleri girilir. İş parçasının istenilen seviyesinde kesme bitirilebilir veya istenilen seviyesinde kesme başlatılabilir. Bütün bu değişiklik ihtimalleri bu kısımda değer olarak tanımlanır. Eğer hiçbir seçim yapılmaz ise iş parçası ve tanımlanan kütüğe göre takım yolunu oluştururlar.

<table>
<thead>
<tr>
<th>Clearance height:</th>
<th>Havada gezinme yüksekliği</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retract height:</td>
<td>seçme geri çıkma yüksekliği ekler</td>
</tr>
<tr>
<td>Top height:</td>
<td>seçme üst yüksekliği girilen değer kadar ekler</td>
</tr>
<tr>
<td>Bottom height:</td>
<td>seçme alt yüksekliğini girilen değer kadar ekler</td>
</tr>
<tr>
<td>Model top:</td>
<td>parça üst yüksekliğini referans olarak girilen değer kadar ekler</td>
</tr>
<tr>
<td>Model bottom:</td>
<td>parça alt yüksekliğini referans olarak girilen değer kadar ekler</td>
</tr>
<tr>
<td>Stock top:</td>
<td>Kütük üst yüksekliğini referans olarak girilen değer kadar ekler</td>
</tr>
<tr>
<td>Stock bottom:</td>
<td>Kütük alt yüksekliğini referans olarak girilen değer kadar ekler</td>
</tr>
<tr>
<td>Selected contour(s):</td>
<td>Seçilen konturu referans olarak girilen değer kadar ekler</td>
</tr>
<tr>
<td>Selection:</td>
<td>İş parçası üzerinden seçilen kenar, noktası, düzlemi referans olarak girilen değer kadar ekler</td>
</tr>
<tr>
<td>Origin (absolute):</td>
<td>Ekranda bulunan orjini referans olarak kabul ederek girilen değer kadar öteler</td>
</tr>
</tbody>
</table>
CLEARANCE HEIGHT:
HAVADA GEZİNME YÜKSEKLİĞİ

RETRACT HEIGHT:
ÇIKIŞ YÜKSEKLİĞİ

TOP HEIGHT:
KESME ÜST YÜKSEKLİĞİ

BOTTOM HEIGHT:
ALT İŞLEME SEVIYESİ
2.3.4 Passes - Geçişleri

Finishing Passes

Finishing Overlap: Kesicinin finiş işleme de takım yollarının ilk girişte bırakacağı izleri temizlemesi için giriş değerini belirli bir miktar uzatır.

Number of Finishing Passes: Finiş paso miktarı ekleme

Finish Feedrate: 942 mm/min

Stepover: 0.6 mm

Tolerance: 0.1 mm

Leads on all Finishin...: 0 mm

Repeat Finishing Pass: Son takım yolunu 2 defa tekrarlatır.

Smoothing Deviation: 0.1 mm
Both Ways: Çift taraflı kesim işlemi yapar. Climp ve Conventional kesimi birleştirir.
Maximum Stepover: Yanal adımlar arasındaki maksimum mesafeyi belirler.

Use Morphed Spiral Machining: Pocket bölgenleri işlerken sabit takım yolu oluşturur. Bu seçenek seçildiğinde CNC tezgahı daha önceki seçeneğe göre zorlanmadan daha iyi bir kesim yapar.
Allow Stepover Cusps: Karesel veya köşe Radius lu kesici ile Pocket bölgesi işlendiğinde yanal adımlarda kalan basamak izlerini yok eder.
Smoothing Tolerance: 2D veya 3D eğrilerin yumuşatma toleransı verilerek daha az G kodları oluşturur. XY,XZ veya XZ düzlemleri üzerinde bulunan 2D eğrileri daha başarılı şekilde dönüştürür
Multiple Depths: Bu seçenek sabit kesme yükseklikleri vermek için kullanılır. Verilen talaş yüksekliği kadar her pasoda kesme işlemi yapılır. Eğer iş parçasını tek seferde işleyecekseniz bu seçeneğe aktif edilmemelidir.

Maximum Roughing Stepdown: En fazla kesme yüksekliğini değeri mm olarak olarak verilmelidir. Kesme yüksekliği işleme toplam yüksekliğe tam bölünür. Kalan talaş son pasoda işlenir.

Finishing Stepdowns : Son işlemdeki talaş paso sayısı
Finishing Stepdown : Son işlemdeki talaş yüksekliği

Wall Taper Angle (deg.): İşlenecek Pocket bölgesini açılı olarak işlemek için kullanılır.

Order by Depth : Katman olarak kesme
Order by Step : Adımsal olarak işleme

Use Even Stepdowns: Girilen talaş yüksekliğini işlemek istenen parça yüksekliğine göre son paso hariç eşit talaş yüksekliğinde keser.

Use Even Stepdowns: Girilen talaş yüksekliğini işlemek istenen parça yüksekliğine göre son paso hariç eşit talaş yüksekliğinde keser.
Feed Optimization: İlerleme değeri uyarlamaları

<table>
<thead>
<tr>
<th>Maximum Directional Change</th>
<th>Kesme ilerleme hızı azaltulmadan önce izin verilen maksimum açısal değişikliği belirir.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Feed Radius</td>
<td>İlerleme azaltılmasından önce izin verilen minimum yarıçapı belirir.</td>
</tr>
<tr>
<td>Reduced Feed Distance</td>
<td>Köşe dönüşünden önce yavaşlanacak mesafeyi belirir.</td>
</tr>
<tr>
<td>Reduced Feedrate</td>
<td>Köşe dönüşü öncesi yavaşlama mesafesi</td>
</tr>
<tr>
<td>Only Inner Corners</td>
<td>Yalnızca iç köşelerdeki keseme ilerleme hızını azaltmak için etkinleştirilir.</td>
</tr>
</tbody>
</table>

Görsel 2.22 2D Pocket ile oluşturulmuş takım yolu ve simulasyonu
2.4 2D Contour

2D Kontur işlemi, iş parçası üzerindeki veya 2D çizim halindeki profilleri işlemenez olanak sağlar. İşleme konturu olarak kenar, 2d çizim veya düz yüzey arasındaki seçilebilir.

Görsel 2.23: 2D Contour yöntemi ile C eksen tornalama ile işlenmiş parçaların takım yolları

Contour Selection: İşleme sınırını tanımlamak için herhangi bir Yüz, Kenar veya Çizim öğesi seçilir. Bir Yüzeyin seçilmesi ile tüm kenarlarda takım yolları oluşturulur. Yüzünde delik veya cep bulunan alanlar için Kenar seçimi kullanılır. Alt kenarın seçilmesi durumunda, kesme derinliği referansını otomatik olarak ayarlayacaktır.

Tangential Extension Distance: Açık konturlar da, seçilen konturun başlangıcını, sonunu veya çoklu konturu uzatmak için kullanılır. Bu, başlangıç açısına ve bitiş noktalarına bağlı olarak teğet bir doğrusal uzatma oluşturur. Oluşturulan uzatma seçilen geometrinin bir uzantısıdır.
2.4.1 Tabs: Tırnak Yeri Bırakma

Malzemeler işlenirken iş parçasını güvenli bir şekilde tutmak için 2D Contour takım yoluna tırnaklar eklenir. Sekmeler, 2D işleme seçeneklerinde kullanarak ince plastik veya ahşap malzemelerin kesilmesinde çok kullanılmıştır.

![Image of 2D Contour settings]

Tab Shape: Dikdörtgen veya Üçgen şeklinde tırnak seçimi yapılır.
Tab Width: Tırnak genişliği için bir değer belirlenir.
Tab Height: Tırnak yüksekliği için bir değer belirlenir.
Tab Positioning: Tırnaklar arasındaki mesafeyi (Mesafeye göre) belirtmek veya istenen tırnak konumlarını noktalara belirtmek için kontur yolu boyunca nokta yerleri seçilir.
Tab Distance: Tırnaklar arasındaki mesafenin değerini belirlenir.

![Images of 2D Contour settings and parts]

Görsel 2.24: 2D Contour işlenmede parça üzerine bağlantı tırnağı bırakanma işlemi
2.4.2 Heights (Yükseklik Ayarları)

CLEARANCE HEIGHT:
HAVADA GEZİNME YÜKSEKLİĞİ

RETRACT HEIGHT:
ÇIKIŞ YÜKSEKLİĞİ

TOP HEIGHT:
KESME ÜST YÜKSEKLİĞİ

BOTTOM HEIGHT:
ALT İŞLEME SEVİYESİ

Görsel 2.25: 2D Contour işlenmede yükseklik tablası
Clearance Height: Havada gezinme yüksekliği

Retract Height: Seçime geri çıkma yüksekliği ekler.

Top Height: Seçime üst yüksekliğini girilen değer kadar ekler.

Bottom Height: Seçime alt yüksekliğini girilen değer kadar ekler.

Model top: Parça üst yüksekliğini referans olarak girilen değer kadar ekler.

Model bottom: Parça alt yüksekliğini referans olarak girilen değer kadar ekler.

Stock top: Kütük üst yüksekliğini referans olarak girilen değer kadar ekler.

Stock bottom: Kütük alt yüksekliğini referans olarak girilen değer kadar ekler.

Selected contour(s): Seçilen konturu referans olarak girilen değer kadar ekler.

Selection: İş parçası üzerinden seçilen kenar, noktası, düzlemi referans olarak girilen değer kadar ekler.

Origin (absolute): Ekranda bulunan orjini referans olarak kabul ederek girilen değer kadar öteler.

Görsel 2.26: C eksen parçada yükseklik değerleri

BOTTOM İşLEME ALT MESAFESİ
TOP İşLEME ÜST MESAFESİ
KESMEYE BAŞLAMA YÜKSEKLİĞİ
ÇIKIŞ YÜKSEKLİĞİ
HAVADA GEZİNME YÜKSEKLİĞİ
2.5 Turning Drilling – Delik Delme

İş parçası merkezinde veya yüzeyindeki delikleri delmek için kullanılır. Fusion 360 torna için özel bir delik delme komutu yoktur. Delik delme işlemi Freze ile aynı parametreleri içerdğinden frezeleme komutundaki delik delme seçeneği kullanılır.

2.5.1 Tool- Kesici Seçimi

Görsel 2.27: Drilling operasyonu için kesici (Matkap) seçimi
Selected Faces: Bu seçimde silindir veya delik yüzeylerini model üzerinden seçim içindir.

Hole faces: SelectedFaces seçeneği aktif edildiğinde açılır. Delinecek delik bölgelerin yüzeyini seçmek için kullanılır.

Selected Points: Bu seçimde, delik kenarları veya çizim geometrisi gibi geometri bazlı delik seçimi içindir.

Hole Points: SelectedPoint seçeneğini aktif edildiğinde açılır. Delinecek delikler için delik kenar, nokta veya 2D daire çizimi gereklidir.

Diameter Range: Deliklerin min/maks. çap ölçüsü aralığına dayalı otomatik bir seçimdir. Geometri sınırlaması ile belirli alandaki delikler tanımlanabilir.

Select Same Diameter: Aynı çapdaki delik veya silindirik dış yüzeyleri seçer.

Auto-Merge Hole Segments: Birden fazla delikleri birleştirmek için kullanılır.

Order by Depth: Delik seçiminin yüksekte en düşüğe veya en alttan en yükseğe doğru değiştirir. İşaretilmemişse, seçim en yüksek Z seviyesindeki deliklerle başlayacak ve kademeli olarak aşağıdaki doğru hareket edecektr.

Order Inside-Out: Delik delme işlemini parçanın merkezinden dışarıya doğru yapacaktır.

Görsel 2.28: Drilling operasyonu için delik geometrisi seçenekleri
2.5.2 Geometry – Delik Bölgelerinin Seçimi

DiameterRange: Deliklerin min/maks. çap ölçüsü aralığına dayalı otomatik bir seçimdir. Geometri sınırlaması ile belirli alandaki delikler tanımlanabilir.

Minimum Diameter: Geometri üzerinde aranacak deliğin min. çapı

Maximum Diameter: Geometri üzerinde aranacak deliğin max. çapı

Order by Depth: Delik seçiminin yüksekten en düşüğe veya en alttan en yükseğe doğru değiştirir. İşaretlenmemişse, seçim en yüksek Z seviyesindeki deliklerle başlayacak ve kademeli olarak aşağı doğru hareket edecek.

Order Inside-Out: Delik delme işlemini parçanın merkzinden dışarıya doğru yapacaktır.

Reverseorder: Yapılan tüm seçimleri tersi olarak yapacaktır.

Görsel 2.29: Drilling operasyonu Bottom Height seçenekleri
2.5.3 Passes- Geçiş Seçenekleri

Break-Through Depth: Kesici ağzının, parçanın temiz bir şekilde kesildiğinden emin olmak için deliğin altında ne kadar geçeceği belirtir.

<table>
<thead>
<tr>
<th>Delik İşlemleri</th>
<th>İsimleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling - rapidout</td>
<td>Seçilen deliği delip hızlı dışarı çıkılır. (G81)</td>
</tr>
<tr>
<td>Counterboring - dwell and rapid out</td>
<td>Civata başları için kullanılan delik tipidir. Delik işlemi bitiminde belirli bir süre bekletip hızlı çıkış yapar. (G82)</td>
</tr>
<tr>
<td>Chipbreaking – partial retract</td>
<td>Takım çapı takımının üç veya dört katından fazla derinliğe sahip delikler için. Talaşları kırmak ve veya soğutucunun deliğe girmesine izin vermek için kesiciyi periyodik olarak geri çeker. Bu aynı zamanda gagalayarak delik delme yöntemine benzer.</td>
</tr>
<tr>
<td>Tapping</td>
<td>Kılavuz çekme işlemidir. Bir delikte sağ veya sol vida açar. (G84/G74)</td>
</tr>
<tr>
<td>Reaming</td>
<td>Rayba çekme işlemidir. Bu bir hassas delik delme işlemidir.</td>
</tr>
<tr>
<td>Circular pocket milling</td>
<td>Dairesel pocketleri işlemek için özel delik komutudur.</td>
</tr>
<tr>
<td>Boremilling</td>
<td>Bu komut delikleri helezonik frezeleme için kullanılabilir.</td>
</tr>
<tr>
<td>Probe</td>
<td>Parçadaki bir özelliği bir prob aracılıyla ölçmek için kullanılır veya WCS'yi tanımlamak için makeden makroları kullanılır. Makineye bağlı olarak posta işlemlerinde özel işlem gerekir.</td>
</tr>
</tbody>
</table>
2.6 Takım Yolu Simülasyonu

Tool
Flute: Kesicinin kesen ağız kısmı
Shaft: Kesicinin sap kısmı ile olan yüksekliği
Holder: Kesici ile tutucunun da ekrana getirilmesi

Toolpath: Seçildiğinde takım yolları simülasyon ekranına gelir.
Shoepoints: Geçiş noktalarını ekrana getirir.
Mode: Ekrana gelen takım yolunun öncesi ve sonrasında görülmesini sağlar.

Stock: Seçeneğin aktif yapılandırıldığında belirlenen stok yeşil bir renk alarak ekrana gelir ve kesme işlemini kütük üzerinden yapar.

Tool
Flute: Kesicinin kesen ağız kısmı
Stock: Kütük gösterim seçenekleri

Mode

Standard: 3 eksenden 5 eksene kadar işleme simülasyonu görmek için kullanılır.
Fast: sadece 3 eksen simülasyonu görmek için kullanılır. Amaç daha hızlı sonuca gitmektir.

Colorization: Cam işlemindeki operasyonları ve değerleri farklı renklerle renklendirerek ekrana getirir.

Material: Kütük için atanan bir malzemeyi gösterir. Sadece görsel bir seçenek sunar.

Transparent: Kütüğü şeffaflaştırma.

Position: Kesicinin bulunduğu konumu gösterir. Simülasyon sırasında X,Y,Z eksenlerinde sıfır noktasına göre konumunu gösterir.

Operation: Bu bölümde seçilen işleme stratejisinin adını, kullanılan kesiciyi, makine ofsetini ve işleme süresini gösterir.

Position: Kesicinin bulunduğu konumu gösterir. Simülasyon sırasında X,Y,Z eksenlerinde sıfır noktasına göre konumunu gösterir.

Seçilen ve programın kendi atadığı CNC tezgâhının tipi ve özelliklerini gösterir

Kütüğün hacmini ve işlenen talaş hacmini gösterir
İşleme zamanını ve kat edilen toplam mesafeyi gösterir.
Operasyon sayısı ve değiştirilen kesici sayısı da burda gözükmeaktadır.

2.7 Post Processing NC-Code (G kodları oluşturma)

Görsel 2.30: Post Process menüsü ve alt tabloları

- Post kütüphanesi
- Kontrol ünitesi
- G Kod dosya uzantısı
- Program numarası
- Açıklama eklenebilir
- Ölçü birimi
- İşlem sonrası NC editörde dosyanın açılması
- İşlem Onaylama Çıkış
2.8 Setup Sheet (NC rapor çektisi alma)

Görsel 2.31: Setup Sheet çektisi
Aşağıdaki iş parçasını C eksen tornalama işlemleri (2d Adaptive ve 2d contour işlemini) uygulayarak tornalayınız ve takım yollarını oluşturunuz. Her iki operasyon işlemek için çapı 8 mm parmak freze kullanınız. Sıfır noktasını parçanın dış ve merkez noktası olarak tanımlayınız. Torna aynı ayakları iş parçasının arka kısmından 10 mm geride tutmalıdır.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parçanın CAD ortamına çizilmesi</td>
<td>CAM uygulama örnekleri kısmından parçayı CAM ortamına çağırınız.</td>
</tr>
<tr>
<td>Setup ayar seçeneği eklemek.</td>
<td>CAM kısmından Setup ikonu tıklanınız.</td>
</tr>
<tr>
<td>Kütük tanımlaması yapmak.</td>
<td>Setup seçeneğinde bulunan Stock menüsüne girerek Relative Size Cylinder seçeneği ile çap 76.20 ve boy 33.02 mm ölçülerindeki kütüğü tanımlayınız.</td>
</tr>
<tr>
<td>Kütük ölçülerini tanımlamak.</td>
<td></td>
</tr>
</tbody>
</table>

[Diagram]
CNC Torna tezgâh seçimini yapmak.

Setup seçeneğinde bulunan Machine menüsüne girerek Turning seçimi tıklanır.

Ekrana bulunan MANAGE sekmesinden Tool Library penceresi seçilir. Ekrana gelen menüden New Mill Tool tıklanarak kesici ekleme menüsü aktiflenir.

Kesici seçimi yapmak

Kesici ölçüleri tabloya girmek.

Kesici menüsünden kesicinin çapını 8 mm, kesme boyunu 35 mm olarak ayarlayınız.
Alın tornalma işlemi için kesiciye gerekli devir ve ilerlemeleri girmek.

Geometri seçimi yapmak.

İşleme yükseklik değerlerini seçmek.
Kesme değerlerini ve geçişleri seçmek.

Talaş yüksekliği 2 mm olacak şekilde takım yolu elde etmek.
İşleme süresini öğrenebilmek.
Alın tornalma için toplam süre 16 dakika 42 saniyedir.

C eksen de 2d kontur tornalama işlemini yapmak.

Kesici seçimi yapmak.

Kesici çapı 8mm olan parmak freze takımını kütüphanesinden CAM ortamına çağırılır.
2D Contour komutu ile işlemek için kesiciye kesme değerleri vermek.

İşleme geometrisi seçmek.

2D Contour komutu ile C eksen tornalama değerleri vermek
Simülasyon işlemi yapmak

İşleme zamanı görmek
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri Evet, kazanamadığınız becerileri Hayır kutucuğuna (X) işaret etmekle kendinizi değerlendireceksiniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Parçayı Cam uygulama örnekleri kütüphanesinden çağırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Setup sekmesini seçtiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Kütük oluşturmak için Setup menüsünden Stock Setup'ı seçtiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Kütük değerlerini belirtilen ölçüde girdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Setup menüsünden iş parçasının sıfır noktasını belirlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Parçayı işlemek için 2D Adaptive seçeneğini seçtiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Çapi 8 mm olan parmak freze kesıcısını yeni kesici olarak eklediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. İş parçasının işleme bölgelerini seçtiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Kesme yüksekliğini 2 mm olarak ayarladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. 2D Contour işleme için çapi 8 mm parmak freze kesicisini kesici olarak seçtiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. İşleme sınırı olarak parçanın dış konturunu seçtiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Simülasyon yaparak 2D Adaptive ve 2D Contour işleme operasyonlarını kontrol ettiniz mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

1. Aşağıdaki işlemlerden hangisi silindirik parça alınındaki freze bölgeni işleme operasyonunu ifade etmektedir?
 A) Face
 B) 2D Adaptive Clearing
 C) Turning Profile
 D) Drill
 E) Bore

2. Operasyon içinde paso tanımlama işlemi hangi seçenekten yapılmaktadır?
 A) Passes
 B) Geometry
 C) Height
 D) Linking
 E) Edit

3. Aşağıdaki işlemlerden hangisi Delik Delme operasyonunu ifade etmektedir?
 A) Face
 B) Pocket
 C) Face Profile
 D) Bore
 E) Drilling

4. Aşağıdaki işlemlerden hangisi parça dışındaki değişik kenar ve konturları işleme operasyonunu ifade etmektedir?
 A) Profiling
 B) Face
 C) 2D countour
 D) Drill
 E) Drilling

5. Aşağıdaki işlemlerden hangisi parçanın Alın Tornalama işlemi ifade etmektedir?
 A) Turning Face
 B) 2D Adaptive Clearing
 C) 2D Contour
 D) Drill
 E) Profiling

6. Aşağıdaki işlemlerden hangisi operasyonda canlı takım kullanılır ifade etmektedir?
 A) Turning part
 B) 2D Pocket
 C) Cut
 D) Drill
 E) Face
7. CNC tezgahının hızlı (talaş kaldırmadan) hareketleri aşağıda belirtilen hangi seçenekte yapılmaktadır?
 A) Stock Height
 B) Top Height
 C) Retract Height
 D) Clearance Height
 E) Edit Tool

8. Silindirik parçalara torna tezgahında (düz veya açılı – iç veya dış) **Diş Açmak** için aşağıdaki belirtilen hangi seçeneklerin hangisi?
 A) Face
 B) Bore
 C) Engrave
 D) Drilling
 E) Thread

9. Aşağıdaki işlemlerden hangisi **2D Countpur işlemede tırnak bırakma** operasyonunu ifade etmektedir?
 A) Reaming
 B) 2d Pocket
 C) Tap
 D) Turning Chamfer
 E) Thread

10. Aşağıdaki işlemlerden hangisi **Rayba çekme** operasyonunu ifade etmektedir?
 A) Reaming
 B) 2d Pocket
 C) Tapping
 D) Bore milling
 E) Engrave

DEĞERLENDİRME

CEVAP ANAHTARI

<table>
<thead>
<tr>
<th>ÖĞRENME FAALİYETİ-1’İN CEVAP ANAHTARI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ÖĞRENME FAALİYETİ-2’İN CEVAP ANAHTARI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
KAYNAKÇA

- Fusion 360 yardım menüleri
- Tophane M.T.A.L. CAM ders notları